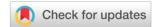


Available online on 15.05.2025 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics


Open Access to Pharmaceutical and Medical Research

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Full Text Article

Review Article

Nickel nanomaterials as delivery system in combating diseases

Ardhendu Kumar Mandal *

Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India

Article Info:

Article History:

Received 18 Feb 2025 Reviewed 06 April 2025 Accepted 28 April 2025 Published 15 May 2025

Cite this article as:

Mandal AK, Nickel nanomaterials as delivery system in combating diseases, Journal of Drug Delivery and Therapeutics. 2025; 15(5):166-

http://dx.doi.org/10.22270/jddt.v15i5.7124

*Address for Correspondence:

Ardhendu Kumar Mandal, Central Division, CSIR-Indian Instrumentation Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata - 700032,

Abstract

Many people suffer from the aggravation of infections and inflammations initiated by the exposure of virulent microorganisms or other toxicants globally owing to the development of drug resistance accompanied with drug toxicity, insolubility, non-specificity, and the occurrence of biological barriers. Nanotechnology-based nickel nanomaterials (NiNMs) such as nickel oxide nanoparticles (NiONPs) and nickel hydroxide nanoparticles (Ni(OH)2NPs) have attracted attention as nano-medicinal delivery system to inhibit the disease-development and spreading due to their suitable physicochemical characteristics such as nano sizes, effective shapes, high surface to volume ratio, increased reactivity, easy surface-functionalization, and photo-thermal activity. Metallic NiNMs are capable to penetrate cellular membrane causing cellular leakage, and to generate reactive oxygen species (ROS) for interaction with cellular molecules to damage DNAs, proteins, and lipids leading to microbial or cellular deaths. Moreover, their surfacefunctionalization with specific ligands, drugs, and other biomolecules may direct their modulations as suitable targeted delivery system on lowering cytotoxicity, minimizing drug degradation and loss, and increasing bioavailability of drug compounds. This review elucidates chiefly on the synthesis, drug loading and functionalization, mechanisms of action, biomedical applications, toxicity, biodistribution and elimination of NiNMs as delivery system in combating diseases.

Keywords: Infections and inflammations; Nickel nanomaterials; Delivery system; Bio-medical applications

Introduction

Infectious diseases caused by the biological pathogens such as bacteria, virus, fungi or protozoa may lead to the development of life-threatening diseases globally owing to the organisms' nano- sizes and shapes compatible for their transportations to the specific biological compartments. After the exposure of pathogenic agents or other toxicants into the biological system, the antioxidant and immune body defense mechanisms may interact to suppress the pathogenic loads by killing the pathogens and / or scavenging the free radicals generated¹. However, when the pathogenic burdens and free radical stresses overpower the body defense mechanisms, diseases are initiated, developed and progressed with the reflections of sometimes progressive inflammations, cancers and other diseases. even with the emergence of drug resistance characterized by the cell-wall thickening of organisms, efflux of drug molecules, enzymatic destructions, and target variations²⁻⁷.

The process of inflammation is regulated by mast cells, containing heparin, serotonin, bradykinin and histamine, through the release of their contents in response to their degranulation, transmitted infection and injury, and also under the influence of other controls such as liberations

of serotonin and histamine in reaction to progesterone and estrogen respectively8. Another inflammatory pathway is arachidonic acid cascade regulated by eicosanoids, dependent on the genetic or other factors to control the size and extent of tumor metastases9. In severe conditions, inflammation may lead to mental disorders through the degradation of tryptophan by cytokines and the enhanced activity of indolamine 2,3dioxygenase (IDO) (the rate limiting enzyme), and the subsequent depletion of serotonin, allied to mental depression¹⁰.

The interactions of the cellular immune system with endogenous or exogenous antigens may initiate the generations of reactive oxygen species (ROS) and reactive nitrogen species (RNS) promoting to signaling cascades to produce the liberations of proinflammatory chemokines and cytokines related to the hemopoiesis, ion-channel regulators, non-specific and specific immune responses and tissue repairs. Transmission of extracellular information into the cytoplasm and nucleus activated by the anchoring of cytokines to their specific receptors is processed through various signaling pathways such as nuclear factor kB and mitogenactivated protein kinase (MAPK)11. Sustained vigorous information may proceed to cellular injury or

ISSN: 2250-1177 [166] CODEN (USA): JDDTAO hyperplasia followed by the overproductions of free radicals in non-phagocytic cells from inflammatory cells, while interactions of ROS with DNA in mitotic cells may lead to persisted genomic mutation. During chronic inflammations, cellular antioxidant systems may activate genes linked to DNA repair responding to free radical overproductions and causing depletion of cellular antioxidants¹². Acute or chronic inflammatory processes reflected by trauma or arthritis, and infection or other progressive inflammatory diseases relate the genetics and molecular biology to basic cellular responses as the pivotal role for identifying the genetic predisposition to various inflammatory mediated sequences^{13,14}.

A few novel therapeutic lead drug compounds including non-steroidal anti-inflammatory drugs (NSAIDS), and drugs derived from natural sources have been utilized against inflammatory diseases to modulate inflammatory mediators (calcium, protein kinases, cAMP and cGMP), the expressions of pro-inflammatory molecules such as cytokines (TNF- α and IL-1 β), cyclooxygenase (COX-2), inducible NO synthase (iNOS), neuropeptides, and proteases, and the expressions of lead transcription factors such as AP-1, NF-kB, and proto-oncogenes (c-fos, c-jun, and c-myc)15-17. However, a larger number of patients suffer from conventional therapies owing to their side effects of drug-toxicity, drug-resistance, drugnon-specificity, and other biological barriers against chronic inflammatory diseases, and therefore, require effective therapeutic efficacies with least side effects to give relief from the symptoms of systematic inflammations¹⁸⁻²⁰.

Nanotechnology-based drug delivery has attracted attention owing to its capability to reduce the toxicity and side effects of therapeutics, to cross the blood-brain and other biological barriers, and to overcome the drugresistance^{1,21}. Nickel is an essential element having the roles in the reduction of carbon monoxide to acetate activation of carbon monoxide through the dehydrogenase, the interaction with iron in hemoglobin for the transport of oxygen, the stimulation in the metabolism, the transmission of genetic code (RNA and DNA), and the co-ordinations in nerve impulses, muscle excitations and contractions via substitution of calcium in the process of excitation, and the involvement in the anchoring to membrane ligands (e.g. phosphate groups of phospholipids), and also regulates the formation of cyclic nucleotide cGMP to control various physiological signaling processes. Ni NMs have gained attraction for their higher stability and excellent optical, electronic, magnetic and catalytic characteristics as well as their existence of higher inexpensivity, non-toxicity, stable Ptype semi-conductivity with an extensive band-gap of 3.6-4.0 eV in the usages for medical applications, imaging, drug delivery, diagnostics and antibiotics against various diseases²²⁻²⁶. This review provides mainly the biomedical applications of Ni NMs against infections, cancer, and inflammatory related other diseases to consider them as suitable nano-medicinal delivery system.

Synthesis of nickel nanomaterials

NiNMs are prepared mainly by self-assembly of small particles through the generation of atoms, nucleation and growth phenomenon utilizing chemical as well as biological synthesis methods via bottom-up approaches²⁷⁻³¹.

The counterions determine the solubility of the precursor nickel salts in the solvents and influence the electrostatic stabilizations, the pH modifiers, and the complexing agents. NiNMs may be synthesized via various nickel salts such as nickel chloride (NiCl₂), nickel (II) nitrate (Ni(NO₃)₂), nickel (II) acetate (Ni(CH₃CO₂)₂), nickel (II) oxalate (NiC₂O₄), nickel (II) bis (acetylacetonate) (Ni(C₅H₇O₂)₂), nickel (II) sulfate (NiSO₄), nickel (II) dodecyl sulfate (Ni(DS)₂), while various concentrations of nickel salts are utilized to control nucleation and growth ratio for forming the different shapes, sizes and morphology of the NPs³².

