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Many people suffer from the aggravation of infections and inflammations initiated by the
exposure of virulent microorganisms or other toxicants globally owing to the development of drug
resistance accompanied with drug toxicity, insolubility, non-specificity, and the occurrence of
biological barriers. Nanotechnology-based nickel nanomaterials (NiNMs) such as nickel oxide
nanoparticles (NiONPs) and nickel hydroxide nanoparticles (Ni(OH)2NPs) have attracted
attention as nano-medicinal delivery system to inhibit the disease-development and spreading
due to their suitable physicochemical characteristics such as nano sizes, effective shapes, high
surface to volume ratio, increased reactivity, easy surface-functionalization, and photo-thermal
activity. Metallic NINMs are capable to penetrate cellular membrane causing cellular leakage, and
to generate reactive oxygen species (ROS) for interaction with cellular molecules to damage DNAs,
proteins, and lipids leading to microbial or cellular deaths. Moreover, their surface-
functionalization with specific ligands, drugs, and other biomolecules may direct their
modulations as suitable targeted delivery system on lowering cytotoxicity, minimizing drug
degradation and loss, and increasing bioavailability of drug compounds. This review elucidates
chiefly on the synthesis, drug loading and functionalization, mechanisms of action, biomedical
applications, toxicity, biodistribution and elimination of NiNMs as delivery system in combating
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of serotonin and histamine in reaction to progesterone
and estrogen respectively®. Another inflammatory
pathway is arachidonic acid cascade regulated by
eicosanoids, dependent on the genetic or other factors to
control the size and extent of tumor metastases®. In
severe conditions, inflammation may lead to mental
disorders through the degradation of tryptophan by
cytokines and the enhanced activity of indolamine 2,3-
dioxygenase (IDO) (the rate limiting enzyme), and the
subsequent depletion of serotonin, allied to mental
depression?0,

Introduction

Infectious diseases caused by the biological pathogens
such as bacteria, virus, fungi or protozoa may lead to the
development of life-threatening diseases globally owing
to the organisms’ nano- sizes and shapes compatible for
their transportations to the specific biological
compartments. After the exposure of pathogenic agents
or other toxicants into the biological system, the anti-
oxidant and immune body defense mechanisms may
interact to suppress the pathogenic loads by killing the
pathogens and / or scavenging the free radicals

generated!. However, when the pathogenic burdens and
free radical stresses overpower the body defense
mechanisms, diseases are initiated, developed and
progressed with the reflections of sometimes
progressive inflammations, cancers and other diseases,
even with the emergence of drug resistance
characterized by the cell-wall thickening of organisms,
efflux of drug molecules, enzymatic destructions, and
target variations?-7.

The process of inflammation is regulated by mast cells,
containing heparin, serotonin, bradykinin and histamine,
through the release of their contents in response to their
degranulation, transmitted infection and injury, and also
under the influence of other controls such as liberations
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The interactions of the cellular immune system with
endogenous or exogenous antigens may initiate the
generations of reactive oxygen species (ROS) and
reactive nitrogen species (RNS) promoting to signaling
cascades to produce the liberations of proinflammatory
chemokines and cytokines related to the hemopoiesis,
ion-channel regulators, non-specific and specificimmune
responses and tissue repairs. Transmission of
extracellular information into the cytoplasm and nucleus
activated by the anchoring of cytokines to their specific
receptors is processed through various signaling
pathways such as nuclear factor kB and mitogen-
activated protein kinase (MAPK)!1. Sustained vigorous
information may proceed to cellular injury or
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hyperplasia followed by the overproductions of free
radicals in non-phagocytic cells from inflammatory cells,
while interactions of ROS with DNA in mitotic cells may
lead to persisted genomic mutation. During chronic
inflammations, cellular antioxidant systems may activate
genes linked to DNA repair responding to free radical
overproductions and causing depletion of cellular
antioxidants!2. Acute or chronic inflammatory processes
reflected by trauma or arthritis, and infection or other
progressive inflammatory diseases relate the genetics
and molecular biology to basic cellular responses as the
pivotal role for identifying the genetic predisposition to
various inflammatory mediated sequences1314,

