Nickel nanomaterials as delivery system in combating diseases
Abstract
Many people suffer from the aggravation of infections and inflammations initiated by the exposure of virulent microorganisms or other toxicants globally owing to the development of drug resistance accompanied with drug toxicity, insolubility, non-specificity, and the occurrence of biological barriers. Nanotechnology-based nickel nanomaterials (NiNMs) such as nickel oxide nanoparticles (NiONPs) and nickel hydroxide nanoparticles (Ni(OH)2NPs) have attracted attention as nano-medicinal delivery system to inhibit the disease-development and spreading due to their suitable physicochemical characteristics such as nano sizes, effective shapes, high surface to volume ratio, increased reactivity, easy surface-functionalization, and photo-thermal activity. Metallic NiNMs are capable to penetrate cellular membrane causing cellular leakage, and to generate reactive oxygen species (ROS) for interaction with cellular molecules to damage DNAs, proteins, and lipids leading to microbial or cellular deaths. Moreover, their surface-functionalization with specific ligands, drugs, and other biomolecules may direct their modulations as suitable targeted delivery system on lowering cytotoxicity, minimizing drug degradation and loss, and increasing bioavailability of drug compounds. This review elucidates chiefly on the synthesis, drug loading and functionalization, mechanisms of action, biomedical applications, toxicity, biodistribution and elimination of NiNMs as delivery system in combating diseases.
Keywords: Infections and inflammations; Nickel nanomaterials; Delivery system; Bio-medical applications
Keywords:
Infections and inflammations, Nickel nanomaterials, Delivery system, Bio-medical applicationsDOI
https://doi.org/10.22270/jddt.v15i5.7124References
1. Mandal AK, Mandal A. Quantum dots as theranostic nano delivery system in combating various diseases. J Drug Deliv Therapeut. 2024; 14(9):137-50. https://doi.org/10.22270/jddt.v14i9.6766
2. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017; 9(6):7204-18. https://doi.org/10.18632/oncotarget.23208 PMid:29467962 PMCid:PMC5805548
3. Bennett JM, Reeves G, Billman GE, Sturmberg JP. Inflammation-nature's way to efficiently respond to all types of challenges: Implications for understanding and managing "the epidemic" of chronic diseases. Front Med. 2018; 5:316. https://doi.org/10.3389/fmed.2018.00316 PMid:30538987 PMCid:PMC6277637
4. Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol. 2022; 19:177-91. https://doi.org/10.1038/s41423-021-00832-3 PMid:35039631 PMCid:PMC8803838
5. Vestergaard M, Frees D, Ingmer H. Antibiotic resistance and the MRSA problem. Microbiol Spectr. 2019; 7:18. https://doi.org/10.1128/microbiolspec.GPP3-0057-2018 PMid:30900543 PMCid:PMC11590431
6. Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, Marusza W. Molecular mechanisms of drug resistance in Staphylococcus aureus. Int J Mol Sci. 2022; 23:8088. https://doi.org/10.3390/ijms23158088 PMid:35897667 PMCid:PMC9332259
7. Liu WT, Chen EZ, Yang L, Peng C, Wang Q, Xu Z, et al. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review. Microb Pathog. 2021; 156:104915. https://doi.org/10.1016/j.micpath.2021.104915 PMid:33930416
8. Theoharides TC, Kalogeromitros. The critical role of mast cells in allergy and inflammation. Ann NY Acad Sci. 2006; 1088:78-99. https://doi.org/10.1196/annals.1366.025 PMid:17192558
9. Funk CD. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Sci. 2001; 294:1871-5. https://doi.org/10.1126/science.294.5548.1871 PMid:11729303