Strong reducing agents such as hydrazine and NaBH $_4$ in alkaline medium, medium-strength reductants such as polyols in various alcohols and citric acid, and weak reductants such as sodium hypophosphite (NaH $_2$ PO $_2$) and ascorbic acid are used for the synthesis of NiNPs with a variety of nucleation and growth processes dependent on precursors' concentrations, and variations of temperature and pH of the reaction mixture, while nickel ions (Ni 2 +) are reduced to nickel atoms (Ni 0) after gaining two electrons from the reducing agents 32 .

Various stabilizing agents, including surfactants, capping agents and other compounds, such as trimethylammonium bromide (CTAB). butylammonium bromide (TEAB), tetraethylammonium bromide (TBAB), tetra dodecyl ammonium bromide (TC₁₂AB), sodium dodecyl sulfonate (SDS), citric acid, tween 40 and 80, PEG 6000, D-sorbitol, hydroxyethyl carboxymethyl cellulose (HECMC), sodium carboxyl methylcellulose (Na-CMC), trioctylphosphine (TOP), trioctylphosphine oxide (TOPO), and poly (vinyl pyrrolidone) (PVP) are employed in nickel synthesis to counteract van der Waals' forces and magnetic dipoledipole interactions by utilizing electrostatic forces, π - π interactions and hydrogen bonding to inhibit the agglomerations and stabilize the surface charges of the NPs^{32} .

Chemical synthesis

In the presence of alkaline medium and reducing agenthydrazine (N_2H_4), NiNPs may be synthesized through a complex reaction to a controlled size and morphology when the ratio of N_2H_4/Ni^{2+} becomes <4.5, and in the absence of OH-, the nickel complex may be reduced to metallic nickel by direct hydrazine reduction, while the presence of OH- in the reaction solution may produce a color change to gray via ligand exchange of Cl- by OH- for forming nickel hydroxide ($Ni(OH)_2$) and subsequent Ni^0 NPs through the consequent color changes from gray to black owing to the subsequent reduction by hydrazine, and the production of adsorbed hydrogen atoms (H^*) via the interaction of remaining hydrazine with OH- for generating electrons and water, while nuclei-formed may function as an active site and center for the adsorptions

of hydrogen atoms to capture Ni²⁺ from the solution³². NiONPs have been produced through monitoring nickelcontaining gels by utilizing chemical reagents and exposing gel to heat-treatment upto 1000°C^{33,34}. Cubic NiONPs have been formed through utilization of chemical stabilizers such as isopropanol and ethylene glycol, and nickel nitrate hexahydrate as a precursor, and also surfactant triton X-100 as detergent for avoiding aggregation³⁵. NiONPs have been synthesized utilizing citric acid and malic acid respectively without addition of any reducing agent and surfactant^{36,37}. NiONPs (25 nm) have been fabricated utilizing Ni(octa)2-oleylamine complex through thermal decomposition at 200°C, where triphenyl phosphine ($C_{18}H_{15}P$) and oleylamine (C₁₈H₃₇N) have been utilized as surfactants, and the C₁₈H₃₇N has been used also as the medium as well as the stabilizing agent³⁸. Hydrazine and alcohols have been utilized as complexing agents during the synthesis of NiONPs³⁹. NiONPs have been synthesized through solvothermal protocol utilizing nickel nitrate and citric acid as the precursor and the chelating agent, respectively⁴⁰. NiONPs have been synthesized by chemical precipitation without utilization of surfactant, or stabilizing and capping agents⁴¹. NiONPs have been also synthesized via combustion by using organic fuels⁴².

The synthesized NPs, carrying by-products and unreacted components, may be purified utilizing different methodologies such as centrifugations, magnetic separations, membrane separations (dialysis, filtrations, and ultra filtrations), chromatography procedures, and thermal treatment methods⁴³⁻⁴⁷.

Biological synthesis

Biological synthesis is a bottom-up approach utilizing natural stabilizing and reducing agents, such as plant extracts, microorganisms and biomolecules, including polysaccharides, amino acids, proteins, enzymes and vitamins to synthesize NPs⁴⁸.

Plant-mediated synthesis of nickel oxide nanoparticles

The various plant species and their extracts as phytochemicals for the reduction of nickel ions from the solution of nickel salts have been utilized to fabricate NiONPs, while the polyphenols and the hydroxyl groups of flavonoids as well as the hydroxyl and carbonyl groups of amino acids act as reducing agents to stabilize the synthesized NPs^{49,50}. For the preparation of NiONPs, plant extracts and solutions of nickel salts are admixed followed by heating with constant stirring. The mixture is spun after the completion of the reaction. The clear supernatant is discarded, and the deposited pellets are cleansed, oven-dried, and calcined to get NiONPs.

Microbes-mediated biosynthesis of nickel oxide nanoparticles

Microbial fabrications of NPs occur through either extracellular or intracellular approaches. Intracellular synthesis involves the transport of metal ions into the microbial cells and the formations of NPs by coenzymes, proteins and heterocyclic derivatives exist within the cells. Extracellular synthesis involves the entrapment of metal ions on the surface of microbial cells and the

proteins and / or enzymes exist on the surface reduce the metal ions, and stabilize the synthesized NPs^{51,52}. Different microbes such as bacteria, fungi, algae and yeasts, and various nickel salts as precursors have been utilized for the green synthesis of NiONPs⁵³⁻⁵⁹.

Other green source-mediated synthesis of nickel oxide nanoparticles

Other green environmentally benign and biodegradable natural substances utilizing hydroxyl, carboxyl, or carbonyl groups of gums, tannic acids, chitosan, amino acids, or polysaccharides as reducing, capping, or stabilizing agents, and nickel salts as precursors have been used for the biogenic synthesis of spherical NiONPs and Ag-NiO nanocomposites with their photocatalytic activities⁶⁰⁻⁶⁵.

Generally, under optimal conditions (such as pH of the reaction medium, quantity of NPs, and reaction time), 10 mg NPs are added to 5 mL of drug (0.1 M at pH 7) followed by stirring for 9 h at 25° C in the dark. The sample is then spun for 10 min, and the supernatant is separated. The amount of drug may be determined by utilizing HPLC technique⁶⁶.

Functionalization of nanoparticles with biomolecules

Surface attachments of NPs with biomolecules such as antibodies, proteins and DNA are generally carried out utilizing conventional bioconjugation techniques⁶⁷. Biomolecules may be attached to nanoparticles via either physical adsorption or chemical covalent coupling reactions⁶⁸. In physical adsorption, electrostatic and hydrophobic interactions take place between NPs and biomolecules, while in covalent chemical modifications, functionalization of NPs takes place with amine, carboxyl, or sulphide groups.

Characterizations of nickel nanomaterials

The morphological features i.e. the sizes of the NMs are determined through the utilizations of atomic force microscope (AFM), transmission electron microscope (TEM), and scanning electron microscope (SEM). The phase purity and crystallite sizes of NiONPs are determined through using X-ray diffractometer (XRD). The reduction of Ni²⁺ ions in solution, and the interactions of drugs with NPs through their binding groups are monitored through using UV-VIS spectrophotometer, Fourier transform infrared (FT-IR) spectrometer. or Gas chromatography spectrometer (GC-MS). To detect the elemental compositions or existing elements in the NMs and also in their surface compositions such as stabilizing and / or capping agents, energy dispersive X-ray spectroscope (EDS) or X-ray photoelectron spectroscope (XPS) may be utilized. The hydrodynamic diameters of NiONPs in aqueous suspension as well as their polydispersity index (PDI) and zeta potential are investigated through dynamic light scattering (DLS) analysis. The thermal behaviors of the primary gels, and the magnetic features of the produced NiONPs are investigated utilizing thermo-gravimetric analyzer (TGA), differential thermal analyzer (DTA), and vibrating sample magnetometer, respectively.