A few novel therapeutic lead drug compounds including
non-steroidal anti-inflammatory drugs (NSAIDS), and
drugs derived from natural sources have been utilized
againstinflammatory diseases to modulate inflammatory
mediators (calcium, protein kinases, cAMP and cGMP),
the expressions of pro-inflammatory molecules such as
cytokines (TNF-a and IL-1p), cyclooxygenase (COX-2),
inducible NO synthase (iNOS), neuropeptides, and
proteases, and the expressions of lead transcription
factors such as AP-1, NF-kB, and proto-oncogenes (c-fos,
c-jun, and c-myc)!>17. However, a larger number of
patients suffer from conventional therapies owing to
their side effects of drug-toxicity, drug-resistance, drug-
non-specificity, and other biological barriers against
chronic inflammatory diseases, and therefore, require
effective therapeutic efficacies with least side effects to
give relief from the symptoms of systematic
inflammations18-20,

Nanotechnology-based drug delivery has attracted
attention owing to its capability to reduce the toxicity
and side effects of therapeutics, to cross the blood-brain
and other biological barriers, and to overcome the drug-
resistancel21. Nickel is an essential element having the
roles in the reduction of carbon monoxide to acetate
through the activation of carbon monoxide
dehydrogenase, the interaction with iron in hemoglobin
for the transport of oxygen, the stimulation in the
metabolism, the transmission of genetic code (RNA and
DNA), and the co-ordinations in nerve impulses, muscle
excitations and contractions via substitution of calcium
in the process of excitation, and the involvement in the
anchoring to membrane ligands (e.g. phosphate groups
of phospholipids), and also regulates the formation of
cyclic nucleotide cGMP to control various physiological
signaling processes. Ni NMs have gained attraction for
their higher stability and excellent optical, electronic,
magnetic and catalytic characteristics as well as their
existence of higher inexpensivity, non-toxicity, stable P-
type semi-conductivity with an extensive band-gap of
3.6-4.0 eV in the usages for medical applications,
imaging, drug delivery, diagnostics and antibiotics
against various diseases2%26, This review provides
mainly the biomedical applications of Ni NMs against
infections, cancer, and inflammatory related other
diseases to consider them as suitable nano-medicinal
delivery system.
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Synthesis of nickel nanomaterials

NiNMs are prepared mainly by self-assembly of small
particles through the generation of atoms, nucleation and
growth phenomenon utilizing chemical as well as
biological  synthesis methods via  bottom-up
approaches?7-31,

The counterions determine the solubility of the
precursor nickel salts in the solvents and influence the
electrostatic stabilizations, the pH modifiers, and the
complexing agents. NiNMs may be synthesized via
various nickel salts such as nickel chloride (NiCl2), nickel
(1) nitrate (Ni(NOs3)2), nickel (II) acetate (Ni(CH3CO2)2),
nickel (II) oxalate (NiC204), nickel (II) bis
(acetylacetonate) (Ni(CsH70z)z), nickel (II) sulfate
(NiSO4), nickel (II) dodecyl sulfate (Ni(DS)z), while
various concentrations of nickel salts are utilized to
control nucleation and growth ratio for forming the
different shapes, sizes and morphology of the NPs32.

Strong reducing agents such as hydrazine and NaBH4 in
alkaline medium, medium-strength reductants such as
polyols in various alcohols and citric acid, and weak
reductants such as sodium hypophosphite (NaH2PO2)
and ascorbicacid are used for the synthesis of NiNPs with
a variety of nucleation and growth processes dependent
on precursors’ concentrations, and variations of
temperature and pH of the reaction mixture, while nickel
ions (Ni?*) are reduced to nickel atoms (Ni) after gaining
two electrons from the reducing agents32.