10. Muller N. The role of anti-inflammatory treatment in psychiatric disorders. Psychiatric Danubina. 2013; 25:292-8.
11. Yang D, Elner SG, Bian ZM, Till GO, Petty HR, Elner VM. Proinflammatory cytokines increase reactive oxygen species through mitochondria and NADH oxidase in cultured RPE cells. Experiment Eye Res. 2007; 85:462-72. https://doi.org/10.1016/j.exer.2007.06.013 PMid:17765224 PMCid:PMC2094037
12. Mittwoch-Jaffe T, Shalit F, Srendi B, Yehuda S. Modification of cytokine secretion following mild emotional stimuli. Neuroreport. 1995; 6:79-92. https://doi.org/10.1097/00001756-199503270-00021 PMid:7605950
13. Conner EM, Grisham MB. Inflammation, free radicals and antioxidants. Nutrition. 1996; 12:274-7. https://doi.org/10.1016/S0899-9007(96)00000-8 PMid:8862535
14. Gulumain M. The role of oxidative stress is diseases caused by mineral dusts and fibres: Current status and future of prophylaxis and treatment. Mol Cell Biochem. 1999; 196:69-77. https://doi.org/10.1023/A:1006918212866
15. Maes M. Evidence for an immune response in major depression a review and hypothesis. Prog NeuroPschoPharmacol Biol Psychiatry. 1995; 19:11-38. https://doi.org/10.1016/0278-5846(94)00101-M PMid:7708925
16. Dinarello CA. Interleukin-1 beta, interleukin-18, and interleukin-1 beta converting enzyme. Ann NY Acad Sci. 1998; 856:1-11. https://doi.org/10.1111/j.1749-6632.1998.tb08307.x PMid:9917859
17. Border WA, Noble NA. Mechanisms of disease. Transforming growth factor β in tissue fibrosis. N Engl J Med. 1994; 331:1286-92. https://doi.org/10.1056/NEJM199411103311907 PMid:7935686
18. Mccarthy DM. Comparative toxicity of non-steroidal anti-inflammatory drugs. Am J Med. 1999; 107:37S-47S. https://doi.org/10.1016/S0002-9343(99)00366-6 PMid:10628592
19. Richy F, Bruyere O, Ethgen O, Rabenda V, Bouvenot G, Audran M, et al. Time dependent risk of GI complications induced by nonsteroidal anti-inflammatory drug use: A consensus statement using a meta-analytic approach. Ann Rheum Dis. 2004; 63:759-66. https://doi.org/10.1136/ard.2003.015925 PMid:15194568 PMCid:PMC1755051
20. FlizGerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase 2. New Engl J Med. 2001; 345:433-42. https://doi.org/10.1056/NEJM200108093450607 PMid:11496855
21. Parveen S, Misra S, Sahoo SK. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol. 2012; 8:147-66. https://doi.org/10.1016/j.nano.2011.05.016 PMid:21703993
22. Chen F, Zhou W, Yao H, Fan P, Yang J, Fei Z, et al. Self-assembly of NiO nanoaprticles in lignin-derived mesoporous carbons for supercapacitor applications. Green Chem. 2013; 15(11):3057-63. https://doi.org/10.1039/c3gc41080c
23. Kannan K, Radhika D, Nikolova MP, Sadasivuni KK, Mahdizadeh H, Verma U. Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorg Chem Commun. 2020; 113:107755. https://doi.org/10.1016/j.inoche.2019.107755
24. Wang Y, Zhu J, Yang X, Lu L, Wang X. Preparation of NiO nanoparticles and their catalytic activity in the thermal decoration of ammonium perchlorate. Sci Direct Thermochimica Acta. 2005; 437:106-9. https://doi.org/10.1016/j.tca.2005.06.027
25. Jaji ND, Lee HL, Hussin MH, Akil HM, Zakaria MR, Othman MBH. Advanced nickel nanoparticles technology: From synthesis to applications. Nanotechnol Rev. 2020; 9(1):1456-80. https://doi.org/10.1515/ntrev-2020-0109
26. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012; 64:24-36. https://doi.org/10.1016/j.addr.2012.09.006
27. Park J, Joo J, Kwon SG, Jang Y, Hyeon T. Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed. 2007; 46:4630-60. https://doi.org/10.1002/anie.200603148 PMid:17525914