Mechanisms of action of nickel nanomaterials

Antimicrobial as well as anticancer activities of NiNMs are linked to nickel ion contents that interpenetrate the microbial or diseased cells and reach the cellular surface membranes and intracellular milieu. The influx of nickel cations destroys organelles such as ribosomes and affects cellular metabolisms owing to the electrostatic charged attractions of negatively intercellular membranes and positively charged nickel ions^{69,70}. Owing to the higher surface activity and larger surfaceto-volume ratios of NiNMs, their exposures / direct contacts / adsorptions to cells may disrupt the cell membrane morphology and cellular transport^{50,71,72}. Moreover, the higher affinity of NiNMs to phosphor and sulfur -containing ingredients such as proteins and DNAs may disrupt cellular DNA replications leading to protein deformations⁷³. The killing of cell is also related to the generations of free radical species produced by the photo-excitations of NiNMs and their interactions with cellular components resulting in damages of cell walls

and DNAs, formations of membrane-pores, cell cycle arrests, and ultimately inhibitions of cellular growths⁷⁴.

have unveiled the mechanisms of NiNMs that the reactive oxygen species (ROS) such as super oxides (O_2) , hydroxyl radicals (OH)and hydrogen peroxides (H2O2) are generated through the activation of NiONPs by visible and ultraviolet light, while O₂ and OH ions are unable to penetrate the cell membranes owing to their excessive negative charges, however, H₂O₂ can enter into the cells to induce cell death via the disruption of cell membrane integrity and damaging of DNA, mitochondria (electron transport), and proteins (tertiary structures) within the cells, associated with the formations of pores, shrinking and fragmentations of cell membranes^{72,75-78}. Additionally, the uncoupling of ATP productions, the loss of protein motive forces, and the interference with the phosphate efflux mechanisms exposed by the interactions of NiONPs with thiol groups of cellular proteins may lead to the separation of the cell membranes from the cytoplasm resulting in condensation of genetic materials, loss of replication, or the release of intracellular components⁷⁸ (Figure 1).

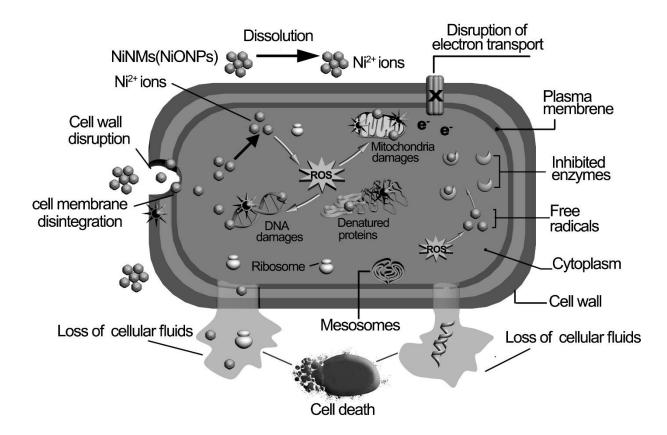


Figure 1. Anti-microbial mechanisms of NiNMs (NiONPs).

Many investigators have proposed the plausible anticancer mechanisms of NiONPs through the ROS-dependent and caspase-mediated apoptosis in cancer cells⁴⁹. The contact of NPs with the surface-membrane of cancer cells may trigger invaginations of NPs through endocytosis for generation of intracellular membrane-bound vesicles followed by their liberations to produce ROS resulting in mitochondrial dysfunctions, nuclear damages, protein oxidations, DNA damages, decrements

of major free radical scavengers, and cell cycle arrests, leading to apoptotic cellular deaths via the activations of caspases 3, 8 and 9, and the enhancements of the levels of tumor protein P53 for inhibiting growth of cancer cells^{49,79-82}. Moreover, the internalization of nickel (II) ions into the cells may activate the calcium-dependent cascades to disrupt DNA repair mechanisms leading to apoptotic cellular killing^{49,83} (Figure 2).

ISSN: 2250-1177 [169] CODEN (USA): JDDTAO

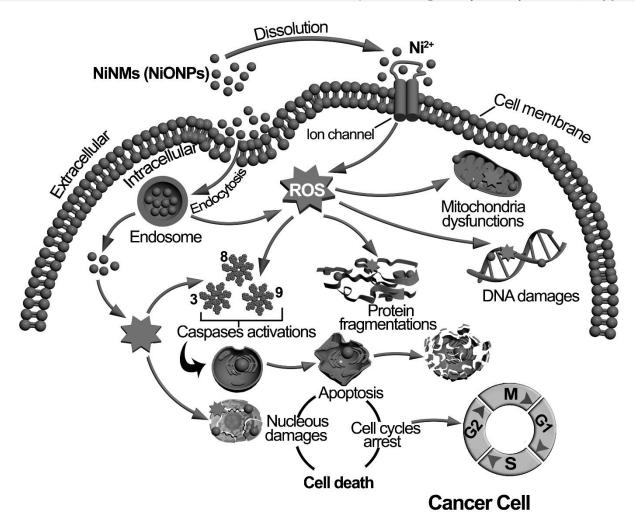


Figure 2. Anti-cancer mechanisms of NiNMs (NiONPs).

Biomedical applications of nickel nanomaterials

NiNMs with or without drug/s as delivery systems have been utilized to treat various diseases/ pathogens/ diseased cells such as against microbes, fungi, drugresistant biofilms, inflammations, cancer cells, leishmania parasites and diabetes.

Antimicrobial activities

NiONPs have been used to treat various human pathogenic microorganisms with substantial antipathogenic outcomes^{49,78}. NiONPs synthesized utilizing Aegle marmelos and Moringa oleifera leaf extracts have shown potential bactericidal effects towards multi-drugresistant Gram positive and negative bacteria with a variation owing to the polarity differences between their membranes^{49,71}. Gram positive bacteria having excess positive charges and multiple layers of thicken peptidoglycans on their surrounding cell walls compared to Gram negative bacteria having a single layer of thinner peptidoglycan and lipopolysaccharide contents on their outer membranes lead to easy penetration of negatively charged free radicals to cause more cells damages and cell deaths in Gram positive than Gram negative bacteria, while the outer membranes of Gram negative bacteria act as permeability barriers to reduce the entry of ROS into the cells84-86.

The antibacterial and antibiofilm activities of biosynthesized NiONPs with or without drugs such as chloramphenicol and gentamicin, and the exposure of UV illumination towards *S. aureus*, *P. aeruginosa*, *E. coli*, *B. subtilis*, *K. pneumonia*, *E. faecalis*, *A. baumannii* and *S. typhi* have exhibited shrinking, fragmentation, and disorganization of outer surfaces including the formation of gaps and pits, and higher zones of bacterial growth inhibitions evaluated on agar plates^{50,74,76-78,87-90}.

Antifungal activities

The antifungal activities of biosynthesized NiONPs utilizing *Rhamnus virgata, Rhamnus triquetra* and *Sageretia thea* leaf extracts against various pathogenic fungal strains such as *A. flavus, R. solani, M. racemosus, A. niger, C. albicans,* and *F. solani* have exhibited their various levels of growth inhibition rates correlated with ROS-produced mitochondria and DNA damages in the dose-dependent manners^{75,77,88}. The antifungal applications of the biosynthesized NiONPs@C-dots against *C. albicans* fungus strain have shown their higher inhibition zones compared to NiONPs⁷⁴.