Various stabilizing agents, including surfactants, capping
agents and other compounds, such as cetyl-
trimethylammonium bromide (CTAB), tetra-
butylammonium bromide (TEAB), tetraethylammonium
bromide (TBAB), tetra dodecyl ammonium bromide
(TC12AB), sodium dodecyl sulfonate (SDS), citric acid,
tween 40 and 80, PEG 6000, D-sorbitol, hydroxyethyl
carboxymethyl cellulose (HECMC), sodium carboxyl
methylcellulose (Na-CMC), trioctylphosphine (TOP),
trioctylphosphine oxide (TOPO), and poly (vinyl
pyrrolidone) (PVP) are employed in nickel synthesis to
counteract van der Waals’ forces and magnetic dipole-
dipole interactions by utilizing electrostatic forces, -
interactions and hydrogen bonding to inhibit the
agglomerations and stabilize the surface charges of the
NPs32,

Chemical synthesis

In the presence of alkaline medium and reducing agent-
hydrazine (N2H4), NiNPs may be synthesized through a
complex reaction to a controlled size and morphology
when the ratio of N2H4/Ni%* becomes <4.5, and in the
absence of OH-, the nickel complex may be reduced to
metallic nickel by direct hydrazine reduction, while the
presence of OH- in the reaction solution may produce a
color change to gray via ligand exchange of Cl- by OH- for
forming nickel hydroxide (Ni(OH)z) and subsequent Ni®
NPs through the consequent color changes from gray to
black owing to the subsequent reduction by hydrazine,
and the production of adsorbed hydrogen atoms (H*) via
the interaction of remaining hydrazine with OH- for
generating electrons and water, while nuclei-formed may
function as an active site and center for the adsorptions
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of hydrogen atoms to capture Ni2+ from the solution32.
NiONPs have been produced through monitoring nickel-
containing gels by utilizing chemical reagents and
exposing gel to heat-treatment upto 10002C3334, Cubic
NiONPs have been formed through utilization of
chemical stabilizers such as isopropanol and ethylene
glycol, and nickel nitrate hexahydrate as a precursor, and
also surfactant triton X-100 as detergent for avoiding
aggregation35. NiONPs have been synthesized utilizing
citric acid and malic acid respectively without addition of
any reducing agent and surfactant3637. NiONPs (25 nm)
have been fabricated utilizing Ni(octa)z-oleylamine
complex through thermal decomposition at 2009C,
where triphenyl phosphine (CisHisP) and oleylamine
(C18H37N) have been utilized as surfactants, and the
CisHs7N has been used also as the medium as well as the
stabilizing agent38. Hydrazine and alcohols have been
utilized as complexing agents during the synthesis of
NiONPs3°. NiONPs have been synthesized through solvo-
thermal protocol utilizing nickel nitrate and citric acid as
the precursor and the chelating agent, respectively#0.
NiONPs have been synthesized by chemical precipitation
without utilization of surfactant, or stabilizing and
capping agents*l. NiONPs have been also synthesized via
combustion by using organic fuels*2.

The synthesized NPs, carrying by-products and un-
reacted components, may be purified utilizing different
methodologies such as centrifugations, magnetic
separations, membrane separations (dialysis, filtrations,
and ultra filtrations), chromatography procedures, and
thermal treatment methods#*3-47,

Biological synthesis

Biological synthesis is a bottom-up approach utilizing
natural stabilizing and reducing agents, such as plant
extracts, microorganisms and biomolecules, including
polysaccharides, amino acids, proteins, enzymes and
vitamins to synthesize NPs*8.

Plant-mediated synthesis of nickel oxide nanoparticles

The various plant species and their extracts as
phytochemicals for the reduction of nickel ions from the
solution of nickel salts have been utilized to fabricate
NiONPs, while the polyphenols and the hydroxyl groups
of flavonoids as well as the hydroxyl and carbonyl groups
of amino acids act as reducing agents to stabilize the
synthesized NPs*%50. For the preparation of NiONPs,
plant extracts and solutions of nickel salts are admixed
followed by heating with constant stirring. The mixture
is spun after the completion of the reaction. The clear
supernatant is discarded, and the deposited pellets are
cleansed, oven-dried, and calcined to get NiONPs.