28. You H, Fang J. Particle-mediated nucleation and growth of solution-synthesized metal nanocrystals: A new story beyond the LaMer curve. Nano Today. 2016; 11:145-67. https://doi.org/10.1016/j.nantod.2016.04.003
29. LaMer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc. 1950; 72:4847-54. https://doi.org/10.1021/ja01167a001
30. Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomed. 2019; 14:1633-57. https://doi.org/10.2147/IJN.S184723 PMid:30880970 PMCid:PMC6417854
31. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomed 2010; 6(2):257-62. https://doi.org/10.1016/j.nano.2009.07.002 PMid:19616126
32. eSilva FA, Salim VMM, Rodrigues TS. Controlled nickel nanoparticles: A review on how parameters of synthesis can modulate their features and properties. Applied Chem. 2024; 4:86-106. https://doi.org/10.3390/appliedchem4010007
33. Tadic M, Nikolic D, Panjan M, Blake GR. Magnetic properties of NiO (nickel oxide) nanoparticles: Blocking temperature and Neel temperature. J Alloys Compd. 2015; 647:1061-8. https://doi.org/10.1016/j.jallcom.2015.06.027
34. Zayim EO, Turhan I, Tepehan F, Ozer N. Sol-gel deposited nickel oxide films for electrochromic applications. Sol Energy Mater Sol. 2008; 92(2):164-9. https://doi.org/10.1016/j.solmat.2007.03.034
35. Zorkipli NNM, Kaus NHM, Mohamad AA. Synthesis of NiO nanoparticles through sol-gel method. Procedia Chem. 2016; 19:626-31. https://doi.org/10.1016/j.proche.2016.03.062
36. J-f LI, Bo X, L-j DU, Rong Y, Liang TD. Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing cellulose. J Fuel Chem Technol. 2008; 36(1):42-7. https://doi.org/10.1016/S1872-5813(08)60010-9
37. Yang Q, Sha J, Ma X, Yang D. Synthesis of NiO nanowires by a sol-gel process. Mater Lett. 2005; 59(14-15):1967-70. https://doi.org/10.1016/j.matlet.2005.02.037
38. Fereshteh Z, Salavati-Niasari M, Saberyan K, Hosseinpour-Mashkani SM, Tavakoli F. Synthesis of nickel oxide nanoparticles from thermal decomposition of a new precursor. J Cluster Sci. 2012; 23:577-83. https://doi.org/10.1007/s10876-012-0477-8
39. El-Kemary M, Nagy N, El-Mehasseb I. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process. 2013; 16(6):1747-52. https://doi.org/10.1016/j.mssp.2013.05.018
40. Nathan T, Aziz A, Noor A, Prabaharan S. Nanostructured NiO for electrochemical capacitors: Synthesis and electrochemical properties. J Solid State Electrochem. 2008; 12:1003-9. https://doi.org/10.1007/s10008-007-0465-3
41. Abdallah A, Basma H, Awad R. Preparation, characterization, and application of nickel oxide nanoparticles in glucose and lactose biosensors. Mod Appl Sci. 2019; 13(6):99. https://doi.org/10.5539/mas.v13n6p99
42. Srikesh G, Nesaraj AS. Synthesis and characterization of phase pure NiO nanoparticles via the combustion route using different organic fuels for electrochemical capacitor applications. J Electrochem Sci Technol. 2015; 6(1):16-25. https://doi.org/10.33961/JECST.2015.6.1.16
43. Kuchkina N, Sorokina S, Torozova A, Bykov A, Shifrina Z. Ni nanoparticles entrapped by a functional dendrimer as a highly efficient and recyclable catalyst for Suzuki-Miyaura cross-coupling reactions. Chem Select. 2022; 7: e202202653. https://doi.org/10.1002/slct.202202653
44. Liu S, Li Z, Yu B, Wang S, Shen Y, Cong H. Recent advances on protein separation and purification methods. Adv Colloid Interface Sci. 2020; 284:102254. https://doi.org/10.1016/j.cis.2020.102254 PMid:32942182
