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Abstract 
_______________________________________________________________________________________________________________ 

Many people suffer from the aggravation of infections and inflammations initiated by the 
exposure of virulent microorganisms or other toxicants globally owing to the development of drug 
resistance accompanied with drug toxicity, insolubility, non-specificity, and the occurrence of 
biological barriers. Nanotechnology-based nickel nanomaterials (NiNMs) such as nickel oxide 
nanoparticles (NiONPs) and nickel hydroxide nanoparticles (Ni(OH)2NPs) have attracted 
attention as nano-medicinal delivery system to inhibit the disease-development and spreading 
due to their suitable physicochemical characteristics such as nano sizes, effective shapes, high 
surface to volume ratio, increased reactivity, easy surface-functionalization, and photo-thermal 
activity. Metallic NiNMs are capable to penetrate cellular membrane causing cellular leakage, and 
to generate reactive oxygen species (ROS) for interaction with cellular molecules to damage DNAs, 
proteins, and lipids leading to microbial or cellular deaths. Moreover, their surface-
functionalization with specific ligands, drugs, and other biomolecules may direct their 
modulations as suitable targeted delivery system on lowering cytotoxicity, minimizing drug 
degradation and loss, and increasing bioavailability of drug compounds. This review elucidates 
chiefly on the synthesis, drug loading and functionalization, mechanisms of action, biomedical 
applications, toxicity, biodistribution and elimination of NiNMs as delivery system in combating 
diseases. 

Keywords: Infections and inflammations; Nickel nanomaterials; Delivery system; Bio-medical 
applications 

 

Introduction 

Infectious diseases caused by the biological pathogens 
such as bacteria, virus, fungi or protozoa may lead to the 
development of life-threatening diseases globally owing 
to the organisms’ nano- sizes and shapes compatible for 
their transportations to the specific biological 
compartments. After the exposure of pathogenic agents 
or other toxicants into the biological system, the anti-
oxidant and immune body defense mechanisms may 
interact to suppress the pathogenic loads by killing the 
pathogens and / or scavenging the free radicals 
generated1. However, when the pathogenic burdens and 
free radical stresses overpower the body defense 
mechanisms, diseases are initiated, developed and 
progressed with the reflections of sometimes 
progressive inflammations, cancers and other diseases, 
even with the emergence of drug resistance 
characterized by the cell-wall thickening of organisms, 
efflux of drug molecules, enzymatic destructions, and 
target variations2-7.  

 The process of inflammation is regulated by mast cells, 
containing heparin, serotonin, bradykinin and histamine, 
through the release of their contents in response to their 
degranulation, transmitted infection and injury, and also 
under the influence of other controls such as liberations 

of serotonin and histamine in reaction to progesterone 
and estrogen respectively8. Another inflammatory 
pathway is arachidonic acid cascade regulated by 
eicosanoids, dependent on the genetic or other factors to 
control the size and extent of tumor metastases9. In 
severe conditions, inflammation may lead to mental 
disorders through the degradation of tryptophan by 
cytokines and the enhanced activity of indolamine 2,3-
dioxygenase (IDO) (the rate limiting enzyme), and the 
subsequent depletion of serotonin, allied to mental 
depression10. 

The interactions of the cellular immune system with 
endogenous or exogenous antigens may initiate the 
generations of reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) promoting to signaling 
cascades to produce the liberations of proinflammatory 
chemokines and cytokines related to the hemopoiesis, 
ion-channel regulators, non-specific and specific immune 
responses and tissue repairs. Transmission of 
extracellular information into the cytoplasm and nucleus 
activated by the anchoring of cytokines to their specific 
receptors is processed through various signaling 
pathways such as nuclear factor kB and mitogen-
activated protein kinase (MAPK)11. Sustained vigorous 
information may proceed to cellular injury or 
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hyperplasia followed by the overproductions of free 
radicals in non-phagocytic cells from inflammatory cells, 
while interactions of ROS with DNA in mitotic cells may 
lead to persisted genomic mutation. During chronic 
inflammations, cellular antioxidant systems may activate 
genes linked to DNA repair responding to free radical 
overproductions and causing depletion of cellular 
antioxidants12. Acute or chronic inflammatory processes 
reflected by trauma or arthritis, and infection or other 
progressive inflammatory diseases relate the genetics 
and molecular biology to basic cellular responses as the 
pivotal role for identifying the genetic predisposition to 
various inflammatory mediated sequences13,14.  