Microbes-mediated
nanoparticles

biosynthesis  of nickel oxide

Microbial fabrications of NPs occur through either
extracellular or intracellular approaches. Intracellular
synthesis involves the transport of metal ions into the
microbial cells and the formations of NPs by coenzymes,
proteins and heterocyclic derivatives exist within the
cells. Extracellular synthesis involves the entrapment of
metal ions on the surface of microbial cells and the
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proteins and / or enzymes exist on the surface reduce the
metal ions, and stabilize the synthesized NPs5152,
Different microbes such as bacteria, fungi, algae and
yeasts, and various nickel salts as precursors have been
utilized for the green synthesis of NIONPs33-59,

Other green source-mediated synthesis of nickel oxide
nanoparticles

Other green environmentally benign and biodegradable
natural substances utilizing hydroxyl, carboxyl, or
carbonyl groups of gums, tannic acids, chitosan, amino
acids, or polysaccharides as reducing, capping, or
stabilizing agents, and nickel salts as precursors have
been used for the biogenic synthesis of spherical NIONPs
and Ag-NiO nanocomposites with their photocatalytic
activities60-65,

Generally, under optimal conditions (such as pH of the
reaction medium, quantity of NPs, and reaction time), 10
mg NPs are added to 5 mL of drug (0.1 M at pH 7)
followed by stirring for 9 h at 252C in the dark. The
sample is then spun for 10 min, and the supernatant is
separated. The amount of drug may be determined by
utilizing HPLC technique®®.

Functionalization of
biomolecules

nanoparticles with

Surface attachments of NPs with biomolecules such as
antibodies, proteins and DNA are generally carried out
utilizing conventional bioconjugation techniques®’.
Biomolecules may be attached to nanoparticles via either
physical adsorption or chemical covalent coupling
reactions®. In physical adsorption, electrostatic and
hydrophobic interactions take place between NPs and
biomolecules, while in covalent chemical modifications,
functionalization of NPs takes place with amine,
carboxyl, or sulphide groups.

Characterizations of nickel nanomaterials

The morphological features i.e. the sizes of the NMs are
determined through the utilizations of atomic force
microscope (AFM), transmission electron microscope
(TEM), and scanning electron microscope (SEM). The
phase purity and crystallite sizes of NiONPs are
determined through using X-ray diffractometer (XRD).
The reduction of Ni?* ions in solution, and the
interactions of drugs with NPs through their binding
groups are monitored through using UV-VIS
spectrophotometer, Fourier transform infrared (FT-IR)
spectrometer, or Gas chromatography mass
spectrometer (GC-MS). To detect the elemental
compositions or existing elements in the NMs and also in
their surface compositions such as stabilizing and / or
capping agents, energy dispersive X-ray spectroscope
(EDS) or X-ray photoelectron spectroscope (XPS) may be
utilized. The hydrodynamic diameters of NiONPs in
aqueous suspension as well as their polydispersity index
(PDI) and zeta potential are investigated through
dynamic light scattering (DLS) analysis. The thermal
behaviors of the primary gels, and the magnetic features
of the produced NiONPs are investigated utilizing
thermo-gravimetric analyzer (TGA), differential thermal
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analyzer (DTA), and vibrating sample magnetometer,
respectively.

Mechanisms of action of nickel nanomaterials

Antimicrobial as well as anticancer activities of NiNMs
are linked to nickel ion contents that interpenetrate the
microbial or diseased cells and reach the cellular surface
membranes and intracellular milieu. The influx of nickel
cations destroys organelles such as ribosomes and
affects cellular metabolisms owing to the electrostatic
attractions of negatively charged intercellular
membranes and positively charged nickel ionsé970.
Owing to the higher surface activity and larger surface-
to-volume ratios of NiNMs, their exposures / direct
contacts / adsorptions to cells may disrupt the cell
membrane morphology and cellular transports07172,
Moreover, the higher affinity of NiINMs to phosphor and
sulfur -containing ingredients such as proteins and DNAs
may disrupt cellular DNA replications leading to protein
deformations’3. The Kkilling of cell is also related to the
generations of free radical species produced by the
photo-excitations of NiNMs and their interactions with
cellular components resulting in damages of cell walls

Dissolution

NiNMs(NiONPs) % — 33; NPtions |

Ni?*ions
Cell wall

disruption

cell membrane
disintegration

Mesosomes
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and DNAs, formations of membrane-pores, cell cycle
arrests, and ultimately inhibitions of cellular growths74.