Anti-inflammatory activities

The ROS-induced TNF α and NFkB activations, the secretions of pro-inflammatory cytokines, and the over-expressions of adhesion molecules by the endothelial

cells lead to endothelium dysfunctions and chronic inflammatory atherosclerosis $^{31,91}.$ The applications of biosynthesized NiNPs with Aegle marmelos correa (AmC) accompanied by β -sitosterol have shown their synergistic anti-inflammatory activities through the elimination of free-radical oxidants in extracellular regions through H-atom donations and the supporting proliferations of lymphocytes to enhance the cytotoxic efficiency of natural killer cells $^{92}.$

Anti-cancer activities

The various concentrations of NiONPs (500-3.9 μg/mL) synthesized with Geranium wallichianum plant extract have shown their anticancer activities exposed on human hepatocarcinoma (HepG2) cells for 24 h as the dosedependent inhibitions of cancerous cells⁵⁰. Fabricated NiONPs utilizing Andrographis paniculata leaf extract have exhibited the concentration-dependent inhibitions against human breast cancer cells (MCF-7)93. NiONPs synthesized with *Moringa oleifera* have shown higher toxicity and gradual decrement in cell viability through ROS-generated mitochondrial dysfunctions towards human colorectal adrenocarcinoma (HT-29) cells in a dose-dependent manner⁷¹. The NiONPs synthesized with Euphorbia heterophylla leaf extracts have exhibited the dose-dependent anticancer activities against human lung cancer cells (A549), and HepG2 cells⁹⁴. NiONPs orchestrated with Rhamnus virgata leaf extracts have shown their anticancer potentiality towards HepG2 cells in the dose-dependent manners⁷⁵. Biosynthesized NiONPs utilizing Abutilon indicum leaf extracts have shown their anticancer activities against cervical cancer cells (HeLa)48. NiONPs fabricated Salvia macrosiphon extracts have exhibited the concentration-dependent cytotoxicity towards Neuro 2A cells, while the liberation of nickel (II) ions inside the cells results in cell death 95. NiONPs fabricated utilizing egg white have exhibited significant toxicity against gliobastoma cancer cells (U87MG)65. Biosynthesized NiONPs utilizing Calendula officinalis extracts have exhibited their anticancer efficacies towards esophageal carcinoma cells (FLO-1, ESO26, OE33, and KYSE-270096.

Anti-leishmanial activities

Bio-synthesized NiONPs utilizing *Geranium wallichianum, Rhamnus virgata, Rhamnus triquetra* and *Sageretia thea* extracts against amastigotes and promastigotes cultures of *Leishmania* have exhibited dose-dependent anti-leishmanial activities suppressing the leishmanial growths^{50,75,77,88}.

Anti-diabetic activities

NiONPs fabricated with *Averrhoa bilimbi* and *Arcea catechu* leaf extracts have shown their potential anti-diabetic activities on α -amylase inhibitory efficacies, and also higher anti-diabetic activities than metformin^{97,98}.

Toxicity

The accumulations of Ni at intracellular targeted zones lead to free radicals-induced inflammations, damages of different cell structures including proteins, lipids, nucleic acids, and membranes, resulting in apoptosis and cytotoxicity at high exposure levels of NiNMs (mainly NiO

and Ni(OH)₂ NPs) affecting the various levels of toxicities generated in the biological systems⁹⁹⁻¹⁰¹.

Acute and chronic exposures of NiNMs may induce lung inflammations characterized by delayed type-hypersensitivity (DTH), pulmonary alveolar proteinosis (PAP), lymphocytic foci, epithelial proliferation, granulocytic infiltration, enhanced levels of lactate dehydrogenase (LDH), 8-hydroxy-2'-deoxyguanosine (8-OHdG), total polymorpho nuclear leukocytes (PMNs), γ -gutamyl transferase, amylase, alkaline phosphatase and aspartate amino transferase $^{102\text{-}105}$.

The cardiovascular toxicity may appear by the exposures of NiNMs at high concentrations characterized by inflammations, contractile and Vaso-relaxation responses, enhanced population of bone marrow and circulating endothelial / progenitor cells, down-regulated MCP-1 levels in the aorta correlated with diminished chemotaxis signaling, down-regulated transferrin, up-regulated Ccl-2, IL-6 and HO-1, mitochondrial DNA damage in aorta, and enhanced plaque lesions, Vcam-1 and Cd68 levels in the aorta¹⁰⁶⁻¹⁰⁹.

The acute / chronic exposures of NiO and Ni(OH)₂ NPs in various dose and time -dependent manners have shown the damages of systemic organs (such as liver, spleen, kidney, lung, heart, aorta, stomach and brain) through changes of biochemical, functional and histopathological indices in animals administered via intra-tracheal instillations, inhalations, intra-peritoneal injections or oral gavages. Various authors have reported significant enhancements in liver weight and dehydrogenase, leukocytosis, systemic inhibitions of the oxidation-reduction energy metabolisms, increased lipid peroxidation, stimulation of erythropoiesis (elevated hemoglobin contents, erythrocytes count, reticulocytes and hematocrits), increased numbers of akaryotic and binucleated hepatocytes, and kupffer cells, cellular edema, disappearance of hepatic sinus, spleens growing increased diameters of the follicles, and kidneys growing brush border loss in proximal tubules, up-regulated HO-1, SAP, Ccl-2 and IL-6 mRNA levels, up-regulated TNF-α levels, decreased GSH levels, enhanced glutathione-Stransferase and catalase activities. significant decrements in total antioxidant capacity and increments in MDA levels, including hyperemia, gliosis, necrosis and spongy changes in brain^{105,109-118}.

The exposures of NiONPs at various dose and time dependent manners have shown their genotoxicity and carcinogenicity related to increased DNA fragmentations in circulating nucleated blood cells, enhancement in % tail DNA in peripheral blood leukocytes, kidney and hepatic cells, increment in polychromatic erythrocytes micronuclei and chromosomal aberrations in bone marrow cells^{105,112,119}.

The administrations of NiONPs (200 mg/kg/day) daily through oral gavage for 28 days have exhibited no mortality to rats except a few symptoms such as irritation, dullness and distress¹¹⁴.

Biodistribution and elimination

The accumulations / eliminations of NiNMs in / from different systemic organs and blood depend on the various routes of exposures (such as intratracheal instillation, inhalation, intravenous, intraperitoneal, subcutaneous, and oral) and assay variables such as species, methodology, time, dose, chemical / green / biological synthesized forms, shapes and sizes of NPs. The intratracheal instillations of spherical / irregular shaped NiONPs (0.67-6.0 mg/kg) to rats have shown the higher NiO accumulations in most of the thoracic lymph nodes and liver¹²⁰. The oral administrations of NiONPs (125-500 mg/kg) to rats have exhibited accumulations of Ni more in liver followed by the brain, kidney and spleen¹¹³. In general, endocytosed NPs are processed and broken within the phago-lysosomal compartments and eliminated through hepato-pancreatic biliary system and the small intestine as fecal clearances, while nondecomposed larger NPs (>6 nm) are sequestered chiefly in the liver and spleen for a few months or excreted through the glomeruli bed (<5 nm)1.

Conclusions and future perspectives

As NiNMs having toxic features to eukaryotic cells at high level and their chemical synthesized forms carrying toxic impurities, eco-friendly green synthesized NiNMs encapsulated / functionalized with ligand-binding cargo/s may be suitable approach to overcome these obstacles as well as non-specificity and drug-resistance as targeted delivery system owing to their high surfaceto-mass ratio, capability of adsorbing and transporting additional compounds¹²¹. In this context, explorations of the proper optimizations of the synthesized delivery formulations, functionalization, characterizations with or without ligands and cargos, repeated batch-to-batch uniformed large productions of the NiNMs along with their interactions with biomolecules are needed before applications to avail higher therapeutic efficiencies against diseases. Additionally, a thorough investigation regarding their cytotoxicity, immune responses, biodistributions, pharmacokinetics and eliminations, and routes of administration is required for achieving maximal therapeutic efficacies of NiNMs for considering them as suitable delivery system as well as nanomedicine before clinical translation against diseases.

Acknowledgement: This study was supported by the Council of Scientific and Industrial Research (CSIR), Government of India.

Authors contribution: The author has full contribution in the preparation of manuscript and compilation.

Funding source: The author declares that this study has received no financial support.

Conflicts of interest: The author declares no conflicts of interest.

Ethical approval: Not applicable.