45. Robertson JD, Rizzello L, Avila-Olias M, Gaitzsch J, Contini C, Magon MS, et al. Purification of nanoparticles by size and shape. Sci Rep. 2016; 6:27494. https://doi.org/10.1038/srep27494 PMid:27271538 PMCid:PMC4897710
46. Rodrigues TS, eSilva FA, Candido EG, da Silva AGM, dos Geonmonond RS, Camargo PHC, et al. Ethanol steam reforming: Understanding changes in the activity and stability of Rh/MxOy catalysts as function of the support. J Mater Sci. 2019; 54:11400-16. https://doi.org/10.1007/s10853-019-03660-z
47. Stephens JR, Beveridge JS, Williams ME. Analytical methods for separating and isolating magnetic nanoparticles. Phys Chem Chem Phys. 2012; 14:3280. https://doi.org/10.1039/c2cp22982j PMid:22306911
48. Khan SA, Shahid S, Ayaz A, Alkahtani J, Elshikh MS, Riaz T. Phytomolecules-coated NiO nanoparticles synthesis using Abutilon indicum leaf extract: Antioxidant, antibacterial, and anticancer activities. Int J Nanomed. 2021; 16:1757. https://doi.org/10.2147/IJN.S294012 PMid:33688190 PMCid:PMC7936927
49. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Ramalingam RJ, Al-Lohedan HA. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. Biol. 2018; 180:39-50. https://doi.org/10.1016/j.jphotobiol.2018.01.023 PMid:29413700
50. Abbasi BA, Iqbal J, Mahmood T, Ahmad R, Kanwal S, Afridi S. Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: Characterization and different biological applications. Mater Res Express. 2019; 6(8):0850a7. https://doi.org/10.1088/2053-1591/ab23e1
51. Gebreslassie YT, Gebretnsae HG. Green and cost-effective synthesis of tin oxide nanoparticles: A review on the synthesis methodologies, mechanism of formation, and their potential applications. Nanoscale Res Lett. 2021; 16(1):97. https://doi.org/10.1186/s11671-021-03555-6 PMid:34047873 PMCid:PMC8163898
52. Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011; 2011:1-16. https://doi.org/10.1155/2011/270974
53. Sathyavathi S, Manjula A, Rajendhran J, Gunasaekaran P. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent. Bioresour Technol. 2014; 165:270-3. https://doi.org/10.1016/j.biortech.2014.03.031 PMid:24685513
54. Salvadori MR, Nascimento CAO, Correa B. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. Sci Rep. 2014; 4(1):1-6. https://doi.org/10.1038/srep06404 PMid:25228324 PMCid:PMC4165976
55. Salvadori MR, Ando RA, Oller Nascimento CA, Correa B. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS One. 2015; 10(6): e0129799. https://doi.org/10.1371/journal.pone.0129799 PMid:26043111 PMCid:PMC4456161
56. Ullah M, Naz A, Mahmood T, Siddiq M, Bano A. Biochemical synthesis of nickel and cobalt oxide nanoparticles by using biomass waste. Int J Enhanc Res Sci Technol Eng. 2014; 3:415-22.
57. Salvadori MR, Ando RA, Muraca D, Knobel M, Nascimento CAO, Correa B. Magnetic nanoparticles of Ni/NiO nanostructured in film form synthesized by dead organic matrix of yeast. RSC Adv. 2016; 6(65):60683-92. https://doi.org/10.1039/C6RA07274G
58. Moavi J, Buazar F, Sayahi MH. Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives. Sci Rep. 2021; 11(1):1-14. https://doi.org/10.1038/s41598-021-85832-z PMid:33739019 PMCid:PMC7973480
59. Singh Y, Sodhi RS, Singh PP, Kaushal S. Biosynthesis of NiO nanoparticles using Spirogyra sp. cell-free extract and their potential biological applications. Mater Adv. 2022; 3(12):4991-5000. https://doi.org/10.1039/D2MA00114D
60. Devi HS, Singh TD, Singh NR. Green synthesis and catalytic activity of composite NiO-Ag nanoparticles for photocatalytic degradation of dyes. J Ind Chem Soc. 2017; 94(2):159-69.