A few novel therapeutic lead drug compounds including 
non-steroidal anti-inflammatory drugs (NSAIDS), and 
drugs derived from natural sources have been utilized 
against inflammatory diseases to modulate inflammatory 
mediators (calcium, protein kinases, cAMP and cGMP), 
the expressions of pro-inflammatory molecules such as 
cytokines (TNF-α and IL-1β), cyclooxygenase (COX-2), 
inducible NO synthase (iNOS), neuropeptides, and 
proteases, and the expressions of lead transcription 
factors such as AP-1, NF-kB, and proto-oncogenes (c-fos, 
c-jun, and c-myc)15-17. However, a larger number of 
patients suffer from conventional therapies owing to 
their side effects of drug-toxicity, drug-resistance, drug-
non-specificity, and other biological barriers against 
chronic inflammatory diseases, and therefore, require 
effective therapeutic efficacies with least side effects to 
give relief from the symptoms of systematic 
inflammations18-20.   

Nanotechnology-based drug delivery has attracted 
attention owing to its capability to reduce the toxicity 
and side effects of therapeutics, to cross the blood-brain 
and other biological barriers, and to overcome the drug-
resistance1,21. Nickel is an essential element having the 
roles in the reduction of carbon monoxide to acetate 
through the activation of carbon monoxide 
dehydrogenase, the interaction with iron in hemoglobin 
for the transport of oxygen, the stimulation in the 
metabolism, the transmission of genetic code (RNA and 
DNA), and the co-ordinations in nerve impulses, muscle 
excitations and contractions via substitution of calcium 
in the process of excitation, and the involvement in the 
anchoring to membrane ligands (e.g. phosphate groups 
of phospholipids), and also regulates the formation of 
cyclic nucleotide cGMP to control various physiological 
signaling processes. Ni NMs have gained attraction for 
their higher stability and excellent optical, electronic, 
magnetic and catalytic characteristics as well as their 
existence of higher inexpensivity, non-toxicity, stable P-
type semi-conductivity with an extensive band-gap of 
3.6-4.0 eV in the usages for medical applications, 
imaging, drug delivery, diagnostics and antibiotics 
against various diseases22-26. This review provides 
mainly the biomedical applications of Ni NMs against 
infections, cancer, and inflammatory related other 
diseases to consider them as suitable nano-medicinal 
delivery system.  

 

 

Synthesis of nickel nanomaterials 

NiNMs are prepared mainly by self-assembly of small 
particles through the generation of atoms, nucleation and 
growth phenomenon utilizing chemical as well as 
biological synthesis methods via bottom-up 
approaches27-31.  

The counterions determine the solubility of the 
precursor nickel salts in the solvents and influence the 
electrostatic stabilizations, the pH modifiers, and the 
complexing agents. NiNMs may be synthesized via 
various nickel salts such as nickel chloride (NiCl2), nickel 
(II) nitrate (Ni(NO3)2), nickel (II) acetate (Ni(CH3CO2)2), 
nickel (II) oxalate (NiC2O4), nickel (II) bis 
(acetylacetonate) (Ni(C5H7O2)2), nickel (II) sulfate 
(NiSO4), nickel (II) dodecyl sulfate (Ni(DS)2), while 
various concentrations of nickel salts are utilized to 
control nucleation and growth ratio for forming the 
different shapes, sizes and morphology of the NPs32.  

Strong reducing agents such as hydrazine and NaBH4 in 
alkaline medium, medium-strength reductants such as 
polyols in various alcohols and citric acid, and weak 
reductants such as sodium hypophosphite (NaH2PO2) 
and ascorbic acid are used for the synthesis of NiNPs with 
a variety of nucleation and growth processes dependent 
on precursors’ concentrations, and variations of 
temperature and pH of the reaction mixture, while nickel 
ions (Ni2+) are reduced to  nickel atoms (Ni0) after gaining 
two electrons from the reducing agents32. 

Various stabilizing agents, including surfactants, capping 
agents and other compounds, such as cetyl-
trimethylammonium bromide (CTAB), tetra-
butylammonium bromide (TEAB), tetraethylammonium 
bromide (TBAB), tetra dodecyl ammonium bromide 
(TC12AB), sodium dodecyl sulfonate (SDS), citric acid, 
tween 40 and 80, PEG 6000, D-sorbitol, hydroxyethyl 
carboxymethyl cellulose (HECMC), sodium carboxyl 
methylcellulose (Na-CMC), trioctylphosphine (TOP), 
trioctylphosphine oxide (TOPO), and poly (vinyl 
pyrrolidone) (PVP) are employed in nickel synthesis to 
counteract van der Waals’ forces and magnetic dipole-
dipole interactions by utilizing electrostatic forces, π-π 
interactions and hydrogen bonding to inhibit the 
agglomerations and stabilize the surface charges of the 
NPs32.    