References

- 1. Mandal AK, Mandal A. Quantum dots as theranostic nano delivery system in combating various diseases. J Drug Deliv Therapeut. 2024; 14(9):137-50. https://doi.org/10.22270/jddt.v14i9.6766
- Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017; 9(6):7204-18. https://doi.org/10.18632/oncotarget.23208 PMid:29467962 PMCid:PMC5805548
- 3. Bennett JM, Reeves G, Billman GE, Sturmberg JP. Inflammationnature's way to efficiently respond to all types of challenges: Implications for understanding and managing "the epidemic" of chronic diseases. Front Med. 2018; 5:316. https://doi.org/10.3389/fmed.2018.00316 PMid:30538987 PMCid:PMC6277637
- 4. Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol. 2022; 19:177-91. https://doi.org/10.1038/s41423-021-00832-3 PMid:35039631 PMCid:PMC8803838
- Vestergaard M, Frees D, Ingmer H. Antibiotic resistance and the MRSA problem. Microbiol Spectr. 2019; 7:18. https://doi.org/10.1128/microbiolspec.GPP3-0057-2018 PMid:30900543 PMCid:PMC11590431
- Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, Marusza W. Molecular mechanisms of drug resistance in Staphylococcus aureus. Int J Mol Sci. 2022; 23:8088. https://doi.org/10.3390/ijms23158088 PMid:35897667 PMCid:PMC9332259
- Liu WT, Chen EZ, Yang L, Peng C, Wang Q, Xu Z, et al. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review. Microb Pathog. 2021; 156:104915. https://doi.org/10.1016/j.micpath.2021.104915 PMid:33930416
- 8. Theoharides TC, Kalogeromitros. The critical role of mast cells in allergy and inflammation. Ann NY Acad Sci. 2006; 1088:78-99. https://doi.org/10.1196/annals.1366.025 PMid:17192558
- Funk CD. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Sci. 2001; 294:1871-5. https://doi.org/10.1126/science.294.5548.1871 PMid:11729303
- 10. Muller N. The role of anti-inflammatory treatment in psychiatric disorders. Psychiatric Danubina. 2013; 25:292-8.
- 11. Yang D, Elner SG, Bian ZM, Till GO, Petty HR, Elner VM. Proinflammatory cytokines increase reactive oxygen species through mitochondria and NADH oxidase in cultured RPE cells. Experiment Eye Res. 2007; 85:462-72. https://doi.org/10.1016/j.exer.2007.06.013 PMid:17765224 PMCid:PMC2094037
- 12. Mittwoch-Jaffe T, Shalit F, Srendi B, Yehuda S. Modification of cytokine secretion following mild emotional stimuli. Neuroreport. 1995; 6:79-92. https://doi.org/10.1097/00001756-199503270-00021 PMid:7605950
- Conner EM, Grisham MB. Inflammation, free radicals and antioxidants. Nutrition. 1996; 12:274-7. https://doi.org/10.1016/S0899-9007(96)00000-8 PMid:8862535
- 14. Gulumain M. The role of oxidative stress is diseases caused by mineral dusts and fibres: Current status and future of prophylaxis and treatment. Mol Cell Biochem. 1999; 196:69-77. https://doi.org/10.1023/A:1006918212866
- Maes M. Evidence for an immune response in major depression a review and hypothesis. Prog NeuroPschoPharmacol Biol Psychiatry. 1995; 19:11-38. https://doi.org/10.1016/0278-5846(94)00101-M PMid:7708925
- 16. Dinarello CA. Interleukin-1 beta, interleukin-18, and interleukin-1 beta converting enzyme. Ann NY Acad Sci. 1998; 856:1-11. https://doi.org/10.1111/j.1749-6632.1998.tb08307.x PMid:9917859
- 17. Border WA, Noble NA. Mechanisms of disease. Transforming growth factor β in tissue fibrosis. N Engl J Med. 1994; 331:1286-

- 92. https://doi.org/10.1056/NEJM199411103311907 PMid:7935686
- Mccarthy DM. Comparative toxicity of non-steroidal antiinflammatory drugs. Am J Med. 1999; 107:37S-47S. https://doi.org/10.1016/S0002-9343(99)00366-6 PMid:10628592
- 19. Richy F, Bruyere O, Ethgen O, Rabenda V, Bouvenot G, Audran M, et al. Time dependent risk of GI complications induced by nonsteroidal anti-inflammatory drug use: A consensus statement using a meta-analytic approach. Ann Rheum Dis. 2004; 63:759-66. https://doi.org/10.1136/ard.2003.015925 PMid:15194568 PMCid:PMC1755051
- FlizGerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase 2. New Engl J Med. 2001; 345:433-42. https://doi.org/10.1056/NEJM200108093450607 PMid:11496855
- Parveen S, Misra S, Sahoo SK. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol. 2012; 8:147-66. https://doi.org/10.1016/j.nano.2011.05.016 PMid:21703993
- 22. Chen F, Zhou W, Yao H, Fan P, Yang J, Fei Z, et al. Self-assembly of NiO nanoaprticles in lignin-derived mesoporous carbons for supercapacitor applications. Green Chem. 2013; 15(11):3057-63. https://doi.org/10.1039/c3gc41080c
- Kannan K, Radhika D, Nikolova MP, Sadasivuni KK, Mahdizadeh H, Verma U. Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorg Chem Commun. 2020; 113:107755. https://doi.org/10.1016/j.inoche.2019.107755
- 24. Wang Y, Zhu J, Yang X, Lu L, Wang X. Preparation of NiO nanoparticles and their catalytic activity in the thermal decoration of ammonium perchlorate. Sci Direct Thermochimica Acta. 2005; 437:106-9. https://doi.org/10.1016/j.tca.2005.06.027
- 25. Jaji ND, Lee HL, Hussin MH, Akil HM, Zakaria MR, Othman MBH. Advanced nickel nanoparticles technology: From synthesis to applications. Nanotechnol Rev. 2020; 9(1):1456-80. https://doi.org/10.1515/ntrev-2020-0109
- Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012; 64:24-36. https://doi.org/10.1016/j.addr.2012.09.006
- Park J, Joo J, Kwon SG, Jang Y, Hyeon T. Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed. 2007; 46:4630-60. https://doi.org/10.1002/anie.200603148 PMid:17525914
- 28. You H, Fang J. Particle-mediated nucleation and growth of solution-synthesized metal nanocrystals: A new story beyond the LaMer curve. Nano Today. 2016; 11:145-67. https://doi.org/10.1016/j.nantod.2016.04.003
- LaMer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc. 1950; 72:4847-54. https://doi.org/10.1021/ja01167a001
- Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomed. 2019; 14:1633-57. https://doi.org/10.2147/IJN.S184723 PMid:30880970 PMCid:PMC6417854
- Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomed 2010; 6(2):257-62. https://doi.org/10.1016/j.nano.2009.07.002 PMid:19616126
- 32. eSilva FA, Salim VMM, Rodrigues TS. Controlled nickel nanoparticles: A review on how parameters of synthesis can modulate their features and properties. Applied Chem. 2024; 4:86-106. https://doi.org/10.3390/appliedchem4010007
- Tadic M, Nikolic D, Panjan M, Blake GR. Magnetic properties of NiO (nickel oxide) nanoparticles: Blocking temperature and Neel temperature. J Alloys Compd. 2015; 647:1061-8. https://doi.org/10.1016/j.jallcom.2015.06.027