Investigators have unveiled the antimicrobial
mechanisms of NiNMs that the reactive oxygen species
(ROS) such as super oxides (0z-), hydroxyl radicals (OH)
and hydrogen peroxides (H202) are generated through
the activation of NiONPs by visible and ultraviolet light,
while Oz and -OH ions are unable to penetrate the cell
membranes owing to their excessive negative charges,
however, H202 can enter into the cells to induce cell death
via the disruption of cell membrane integrity and
damaging of DNA, mitochondria (electron transport),
and proteins (tertiary structures) within the cells,
associated with the formations of pores, shrinking and
fragmentations of cell membranes’27578, Additionally,
the uncoupling of ATP productions, the loss of protein
motive forces, and the interference with the phosphate
efflux mechanisms exposed by the interactions of
NiONPs with thiol groups of cellular proteins may lead to
the separation of the cell membranes from the cytoplasm
resulting in condensation of genetic materials, loss of
replication, or the release of intracellular components?8
(Figure 1).

Disruption of
electron transport

Plasma
membrene

Inhibited
enzymes

Free
radicals

Cytoplasm
Cell wall

Loss of cellular fluids

Cell death

Figure 1. Anti-microbial mechanisms of NiNMs (NiONPs).

Many investigators have proposed the plausible
anticancer mechanisms of NiONPs through the ROS-
dependent and caspase-mediated apoptosis in cancer
cells#?. The contact of NPs with the surface-membrane of
cancer cells may trigger invaginations of NPs through
endocytosis for generation of intracellular membrane-
bound vesicles followed by their liberations to produce
ROS resulting in mitochondrial dysfunctions, nuclear
damages, protein oxidations, DNA damages, decrements
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of major free radical scavengers, and cell cycle arrests,
leading to apoptotic cellular deaths via the activations of
caspases 3, 8 and 9, and the enhancements of the levels
of tumor protein P53 for inhibiting growth of cancer
cells#979-82, Moreover, the internalization of nickel (II)
ions into the cells may activate the calcium-dependent
cascades to disrupt DNA repair mechanisms leading to
apoptotic cellular killing4983 (Figure 2).
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Figure 2. Anti-cancer mechanisms of NiNMs (NiONPs).

Biomedical applications of nickel nanomaterials

NiNMs with or without drug/s as delivery systems have
been utilized to treat various diseases/ pathogens/
diseased cells such as against microbes, fungi, drug-
resistant  biofilms, inflammations, cancer cells,
leishmania parasites and diabetes.

Antimicrobial activities

NiONPs have been used to treat various human
pathogenic microorganisms with substantial anti-
pathogenic outcomes*%78 NiONPs synthesized utilizing
Aegle marmelos and Moringa oleifera leaf extracts have
shown potential bactericidal effects towards multi-drug-
resistant Gram positive and negative bacteria with a
variation owing to the polarity differences between their
membranes4?71, Gram positive bacteria having excess
positive charges and multiple layers of thicken
peptidoglycans on their surrounding cell walls compared
to Gram negative bacteria having a single layer of thinner
peptidoglycan and lipopolysaccharide contents on their
outer membranes lead to easy penetration of negatively
charged free radicals to cause more cells damages and
cell deaths in Gram positive than Gram negative bacteria,
while the outer membranes of Gram negative bacteria act
as permeability barriers to reduce the entry of ROS into
the cells84-86,
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The antibacterial and antibiofilm activities of
biosynthesized NiONPs with or without drugs such as
chloramphenicol and gentamicin, and the exposure of UV
illumination towards S. aureus, P. aeruginosa, E. coli, B
subtilis, K. pneumonia, E. faecalis, A. baumannii and S.
typhi have exhibited shrinking, fragmentation, and
disorganization of outer surfaces including the formation
of gaps and pits, and higher zones of bacterial growth
inhibitions evaluated on agar plates50.7476-78,87-90,

Antifungal activities

The antifungal activities of biosynthesized NiONPs
utilizing Rhamnus virgata, Rhamnus triquetra and
Sageretia thea leaf extracts against various pathogenic
fungal strains such as A. flavus, R. solani, M. racemosus, A.
niger, C. albicans, and F. solani have exhibited their
various levels of growth inhibition rates correlated with
ROS-produced mitochondria and DNA damages in the
dose-dependent  manners’>778,  The  antifungal
applications of the biosynthesized NiONPs@C-dots
against C. albicans fungus strain have shown their higher
inhibition zones compared to NiONPs74.