61. Suvith V, Devu V, Philip D. Tannic acid mediated synthesis of nanostructured NiO and SnO2 for catalytic degradation of methylene blue. Opt Quantum Electron. 2020; 52:1-17. https://doi.org/10.1007/s11082-019-2131-2
62. Baranwal K, Dwivedi LM, Singh V, Singhh V. Guar gum mediated synthesis of NiO nanoparticles: An efficient catalyst for reduction of nitroarenes with sodium borohydride. Int J Biol Macromol. 2018; 120:2431-41. https://doi.org/10.1016/j.ijbiomac.2018.09.013 PMid:30193919
63. Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M. Green-based biosynthesis of nickel oxide nanoparticles in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects. Green Chem Lett Rev. 2021; 14(2):404-14. https://doi.org/10.1080/17518253.2021.1923824
64. Horri BA, Choo CK, Goh TL, Shahcheraghi L, Ngoh GC, Abdullah AZ, et al. Synthesis and characterization of NiO nanospheres by templating on chitosan as a green precursor. J Am Ceram Soc. 2016; 99(12):3874-82. https://doi.org/10.1111/jace.14411
65. Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M. Egg white mediated green synthesis of NiO nanoparticles and study of their cytotoxicity and photocatalytic activity. Polyhedron. 2020; 178:114351. https://doi.org/10.1016/j.poly.2020.114351
66. Lv YC, Shahri EE, Mahmoudi A, Naughabi RK, Abbaspour S, Tayebee R. Bioinspired nickel oxide nanoparticle as an efficient nanocarrier in the delivery of doxorubicin as an anti-bladder cancer drug. Inorg Chem Commun. 2023; 152:110650. https://doi.org/10.1016/j.inoche.2023.110650
67. Veerapandian M, Yun K. Functionalization of biomolecules on nanoparticles: Specialized for antibacterial applications. Appl Microbiol Biotechnol. 2011; 90(5):1655-67. https://doi.org/10.1007/s00253-011-3291-6 PMid:21523475
68. Tallury P, Malhotra A, Byrne LM, Santra S. Nanobioimaging and sensing of infectious diseases. Adv Drug Deliv Rev. 2020; 62(4-5):424-37. https://doi.org/10.1016/j.addr.2009.11.014 PMid:19931579 PMCid:PMC7103339
69. Galdiero S, Falanga A, Berisio R, Grieco P, Morelli G, Galdiero M. Antimicrobial peptides as an opportunity against bacterial diseases. Curr Med Chem. 2015; 22:1665-77. https://doi.org/10.2174/0929867322666150311145632 PMid:25760092
70. Xing K, Zhu X, Peng X, Qin S. Chitosan antimicrobial and eliciting properties for pest control in agriculture: A review. Agron Sustain Dev. 2015; 35:569-88. https://doi.org/10.1007/s13593-014-0252-3
71. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Maaza M, Ayeshamariam A, Kennedy LJ. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. Biol. 2016; 164:352-60. https://doi.org/10.1016/j.jphotobiol.2016.10.003 PMid:27728880
72. Srihasam S, Thyagarajan K, Korivi M, Lebaka VR, Mallem SPR. Phytogenic generation of NiO nanoparticles using Stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomol. 2020; 10(1):89. https://doi.org/10.3390/biom10010089 PMid:31935798 PMCid:PMC7023445
73. Chaudhary RG, Tanna JA, Gandhare NV, Rai AR, Juneja HD. Synthesis of nickel nanoparticles: Microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv Mater Lett. 2015; 6:990-8. https://doi.org/10.5185/amlett.2015.5901
74. Etefa HF, Nemera DJ, Dejene FB. Green synthesis of nickel oxide NPs incorporating carbon dots for antimicrobial activities. ACS Omega. 2023; 8:38418-25. https://doi.org/10.1021/acsomega.3c05204 PMid:37867704 PMCid:PMC10586249
75. Iqbal J, Abbasi BA, Mahmood T, Hameed S, Munir A, Kanwal S. Green synthesis and characterizations of nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl Organomet Chem. 2019; 33(8): e4950. https://doi.org/10.1002/aoc.4950
76. Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong S. Rambutan (Nephalium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Mater Lett. 2014; 128:170-4. https://doi.org/10.1016/j.matlet.2014.04.112
77. Iqbal J, Abbasi BA, Ahmad R, Mahmoodi M, Munir A, Zahra SA, et al. Phytogenic synthesis of nickel oxide nanoparticles (NiO) using fresh leaves extract of Rhamnus triquetra (wall.) and investigation of its multiple in vitro biological potentials. Biomed. 2020; 8(5):117. https://doi.org/10.3390/biomedicines8050117 PMid:32408532 PMCid:PMC7277790
78. Saleem S, Ahmed B, Khan MS, Al-Shaeri M, Musarrat J. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globules plants. Microb Pathog. 2017; 111:375-87. https://doi.org/10.1016/j.micpath.2017.09.019 PMid:28916319
79. Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009; 78:857-902. https://doi.org/10.1146/annurev.biochem.78.081307.110540 PMid:19317650
80. Bethu MS, Netala VR, Domdi L, Tartte V, Janapala VR. Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: An insight into the mechanism. Artif Cells Nanomed Biotechnol. 2018; 46(supp 1):104-14. https://doi.org/10.1080/21691401.2017.1414824 PMid:29301413
81. Patil MP, Kim GD. Eco-friendly approach for nanoparticles synthesis and mechanism behind anti-bacterial activity of silver and anti-cancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017; 101:79-92. https://doi.org/10.1007/s00253-016-8012-8 PMid:27915376
82. Kim YJ, Perumalsamy H, Castro-Aceituno V, Kim D, Markus J, Lee S, et al. Photoluminescent and self-assembled hyaluronic acid-zinc oxide-ginsenoside Rh2 nanoparticles and their potential caspase-9 apoptotic mechanism towards cancer cell lines. Int J Nanomed. 2019; 14:8195-208. https://doi.org/10.2147/IJN.S221328 PMid:31632027 PMCid:PMC6790350
83. Horie M, Nishio K, Fujita K, Endoh S, Miyauchi A, Saito Y, et al. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol. 2009; 22(3):543-53. https://doi.org/10.1021/tx800289z PMid:19216582
84. Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. 2011; 374(1-3):1-8. https://doi.org/10.1016/j.colsurfa.2010.10.015
85. Sonohara R, Muramatsu N, Ohshima H, Kondo T. Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys Chem. 1995; 55(3):273-7. https://doi.org/10.1016/0301-4622(95)00004-H PMid:7626745
86. Espitia PJP, Soares ND FF, Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioproc Tech. 2012; 5:1447-64. https://doi.org/10.1007/s11947-012-0797-6
87. Din MI, Nabi AG, Rani A, Aihetasham A, Mukhtar M. Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantean: Catalytic and antimicrobial potentials. Environ Nanotechnol Monit Manag. 2018; 9:29-36. https://doi.org/10.1016/j.enmm.2017.11.005
88. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, et al. Sageretia thea (osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol. 2018; 46(4):838-52. https://doi.org/10.1080/21691401.2017.1345928 PMid:28687045
89. Dauthal P, Mukhopadhyay M. Noble metal nanoparticles: Plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res. 2016; 55(36):9557-77. https://doi.org/10.1021/acs.iecr.6b00861
90. Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: Methods and literature. Int J Nanomed. 2012; 7:23-44. https://doi.org/10.2147/IJN.S24805 PMid:22745541 PMCid:PMC3383293
91. Cemple M, Nickel G. Nickel: A review of its sources and environmental toxicology. Polish J Environ Stud. 2006; 15:375-82.
92. Angajala G, Subashini R. A review of nickel nanoparticles as effective therapeutic agents for inflammation. Inflam Cell Signal. 2014; 1: e271.
93. Karthik K, Shashank M, Revathi V, Tatarchuk T. Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Mol Cryst Liq Cryst. 2019; 47:1926-54.