Chemical synthesis    

In the presence of alkaline medium and reducing agent-
hydrazine (N2H4), NiNPs may be synthesized through a 
complex reaction to a controlled size and morphology 
when the ratio of N2H4/Ni2+ becomes <4.5, and in the 
absence of OH-, the nickel complex may be reduced to 
metallic nickel by direct hydrazine reduction, while the 
presence of OH- in the reaction solution may produce a 
color change to gray via ligand exchange of Cl- by OH- for 
forming nickel hydroxide (Ni(OH)2) and subsequent Ni0 
NPs through the consequent color changes from gray to 
black owing to the subsequent reduction by hydrazine, 
and the production of adsorbed hydrogen atoms (H*) via 
the interaction of remaining hydrazine with OH- for 
generating electrons and water, while nuclei-formed may 
function as an active site and center for the adsorptions 
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of hydrogen atoms to capture Ni2+ from the solution32. 
NiONPs have been produced through monitoring nickel-
containing gels by utilizing chemical reagents and 
exposing gel to heat-treatment upto 1000ºC33,34. Cubic 
NiONPs have been formed through utilization of 
chemical stabilizers such as isopropanol and ethylene 
glycol, and nickel nitrate hexahydrate as a precursor, and 
also surfactant triton X-100 as detergent for avoiding 
aggregation35. NiONPs have been synthesized utilizing 
citric acid and malic acid respectively without addition of 
any reducing agent and surfactant36,37. NiONPs (25 nm) 
have been fabricated utilizing Ni(octa)2-oleylamine 
complex through thermal decomposition at 200ºC, 
where triphenyl phosphine (C18H15P) and oleylamine 
(C18H37N) have been utilized as surfactants, and the 
C18H37N has been used also as the medium as well as the 
stabilizing agent38. Hydrazine and alcohols have been 
utilized as complexing agents during the synthesis of 
NiONPs39. NiONPs have been synthesized through solvo-
thermal protocol utilizing nickel nitrate and citric acid as 
the precursor and the chelating agent, respectively40. 
NiONPs have been synthesized by chemical precipitation 
without utilization of surfactant, or stabilizing and 
capping agents41. NiONPs have been also synthesized via 
combustion by using organic fuels42.  

The synthesized NPs, carrying by-products and un-
reacted components, may be purified utilizing different 
methodologies such as centrifugations, magnetic 
separations, membrane separations (dialysis, filtrations, 
and ultra filtrations), chromatography procedures, and 
thermal treatment methods43-47.  

Biological synthesis 

Biological synthesis is a bottom-up approach utilizing 
natural stabilizing and reducing agents, such as plant 
extracts, microorganisms and biomolecules, including 
polysaccharides, amino acids, proteins, enzymes and 
vitamins to synthesize NPs48.  

Plant-mediated synthesis of nickel oxide nanoparticles  

The various plant species and their extracts as 
phytochemicals for the reduction of nickel ions from the 
solution of nickel salts have been utilized to fabricate 
NiONPs, while the polyphenols and the hydroxyl groups 
of flavonoids as well as the hydroxyl and carbonyl groups 
of amino acids act as reducing agents to stabilize the 
synthesized NPs49,50. For the preparation of NiONPs, 
plant extracts and solutions of nickel salts are admixed 
followed by heating with constant stirring. The mixture 
is spun after the completion of the reaction. The clear 
supernatant is discarded, and the deposited pellets are 
cleansed, oven-dried, and calcined to get NiONPs. 

Microbes-mediated biosynthesis of nickel oxide 
nanoparticles 

Microbial fabrications of NPs occur through either 
extracellular or intracellular approaches. Intracellular 
synthesis involves the transport of metal ions into the 
microbial cells and the formations of NPs by coenzymes, 
proteins and heterocyclic derivatives exist within the 
cells. Extracellular synthesis involves the entrapment of 
metal ions on the surface of microbial cells and the 

proteins and / or enzymes exist on the surface reduce the 
metal ions, and stabilize the synthesized NPs51,52. 
Different microbes such as bacteria, fungi, algae and 
yeasts, and various nickel salts as precursors have been 
utilized for the green synthesis of NiONPs53-59. 

Other green source-mediated synthesis of nickel oxide 
nanoparticles 

Other green environmentally benign and biodegradable 
natural substances utilizing hydroxyl, carboxyl, or 
carbonyl groups of gums, tannic acids, chitosan, amino 
acids, or polysaccharides as reducing, capping, or 
stabilizing agents, and nickel salts as precursors have 
been used for the biogenic synthesis of spherical NiONPs 
and Ag-NiO nanocomposites with their photocatalytic 
activities60-65.  

Generally, under optimal conditions (such as pH of the 
reaction medium, quantity of NPs, and reaction time), 10 
mg NPs are added to 5 mL of drug (0.1 M at pH 7) 
followed by stirring for 9 h at 25ºC in the dark. The 
sample is then spun for 10 min, and the supernatant is 
separated. The amount of drug may be determined by 
utilizing HPLC technique66. 