Anti-inflammatory activities

The ROS-induced TNFa and NFkB activations, the
secretions of pro-inflammatory cytokines, and the over-
expressions of adhesion molecules by the endothelial

CODEN (USA): JDDTAO



Ardhendu Kumar Mandal

cells lead to endothelium dysfunctions and chronic
inflammatory atherosclerosis3!91. The applications of
biosynthesized NiNPs with Aegle marmelos correa (AmC)
accompanied by [-sitosterol have shown their
synergistic anti-inflammatory activities through the
elimination of free-radical oxidants in extracellular
regions through H-atom donations and the supporting
proliferations of lymphocytes to enhance the cytotoxic
efficiency of natural killer cells®2.

Anti-cancer activities

The various concentrations of NiONPs (500-3.9 pg/mL)
synthesized with Geranium wallichianum plant extract
have shown their anticancer activities exposed on human
hepatocarcinoma (HepG2) cells for 24 h as the dose-
dependent inhibitions of cancerous cells50. Fabricated
NiONPs utilizing Andrographis paniculata leaf extract
have exhibited the concentration-dependent inhibitions
against human breast cancer cells (MCF-7)?. NiONPs
synthesized with Moringa oleifera have shown higher
toxicity and gradual decrement in cell viability through
ROS-generated mitochondrial dysfunctions towards
human colorectal adrenocarcinoma (HT-29) cells in a
dose-dependent manner’t. The NiONPs synthesized with
Euphorbia heterophylla leaf extracts have exhibited the
dose-dependent anticancer activities against human lung
cancer cells (A549), and HepG2 cells®*. NiONPs
orchestrated with Rhamnus virgata leaf extracts have
shown their anticancer potentiality towards HepG2 cells
in the dose-dependent manners’s. Biosynthesized
NiONPs utilizing Abutilon indicum leaf extracts have
shown their anticancer activities against cervical cancer
cells (HeLa)*8. NiONPs fabricated Salvia macrosiphon
extracts have exhibited the concentration-dependent
cytotoxicity towards Neuro 2A cells, while the liberation
of nickel (II) ions inside the cells results in cell death?s.
NiONPs fabricated utilizing egg white have exhibited
significant toxicity against gliobastoma cancer cells
(U87MG)¢%s. Biosynthesized NiONPs utilizing Calendula
officinalis extracts have exhibited their anticancer
efficacies towards esophageal carcinoma cells (FLO-1,
ES026, OE33, and KYSE-27009.

Anti-leishmanial activities

Bio-synthesized NiONPs utilizing Geranium
wallichianum, Rhamnus virgata, Rhamnus triquetra and
Sageretia thea extracts against amastigotes and
promastigotes cultures of Leishmania have exhibited
dose-dependent anti-leishmanial activities suppressing
the leishmanial growths50.75.77.88,

Anti-diabetic activities

NiONPs fabricated with Averrhoa bilimbi and Arcea
catechu leaf extracts have shown their potential anti-
diabetic activities on a-amylase inhibitory efficacies, and
also higher anti-diabetic activities than metformin®7.%.

Toxicity

The accumulations of Ni at intracellular targeted zones
lead to free radicals-induced inflammations, damages of
different cell structures including proteins, lipids, nucleic
acids, and membranes, resulting in apoptosis and
cytotoxicity at high exposure levels of NINMs (mainly NiO
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and Ni(OH)z NPs) affecting the various levels of toxicities
generated in the biological systems?99-101,

Acute and chronic exposures of NINMs may induce lung
inflammations characterized by delayed type-
hypersensitivity (DTH), pulmonary alveolar proteinosis
(PAP), lymphocytic foci, epithelial proliferation,
granulocytic infiltration, enhanced levels of lactate
dehydrogenase (LDH), 8-hydroxy-2'-deoxyguanosine (8-
OHdG), total polymorpho nuclear leukocytes (PMNs), y-
gutamyl transferase, amylase, alkaline phosphatase and
aspartate amino transferase102-105,