- 34. Zayim EO, Turhan I, Tepehan F, Ozer N. Sol-gel deposited nickel oxide films for electrochromic applications. Sol Energy Mater Sol. 2008; 92(2):164-9. https://doi.org/10.1016/j.solmat.2007.03.034
- 35. Zorkipli NNM, Kaus NHM, Mohamad AA. Synthesis of NiO nanoparticles through sol-gel method. Procedia Chem. 2016; 19:626-31. https://doi.org/10.1016/j.proche.2016.03.062
- 36. J-f LI, Bo X, L-j DU, Rong Y, Liang TD. Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing cellulose. J Fuel Chem Technol. 2008; 36(1):42-7. https://doi.org/10.1016/S1872-5813(08)60010-9
- 37. Yang Q, Sha J, Ma X, Yang D. Synthesis of NiO nanowires by a sol-gel process. Mater Lett. 2005; 59(14-15):1967-70. https://doi.org/10.1016/j.matlet.2005.02.037
- 38. Fereshteh Z, Salavati-Niasari M, Saberyan K, Hosseinpour-Mashkani SM, Tavakoli F. Synthesis of nickel oxide nanoparticles from thermal decomposition of a new precursor. J Cluster Sci. 2012; 23:577-83. https://doi.org/10.1007/s10876-012-0477-8
- El-Kemary M, Nagy N, El-Mehasseb I. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process. 2013; 16(6):1747-52. https://doi.org/10.1016/j.mssp.2013.05.018
- Nathan T, Aziz A, Noor A, Prabaharan S. Nanostructured NiO for electrochemical capacitors: Synthesis and electrochemical properties. J Solid State Electrochem. 2008; 12:1003-9. https://doi.org/10.1007/s10008-007-0465-3
- 41. Abdallah A, Basma H, Awad R. Preparation, characterization, and application of nickel oxide nanoparticles in glucose and lactose biosensors. Mod Appl Sci. 2019; 13(6):99. https://doi.org/10.5539/mas.v13n6p99
- 42. Srikesh G, Nesaraj AS. Synthesis and characterization of phase pure NiO nanoparticles via the combustion route using different organic fuels for electrochemical capacitor applications. J Electrochem Sci Technol. 2015; 6(1):16-25. https://doi.org/10.33961/JECST.2015.6.1.16
- 43. Kuchkina N, Sorokina S, Torozova A, Bykov A, Shifrina Z. Ni nanoparticles entrapped by a functional dendrimer as a highly efficient and recyclable catalyst for Suzuki-Miyaura cross-coupling reactions. Chem Select. 2022; 7: e202202653. https://doi.org/10.1002/slct.202202653
- 44. Liu S, Li Z, Yu B, Wang S, Shen Y, Cong H. Recent advances on protein separation and purification methods. Adv Colloid Interface Sci. 2020; 284:102254. https://doi.org/10.1016/j.cis.2020.102254 PMid:32942182
- Robertson JD, Rizzello L, Avila-Olias M, Gaitzsch J, Contini C, Magon MS, et al. Purification of nanoparticles by size and shape. Sci Rep. 2016; 6:27494. https://doi.org/10.1038/srep27494
 PMid:27271538 PMCid:PMC4897710
- 46. Rodrigues TS, eSilva FA, Candido EG, da Silva AGM, dos Geonmonond RS, Camargo PHC, et al. Ethanol steam reforming: Understanding changes in the activity and stability of Rh/MxOy catalysts as function of the support. J Mater Sci. 2019; 54:11400-16. https://doi.org/10.1007/s10853-019-03660-z
- 47. Stephens JR, Beveridge JS, Williams ME. Analytical methods for separating and isolating magnetic nanoparticles. Phys Chem Chem Phys. 2012; 14:3280. https://doi.org/10.1039/c2cp22982j PMid:22306911
- 48. Khan SA, Shahid S, Ayaz A, Alkahtani J, Elshikh MS, Riaz T. Phytomolecules-coated NiO nanoparticles synthesis using Abutilon indicum leaf extract: Antioxidant, antibacterial, and anticancer activities. Int J Nanomed. 2021; 16:1757. https://doi.org/10.2147/IJN.S294012 PMid:33688190 PMCid:PMC7936927
- 49. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Ramalingam RJ, Al-Lohedan HA. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. Biol. 2018; 180:39-50. https://doi.org/10.1016/j.jphotobiol.2018.01.023 PMid:29413700

- 50. Abbasi BA, Iqbal J, Mahmood T, Ahmad R, Kanwal S, Afridi S. Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: Characterization and different biological applications. Mater Res Express. 2019; 6(8):0850a7. https://doi.org/10.1088/2053-1591/ab23e1
- 51. Gebreslassie YT, Gebretnsae HG. Green and cost-effective synthesis of tin oxide nanoparticles: A review on the synthesis methodologies, mechanism of formation, and their potential applications. Nanoscale Res Lett. 2021; 16(1):97. https://doi.org/10.1186/s11671-021-03555-6 PMid:34047873 PMCid:PMC8163898
- 52. Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011; 2011:1-16. https://doi.org/10.1155/2011/270974
- 53. Sathyavathi S, Manjula A, Rajendhran J, Gunasaekaran P. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent. Bioresour Technol. 2014; 165:270-3. https://doi.org/10.1016/j.biortech.2014.03.031 PMid:24685513
- 54. Salvadori MR, Nascimento CAO, Correa B. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. Sci Rep. 2014; 4(1):1-6. https://doi.org/10.1038/srep06404 PMid:25228324 PMCid:PMC4165976
- 55. Salvadori MR, Ando RA, Oller Nascimento CA, Correa B. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS One. 2015; 10(6): e0129799. https://doi.org/10.1371/journal.pone.0129799 PMid:26043111 PMCid:PMC4456161
- 56. Ullah M, Naz A, Mahmood T, Siddiq M, Bano A. Biochemical synthesis of nickel and cobalt oxide nanoparticles by using biomass waste. Int J Enhanc Res Sci Technol Eng. 2014; 3:415-22.
- 57. Salvadori MR, Ando RA, Muraca D, Knobel M, Nascimento CAO, Correa B. Magnetic nanoparticles of Ni/NiO nanostructured in film form synthesized by dead organic matrix of yeast. RSC Adv. 2016; 6(65):60683-92. https://doi.org/10.1039/C6RA07274G
- 58. Moavi J, Buazar F, Sayahi MH. Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives. Sci Rep. 2021; 11(1):1-14. https://doi.org/10.1038/s41598-021-85832-z PMid:33739019 PMCid:PMC7973480
- 59. Singh Y, Sodhi RS, Singh PP, Kaushal S. Biosynthesis of NiO nanoparticles using Spirogyra sp. cell-free extract and their potential biological applications. Mater Adv. 2022; 3(12):4991-5000. https://doi.org/10.1039/D2MA00114D
- Devi HS, Singh TD, Singh NR. Green synthesis and catalytic activity of composite NiO-Ag nanoparticles for photocatalytic degradation of dyes. J Ind Chem Soc. 2017; 94(2):159-69.
- 61. Suvith V, Devu V, Philip D. Tannic acid mediated synthesis of nanostructured NiO and SnO2 for catalytic degradation of methylene blue. Opt Quantum Electron. 2020; 52:1-17. https://doi.org/10.1007/s11082-019-2131-2
- 62. Baranwal K, Dwivedi LM, Singh V, Singhh V. Guar gum mediated synthesis of NiO nanoparticles: An efficient catalyst for reduction of nitroarenes with sodium borohydride. Int J Biol Macromol. 2018; 120:2431-41. https://doi.org/10.1016/j.ijbiomac.2018.09.013 PMid:30193919
- 63. Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M. Green-based biosynthesis of nickel oxide nanoparticles in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects. Green Chem Lett Rev. 2021; 14(2):404-14. https://doi.org/10.1080/17518253.2021.1923824
- 64. Horri BA, Choo CK, Goh TL, Shahcheraghi L, Ngoh GC, Abdullah AZ, et al. Synthesis and characterization of NiO nanospheres by templating on chitosan as a green precursor. J Am Ceram Soc. 2016; 99(12):3874-82. https://doi.org/10.1111/jace.14411
- 65. Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M. Egg white mediated green synthesis of NiO nanoparticles and study of