94. Lingaraju K, Naika HR, Nagabhushana H, Jayanna K, Devaraja S, Nagaraju G. Biosynthesis of nickel oxide nanoparticles from Euphorbia heterophylla (L.) and their biological application. Arab J Chem. 2020; 13(3):4712-9. https://doi.org/10.1016/j.arabjc.2019.11.003
95. Sabouri Z, Fereydouni N, Akbari A, Hosseini HA, Hashemzadeh A, Amiri MS, et al. Plant-based synthesis of NiO nanoparticles using Salvia macrosiphon Boiss extract and examination of their water treatment. Rare Met. 2019; 39(23):1134-44. https://doi.org/10.1007/s12598-019-01333-z
96. Zhang Y, Maldavi B, Mohammadhosseini M, Rezaei-Seresht E, Paydarfard S, Qorbani M, et al. Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical characterization, anti-oxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arab J Chem. 2021; 14(5):103105. https://doi.org/10.1016/j.arabjc.2021.103105
97. Haritha V, Gowri S, Janarthanan B, Faiyazuddin M, Karthikeyan C, Sharmila S. Biogenic synthesis of nickel oxide nanoparticles using Averrhoa bilimbi and investigation of its anti-bacterial, anti-diabetic and cytotoxic properties. Inorg Chem Commun. 2022; 144:109930. https://doi.org/10.1016/j.inoche.2022.109930
98. UR S, CR RK, MS K, Betageri VS, MS L, Veerapur R, et al. Biogenic synthesis of NiO nanoparticles using Areca catechu leaf extract and their anti-diabetic and cytotoxic effects. Molecules. 2021; 26(9):2448. https://doi.org/10.3390/molecules26092448 PMid:33922292 PMCid:PMC8122846
99. Horie M, NiShio K, Fujita K, Kato H, Nakamura A, Kinugasa S, et al. Ultrafine NiO particles induce cytotoxicity in vitro by cellular uptake and subsequent Ni(II) release. Chem Res Toxicol. 2009; 22:1415-26. https://doi.org/10.1021/tx900171n PMid:19630433
100. Latvala S, Hedberg J, Di Bucchianico S, Moller L, Odnevall Wallinder I, Elihn K, et al. Nickel release, ROS generation and toxicity of Ni and NiO micro- and nanoparticles. PLoS ONE. 2016; 11: e0159684. https://doi.org/10.1371/journal.pone.0159684 PMid:27434640 PMCid:PMC4951072
101. Cao Z, Fang Y, Lu Y, Qian F, Ma Q, He M, et al. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats. Int J Nanomed. 2016; 11:3331-46. https://doi.org/10.2147/IJN.S106912 PMid:27524893 PMCid:PMC4965228
102. Cho WS, Duffin R, Bradley M, Megson IL, Macnee W, Howie SE, et al. NiO and Co3O4 nanoparticles induce lung DTH-like responses and alveolar lipoproteinosis. Eur Respir J. 2012; 39:546-57. https://doi.org/10.1183/09031936.00047111 PMid:21828028
103. Bai KJ, Chuang KJ, Chen JK, Hua HE, Shen YL, Liao WN, et al. Investigation into the pulmonary inflammopathology of exposure to nickel oxide nanoparticles in mice. Nanomed Nanotechnol Biol Med. 2018; 14:2329-39. https://doi.org/10.1016/j.nano.2017.10.003 PMid:29074311
104. Lu S, Diffin R, Poland C, Daly P, Murphy F, Drost E, et al. Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect. 2009; 117:241-7. https://doi.org/10.1289/ehp.11811 PMid:19270794 PMCid:PMC2649226
105. Sutunkova MP, Solovyeva SN, Minigalieva IA, Gurvich VB, Valamina IE, Makeyev OH, et al. Toxic effects of low-level long-term inhalation exposures of rats to nickel oxide nanoparticles. Int J Mol Sci. 2019; 20:1778. https://doi.org/10.3390/ijms20071778 PMid:30974874 PMCid:PMC6479379
106. Cuevas AK, Liberda EN, Gillespie PA, Allina J, Chen LC. Inhaled nickel nanoparticles alter vascular reactivity in C57BL/6 mice. Inhal Toxicol. 2010; 22(sippl.S2):100-06. https://doi.org/10.3109/08958378.2010.521206 PMid:21142798 PMCid:PMC3786415
107. Liberda EN. The effects of inhaled nickel nanoparticles on murine endothelial progenitor cells. UMI Dissertations Publishing: An Arbor, MI, USA. 2011.
108. Liberda EN, Cuevas AK, Qu Q, Chen LC. The acute exposure effects of inhaled nickel nanoparticles on murine endothelial progenitor cells. Inhal Toxicol. 2014; 26:588-97. https://doi.org/10.3109/08958378.2014.937882 PMid:25144474 PMCid:PMC4212263
109. Kang GS, Gillespie PA, Gunnison A, Moreira AL, Tchou-Wong KM, Chen LC. Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse mode. Environ Health Perspect. 2011; 119:176-81. https://doi.org/10.1289/ehp.1002508 PMid:20864429 PMCid:PMC3040603
110. Yu S, Liu F, Wang C, Zhang J, Zhu A, Zou L, et al. Role of oxidative stress in liver toxicity induced by nickel oxide nanoparticles in rats. Mol Med Rep. 2018; 17:3133-9.