The cardiovascular toxicity may appear by the exposures
of NiNMs at high concentrations characterized by
inflammations, contractile and Vaso-relaxation
responses, enhanced population of bone marrow and
circulating endothelial / progenitor cells, down-
regulated MCP-1 levels in the aorta correlated with
diminished chemotaxis signaling, down-regulated
transferrin, up-regulated Ccl-2, IL-6 and HO-1,
mitochondrial DNA damage in aorta, and enhanced
plaque lesions, Vcam-1 and Cd68 levels in the aortal06-109,

The acute / chronic exposures of NiO and Ni(OH)2 NPs in
various dose and time -dependent manners have shown
the damages of systemic organs (such as liver, spleen,
kidney, lung, heart, aorta, stomach and brain) through
changes of biochemical, functional and histopathological
indices in animals administered via intra-tracheal
instillations, inhalations, intra-peritoneal injections or
oral gavages. Various authors have reported significant
enhancements in liver weight and lactate
dehydrogenase, leukocytosis, systemic inhibitions of the
oxidation-reduction energy metabolisms, increased lipid
peroxidation, stimulation of erythropoiesis (elevated
hemoglobin contents, erythrocytes count, reticulocytes
and hematocrits), increased numbers of akaryotic and bi-
nucleated hepatocytes, and kupffer cells, cellular edema,
disappearance of hepatic sinus, spleens growing
increased diameters of the follicles, and kidneys growing
brush border loss in proximal tubules, up-regulated HO-
1, SAP, Ccl-2 and IL-6 mRNA levels, up-regulated TNF-a
levels, decreased GSH levels, enhanced glutathione-S-
transferase and catalase activities, significant
decrements in total antioxidant capacity and increments
in MDA levels, including hyperemia, gliosis, necrosis and
spongy changes in brain105109-118,

The exposures of NiONPs at various dose and time
dependent manners have shown their genotoxicity and
carcinogenicity related to increased DNA fragmentations
in circulating nucleated blood cells, enhancement in %
tail DNA in peripheral blood leukocytes, kidney and
hepatic cells, increment in polychromatic erythrocytes
micronuclei and chromosomal aberrations in bone
marrow cells105112119,

The administrations of NiONPs (200 mg/kg/day) daily
through oral gavage for 28 days have exhibited no
mortality to rats except a few symptoms such as
irritation, dullness and distress!14.
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Biodistribution and elimination

The accumulations / eliminations of NiNMs in / from
different systemic organs and blood depend on the
various routes of exposures (such as intratracheal
instillation, inhalation, intravenous, intraperitoneal,
subcutaneous, and oral) and assay variables such as
species, methodology, time, dose, chemical / green /
biological synthesized forms, shapes and sizes of NPs.
The intratracheal instillations of spherical / irregular
shaped NiONPs (0.67- 6.0 mg/kg) to rats have shown the
higher NiO accumulations in most of the thoracic lymph
nodes and liver?20, The oral administrations of NiONPs
(125-500 mg/kg) to rats have exhibited accumulations of
Ni more in liver followed by the brain, kidney and
spleen13. In general, endocytosed NPs are processed and
broken within the phago-lysosomal compartments and
eliminated through hepato-pancreatic biliary system and
the small intestine as fecal clearances, while non-
decomposed larger NPs (>6 nm) are sequestered chiefly
in the liver and spleen for a few months or excreted
through the glomeruli bed (<5 nm)™.

Conclusions and future perspectives

As NiNMs having toxic features to eukaryotic cells at high
level and their chemical synthesized forms carrying toxic
impurities, eco-friendly green synthesized NiNMs
encapsulated / functionalized with ligand-binding
cargo/s may be suitable approach to overcome these
obstacles as well as non-specificity and drug-resistance
as targeted delivery system owing to their high surface-
to-mass ratio, capability of adsorbing and transporting
additional compounds!?l, In this context, the
explorations of the proper optimizations of the
synthesized delivery formulations, functionalization,
characterizations with or without ligands and cargos,
repeated batch-to-batch  uniformed large scale
productions of the NiNMs along with their interactions
with biomolecules are needed before applications to
avail higher therapeutic efficiencies against diseases.
Additionally, a thorough investigation regarding their
cytotoxicity, immune responses, biodistributions,
pharmacokinetics and eliminations, and routes of
administration is required for achieving maximal
therapeutic efficacies of NiNMs for considering them as
suitable delivery system as well as nanomedicine before
clinical translation against diseases.
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