- their cytotoxicity and photocatalytic activity. Polyhedron. 2020; 178:114351. https://doi.org/10.1016/j.poly.2020.114351
- 66. Lv YC, Shahri EE, Mahmoudi A, Naughabi RK, Abbaspour S, Tayebee R. Bioinspired nickel oxide nanoparticle as an efficient nanocarrier in the delivery of doxorubicin as an anti-bladder cancer drug. Inorg Chem Commun. 2023; 152:110650. https://doi.org/10.1016/j.inoche.2023.110650
- Veerapandian M, Yun K. Functionalization of biomolecules on nanoparticles: Specialized for antibacterial applications. Appl Microbiol Biotechnol. 2011; 90(5):1655-67. https://doi.org/10.1007/s00253-011-3291-6 PMid:21523475
- 68. Tallury P, Malhotra A, Byrne LM, Santra S. Nanobioimaging and sensing of infectious diseases. Adv Drug Deliv Rev. 2020; 62(4-5):424-37. https://doi.org/10.1016/j.addr.2009.11.014 PMid:19931579 PMCid:PMC7103339
- 69. Galdiero S, Falanga A, Berisio R, Grieco P, Morelli G, Galdiero M. Antimicrobial peptides as an opportunity against bacterial diseases. Curr Med Chem. 2015; 22:1665-77. https://doi.org/10.2174/0929867322666150311145632 PMid:25760092
- Xing K, Zhu X, Peng X, Qin S. Chitosan antimicrobial and eliciting properties for pest control in agriculture: A review. Agron Sustain Dev. 2015; 35:569-88. https://doi.org/10.1007/s13593-014-0252-3
- 71. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Maaza M, Ayeshamariam A, Kennedy LJ. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. Biol. 2016; 164:352-60. https://doi.org/10.1016/j.jphotobiol.2016.10.003 PMid:27728880
- 72. Srihasam S, Thyagarajan K, Korivi M, Lebaka VR, Mallem SPR. Phytogenic generation of NiO nanoparticles using Stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomol. 2020; 10(1):89. https://doi.org/10.3390/biom10010089 PMid:31935798 PMCid:PMC7023445
- 73. Chaudhary RG, Tanna JA, Gandhare NV, Rai AR, Juneja HD. Synthesis of nickel nanoparticles: Microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv Mater Lett. 2015; 6:990-8. https://doi.org/10.5185/amlett.2015.5901
- 74. Etefa HF, Nemera DJ, Dejene FB. Green synthesis of nickel oxide NPs incorporating carbon dots for antimicrobial activities. ACS Omega. 2023; 8:38418-25. https://doi.org/10.1021/acsomega.3c05204 PMid:37867704 PMCid:PMC10586249
- 75. Iqbal J, Abbasi BA, Mahmood T, Hameed S, Munir A, Kanwal S. Green synthesis and characterizations of nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl Organomet Chem. 2019; 33(8): e4950. https://doi.org/10.1002/aoc.4950
- Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong S. Rambutan (Nephalium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Mater Lett. 2014; 128:170-4. https://doi.org/10.1016/j.matlet.2014.04.112
- 77. Iqbal J, Abbasi BA, Ahmad R, Mahmoodi M, Munir A, Zahra SA, et al. Phytogenic synthesis of nickel oxide nanoparticles (NiO) using fresh leaves extract of Rhamnus triquetra (wall.) and investigation of its multiple in vitro biological potentials. Biomed. 2020; 8(5):117. https://doi.org/10.3390/biomedicines8050117 PMid:32408532 PMCid:PMC7277790
- 78. Saleem S, Ahmed B, Khan MS, Al-Shaeri M, Musarrat J. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globules plants. Microb Pathog. 2017; 111:375-87. https://doi.org/10.1016/j.micpath.2017.09.019 PMid:28916319
- 79. Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009; 78:857-902. https://doi.org/10.1146/annurev.biochem.78.081307.110540 PMid:19317650

- 80. Bethu MS, Netala VR, Domdi L, Tartte V, Janapala VR. Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: An insight into the mechanism. Artif Cells Nanomed Biotechnol. 2018; 46(supp 1):104-14. https://doi.org/10.1080/21691401.2017.1414824 PMid:29301413
- 81. Patil MP, Kim GD. Eco-friendly approach for nanoparticles synthesis and mechanism behind anti-bacterial activity of silver and anti-cancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017; 101:79-92. https://doi.org/10.1007/s00253-016-8012-8 PMid:27915376
- 82. Kim YJ, Perumalsamy H, Castro-Aceituno V, Kim D, Markus J, Lee S, et al. Photoluminescent and self-assembled hyaluronic acid-zinc oxide-ginsenoside Rh2 nanoparticles and their potential caspase-9 apoptotic mechanism towards cancer cell lines. Int J Nanomed. 2019; 14:8195-208. https://doi.org/10.2147/IJN.S221328 PMid:31632027 PMCid:PMC6790350
- 83. Horie M, Nishio K, Fujita K, Endoh S, Miyauchi A, Saito Y, et al. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol. 2009; 22(3):543-53. https://doi.org/10.1021/tx800289z PMid:19216582
- 84. Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. 2011; 374(1-3):1-8. https://doi.org/10.1016/j.colsurfa.2010.10.015
- 85. Sonohara R, Muramatsu N, Ohshima H, Kondo T. Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys Chem. 1995; 55(3):273-7. https://doi.org/10.1016/0301-4622(95)00004-H PMid:7626745
- 86. Espitia PJP, Soares ND FF, Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioproc Tech. 2012; 5:1447-64. https://doi.org/10.1007/s11947-012-0797-6
- 87. Din MI, Nabi AG, Rani A, Aihetasham A, Mukhtar M. Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantean: Catalytic and antimicrobial potentials. Environ Nanotechnol Monit Manag. 2018; 9:29-36. https://doi.org/10.1016/j.enmm.2017.11.005
- 88. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, et al. Sageretia thea (osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol. 2018; 46(4):838-52. https://doi.org/10.1080/21691401.2017.1345928 PMid:28687045
- 89. Dauthal P, Mukhopadhyay M. Noble metal nanoparticles: Plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res. 2016; 55(36):9557-77. https://doi.org/10.1021/acs.iecr.6b00861
- Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: Methods and literature. Int J Nanomed. 2012; 7:23-44. https://doi.org/10.2147/IJN.S24805 PMid:22745541 PMCid:PMC3383293
- 91. Cemple M, Nickel G. Nickel: A review of its sources and environmental toxicology. Polish J Environ Stud. 2006; 15:375-82.
- 92. Angajala G, Subashini R. A review of nickel nanoparticles as effective therapeutic agents for inflammation. Inflam Cell Signal. 2014; 1: e271.
- 93. Karthik K, Shashank M, Revathi V, Tatarchuk T. Facile microwaveassisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Mol Cryst Liq Cryst. 2019; 47:1926-54.
- 94. Lingaraju K, Naika HR, Nagabhushana H, Jayanna K, Devaraja S, Nagaraju G. Biosynthesis of nickel oxide nanoparticles from Euphorbia heterophylla (L.) and their biological application. Arab J Chem. 2020; 13(3):4712-9. https://doi.org/10.1016/j.arabjc.2019.11.003