111. Senoh H, Kano H, Suzuki M, Ohnishi M, Kondo H, Takanobu K, et al. Comparison of single or multiple intratracheal administration for pulmonary toxic responses of nickel oxide nanoparticles in rats. J Occup Health. 2017; 59:112-21. https://doi.org/10.1539/joh.16-0184-OA PMid:27980250 PMCid:PMC5478522
112. Dumala N, Mangalampalli B, Chinde S, Kumari SI, Mahoob M, Rahman MF, et al. Genotoxicity study of nickel oxide nanoparticles in female Wister rats after acute oral exposure. Mutagenesis. 2017; 32:417-27. https://doi.org/10.1093/mutage/gex007 PMid:28387869
113. Dumala N, Mangalampalli B, Kalyan Kamal SS, Grover P. Biochemical alterations induced by nickel oxide nanoaprticles in female Wister albino rats after acute oral exposure. Biomarkers. 2018; 23:1366-5804. https://doi.org/10.1080/1354750X.2017.1360943 PMid:28748734
114. Dumala N, Mangalampalli B, Kalyan Kamal SS, Grover P. Repeated oral dose toxicity study of nickel oxide nanoparticles in Wistar rats: A histological and biochemical perspective. J Appl Toxicol. 2019; 39:1012-29. https://doi.org/10.1002/jat.3790 PMid:30843265
115. Ali AAM. Evaluation of some biological, biochemical, and hematological aspects in male albino rats after acute exposure to the nano-structural oxides of nickel and cobalt. Environ Sci Pollut Res. 2019; 26:17407-17. https://doi.org/10.1007/s11356-019-05093-2 PMid:31020524
116. Katsnelson BA, Minigaliyeva IA, Panov VG, Privalova LI, Varaksin AN, Gurvich VB, et al. Some patterns of metallic nanoparticles' combined subchronic toxicity as exemliified by a combination of nickel and manganese oxide nanoparticles. Food Chem Toxicol. 2015; 86:351-64. https://doi.org/10.1016/j.fct.2015.11.012 PMid:26607108
117. Minigalieva IA, Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Shur VY, et al. Attenuation of combined nickel (II) oxide and manganese (II, III) oxide nanoparticles' adverse effects with a complex of bioprotectors. Int J Mol Sci. 2015; 16:22555-83. https://doi.org/10.3390/ijms160922555 PMid:26393577 PMCid:PMC4613324
118. Marzban A, Seyedalipour B, Mianabady M, Taravati A, Hoseini SM. Biochemical, toxicological, and histopathological outcome in rat brain following treatment with NiO and NiO nanoparticles. Biol Trace Elem Res. 2020; 196(2):528-36. https://doi.org/10.1007/s12011-019-01941-x PMid:31902099
119. Saquib Q, Attia SM, Ansari SM, Al-Salim A, Faisal M, Alatar AA, et al. P53, MAPKAPK-2 and caspases regulate nickel oxide nanoparticles induce cell death and cytogenetic anomalies in rats. Int J Biol Macromol. 2017; 105:228-37. https://doi.org/10.1016/j.ijbiomac.2017.07.032 PMid:28690165
120. Shinohara N, Zhang G, Oshima Y, Kobayashi T, Imatanaka N, Nakai M, et al. Kinetics and dissolution of intratracheally administered nickel oxide nanomaterials in rats. Part Fibre Toxicol. 2017; 14:1-14. https://doi.org/10.1186/s12989-017-0229-x PMid:29183341 PMCid:PMC5706298
121. Javed B, Ikram M, Farooq F, Sultana T, Mashwani ZUR, Raja NI. Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: A mechanistic overview. Appl Microbiol Biotechnol. 2021; 105(6):2261-75. https://doi.org/10.1007/s00253-021-11171-8 PMid:33591386
Published
Abstract Display: 329
PDF Downloads: 365
PDF Downloads: 25 How to Cite
Issue
Section
Copyright (c) 2025 Ardhendu Kumar Mandal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.