- 95. Sabouri Z, Fereydouni N, Akbari A, Hosseini HA, Hashemzadeh A, Amiri MS, et al. Plant-based synthesis of NiO nanoparticles using Salvia macrosiphon Boiss extract and examination of their water treatment. Rare Met. 2019; 39(23):1134-44. https://doi.org/10.1007/s12598-019-01333-z
- 96. Zhang Y, Maldavi B, Mohammadhosseini M, Rezaei-Seresht E, Paydarfard S, Qorbani M, et al. Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical characterization, anti-oxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arab J Chem. 2021; 14(5):103105. https://doi.org/10.1016/j.arabjc.2021.103105
- 97. Haritha V, Gowri S, Janarthanan B, Faiyazuddin M, Karthikeyan C, Sharmila S. Biogenic synthesis of nickel oxide nanoparticles using Averrhoa bilimbi and investigation of its anti-bacterial, anti-diabetic and cytotoxic properties. Inorg Chem Commun. 2022; 144:109930. https://doi.org/10.1016/j.inoche.2022.109930
- 98. UR S, CR RK, MS K, Betageri VS, MS L, Veerapur R, et al. Biogenic synthesis of NiO nanoparticles using Areca catechu leaf extract and their anti-diabetic and cytotoxic effects. Molecules. 2021; 26(9):2448. https://doi.org/10.3390/molecules26092448 PMid:33922292 PMCid:PMC8122846
- 99. Horie M, NiShio K, Fujita K, Kato H, Nakamura A, Kinugasa S, et al. Ultrafine NiO particles induce cytotoxicity in vitro by cellular uptake and subsequent Ni(II) release. Chem Res Toxicol. 2009; 22:1415-26. https://doi.org/10.1021/tx900171n PMid:19630433
- 100. Latvala S, Hedberg J, Di Bucchianico S, Moller L, Odnevall Wallinder I, Elihn K, et al. Nickel release, ROS generation and toxicity of Ni and NiO micro- and nanoparticles. PLoS ONE. 2016; 11: e0159684. https://doi.org/10.1371/journal.pone.0159684 PMid:27434640 PMCid:PMC4951072
- 101. Cao Z, Fang Y, Lu Y, Qian F, Ma Q, He M, et al. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats. Int J Nanomed. 2016; 11:3331-46. https://doi.org/10.2147/IJN.S106912 PMid:27524893 PMCid:PMC4965228
- 102. Cho WS, Duffin R, Bradley M, Megson IL, Macnee W, Howie SE, et al. NiO and Co₃O₄ nanoparticles induce lung DTH-like responses and alveolar lipoproteinosis. Eur Respir J. 2012; 39:546-57. https://doi.org/10.1183/09031936.00047111 PMid:21828028
- 103. Bai KJ, Chuang KJ, Chen JK, Hua HE, Shen YL, Liao WN, et al. Investigation into the pulmonary inflammopathology of exposure to nickel oxide nanoparticles in mice. Nanomed Nanotechnol Biol Med. 2018; 14:2329-39. https://doi.org/10.1016/j.nano.2017.10.003 PMid:29074311
- 104. Lu S, Diffin R, Poland C, Daly P, Murphy F, Drost E, et al. Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect. 2009; 117:241-7. https://doi.org/10.1289/ehp.11811 PMid:19270794 PMCid:PMC2649226
- 105. Sutunkova MP, Solovyeva SN, Minigalieva IA, Gurvich VB, Valamina IE, Makeyev OH, et al. Toxic effects of low-level longterm inhalation exposures of rats to nickel oxide nanoparticles. Int J Mol Sci. 2019; 20:1778. https://doi.org/10.3390/ijms20071778 PMid:30974874 PMCid:PMC6479379
- 106. Cuevas AK, Liberda EN, Gillespie PA, Allina J, Chen LC. Inhaled nickel nanoparticles alter vascular reactivity in C57BL/6 mice. Inhal Toxicol. 2010; 22(sippl.S2):100-06. https://doi.org/10.3109/08958378.2010.521206 PMid:21142798 PMCid:PMC3786415
- 107. Liberda EN. The effects of inhaled nickel nanoparticles on murine endothelial progenitor cells. UMI Dissertations Publishing: An Arbor, MI, USA. 2011.
- 108. Liberda EN, Cuevas AK, Qu Q, Chen LC. The acute exposure effects of inhaled nickel nanoparticles on murine endothelial progenitor cells. Inhal Toxicol. 2014; 26:588-97. https://doi.org/10.3109/08958378.2014.937882 PMid:25144474 PMCid:PMC4212263
- 109. Kang GS, Gillespie PA, Gunnison A, Moreira AL, Tchou-Wong KM, Chen LC. Long-term inhalation exposure to nickel nanoparticles

- exacerbated atherosclerosis in a susceptible mouse mode. Environ Health Perspect. 2011; 119:176-81. https://doi.org/10.1289/ehp.1002508 PMid:20864429 PMCid:PMC3040603
- 110. Yu S, Liu F, Wang C, Zhang J, Zhu A, Zou L, et al. Role of oxidative stress in liver toxicity induced by nickel oxide nanoparticles in rats. Mol Med Rep. 2018; 17:3133-9.
- 111. Senoh H, Kano H, Suzuki M, Ohnishi M, Kondo H, Takanobu K, et al. Comparison of single or multiple intratracheal administration for pulmonary toxic responses of nickel oxide nanoparticles in rats. J Occup Health. 2017; 59:112-21. https://doi.org/10.1539/joh.16-0184-OA PMid:27980250 PMCid:PMC5478522
- 112. Dumala N, Mangalampalli B, Chinde S, Kumari SI, Mahoob M, Rahman MF, et al. Genotoxicity study of nickel oxide nanoparticles in female Wister rats after acute oral exposure. Mutagenesis. 2017; 32:417-27. https://doi.org/10.1093/mutage/gex007 PMid:28387869
- 113. Dumala N, Mangalampalli B, Kalyan Kamal SS, Grover P. Biochemical alterations induced by nickel oxide nanoaprticles in female Wister albino rats after acute oral exposure. Biomarkers. 2018; 23:1366-5804. https://doi.org/10.1080/1354750X.2017.1360943 PMid:28748734
- 114. Dumala N, Mangalampalli B, Kalyan Kamal SS, Grover P. Repeated oral dose toxicity study of nickel oxide nanoparticles in Wistar rats: A histological and biochemical perspective. J Appl Toxicol. 2019; 39:1012-29. https://doi.org/10.1002/jat.3790 PMid:30843265
- 115. Ali AAM. Evaluation of some biological, biochemical, and hematological aspects in male albino rats after acute exposure to the nano-structural oxides of nickel and cobalt. Environ Sci Pollut Res. 2019; 26:17407-17. https://doi.org/10.1007/s11356-019-05093-2 PMid:31020524

- 116. Katsnelson BA, Minigaliyeva IA, Panov VG, Privalova LI, Varaksin AN, Gurvich VB, et al. Some patterns of metallic nanoparticles' combined subchronic toxicity as exemliified by a combination of nickel and manganese oxide nanoparticles. Food Chem Toxicol. 2015; 86:351-64. https://doi.org/10.1016/j.fct.2015.11.012 PMid:26607108
- 117. Minigalieva IA, Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Shur VY, et al. Attenuation of combined nickel (II) oxide and manganese (II, III) oxide nanoparticles' adverse effects with a complex of bioprotectors. Int J Mol Sci. 2015; 16:22555-83. https://doi.org/10.3390/ijms160922555 PMid:26393577 PMCid:PMC4613324
- 118. Marzban A, Seyedalipour B, Mianabady M, Taravati A, Hoseini SM. Biochemical, toxicological, and histopathological outcome in rat brain following treatment with NiO and NiO nanoparticles. Biol Trace Elem Res. 2020; 196(2):528-36. https://doi.org/10.1007/s12011-019-01941-x PMid:31902099
- 119. Saquib Q, Attia SM, Ansari SM, Al-Salim A, Faisal M, Alatar AA, et al. P53, MAPKAPK-2 and caspases regulate nickel oxide nanoparticles induce cell death and cytogenetic anomalies in rats. Int J Biol Macromol. 2017; 105:228-37. https://doi.org/10.1016/j.ijbiomac.2017.07.032 PMid:28690165
- 120. Shinohara N, Zhang G, Oshima Y, Kobayashi T, Imatanaka N, Nakai M, et al. Kinetics and dissolution of intratracheally administered nickel oxide nanomaterials in rats. Part Fibre Toxicol. 2017; 14:1-14. https://doi.org/10.1186/s12989-017-0229-x PMid:29183341 PMCid:PMC5706298
- 121. Javed B, Ikram M, Farooq F, Sultana T, Mashwani ZUR, Raja NI. Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: A mechanistic overview. Appl Microbiol Biotechnol. 2021; 105(6):2261-75. https://doi.org/10.1007/s00253-021-11171-8 PMid:33591386