Functionalization of nanoparticles with 
biomolecules 

  Surface attachments of NPs with biomolecules such as 
antibodies, proteins and DNA are generally carried out 
utilizing conventional bioconjugation techniques67. 
Biomolecules may be attached to nanoparticles via either 
physical adsorption or chemical covalent coupling 
reactions68. In physical adsorption, electrostatic and 
hydrophobic interactions take place between NPs and 
biomolecules, while in covalent chemical modifications, 
functionalization of NPs takes place with amine, 
carboxyl, or sulphide groups. 

Characterizations of nickel nanomaterials   

The morphological features i.e. the sizes of the NMs are 
determined through the utilizations of atomic force 
microscope (AFM), transmission electron microscope 
(TEM), and scanning electron microscope (SEM). The 
phase purity and crystallite sizes of NiONPs are 
determined through using X-ray diffractometer (XRD). 
The reduction of Ni2+ ions in solution, and the 
interactions of drugs with NPs through their binding 
groups are monitored through using UV-VIS 
spectrophotometer, Fourier transform infrared (FT-IR) 
spectrometer, or Gas chromatography mass 
spectrometer (GC-MS). To detect the elemental 
compositions or existing elements in the NMs and also in 
their surface compositions such as stabilizing and / or 
capping agents, energy dispersive X-ray spectroscope 
(EDS) or X-ray photoelectron spectroscope (XPS) may be 
utilized. The hydrodynamic diameters of NiONPs in 
aqueous suspension as well as their polydispersity index 
(PDI) and zeta potential are investigated through 
dynamic light scattering (DLS) analysis. The thermal 
behaviors of the primary gels, and the magnetic features 
of the produced NiONPs are investigated utilizing 
thermo-gravimetric analyzer (TGA), differential thermal 
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analyzer (DTA), and vibrating sample magnetometer, 
respectively. 

Mechanisms of action of nickel nanomaterials 

Antimicrobial as well as anticancer activities of NiNMs 
are linked to nickel ion contents that interpenetrate the 
microbial or diseased cells and reach the cellular surface 
membranes and intracellular milieu. The influx of nickel 
cations destroys organelles such as ribosomes and 
affects cellular metabolisms owing to the electrostatic 
attractions of negatively charged intercellular 
membranes and positively charged nickel ions69,70. 
Owing to the higher surface activity and larger surface-
to-volume ratios of NiNMs, their exposures / direct 
contacts / adsorptions to cells may disrupt the cell 
membrane morphology and cellular transport50,71,72. 
Moreover, the higher affinity of NiNMs to phosphor and 
sulfur -containing ingredients such as proteins and DNAs 
may disrupt cellular DNA replications leading to protein 
deformations73. The killing of cell is also related to the 
generations of free radical species produced by the 
photo-excitations of NiNMs and their interactions with 
cellular components resulting in damages of cell walls 

and DNAs, formations of membrane-pores, cell cycle 
arrests, and ultimately inhibitions of cellular growths74.  

Investigators have unveiled the antimicrobial 
mechanisms of NiNMs that the reactive oxygen species 
(ROS) such as super oxides (O2.-), hydroxyl radicals (.OH) 
and hydrogen peroxides (H2O2) are generated through 
the activation of NiONPs by visible and ultraviolet light, 
while O2.- and .OH ions are unable to penetrate the cell 
membranes owing to their excessive negative charges, 
however, H2O2 can enter into the cells to induce cell death 
via the disruption of cell membrane integrity and 
damaging of DNA, mitochondria (electron transport), 
and proteins (tertiary structures) within the cells, 
associated with the formations of pores, shrinking and 
fragmentations of cell membranes72,75-78. Additionally, 
the uncoupling of ATP productions, the loss of protein 
motive forces, and the interference with the phosphate 
efflux mechanisms exposed by the interactions of 
NiONPs with thiol groups of cellular proteins may lead to 
the separation of the cell membranes from the cytoplasm 
resulting in condensation of genetic materials, loss of 
replication, or the release of intracellular components78 
(Figure 1).

  

 

Figure 1. Anti-microbial mechanisms of NiNMs (NiONPs). 

Many investigators have proposed the plausible 
anticancer mechanisms of NiONPs through the ROS-
dependent and caspase-mediated apoptosis in cancer 
cells49. The contact of NPs with the surface-membrane of 
cancer cells may trigger invaginations of NPs through 
endocytosis for generation of intracellular membrane-
bound vesicles followed by their liberations to produce 
ROS resulting in mitochondrial dysfunctions, nuclear 
damages, protein oxidations, DNA damages, decrements 

of major free radical scavengers, and cell cycle arrests, 
leading to apoptotic cellular deaths via the activations of 
caspases 3, 8 and 9, and the enhancements of the levels 
of tumor protein P53 for inhibiting growth of cancer 
cells49,79-82. Moreover, the internalization of nickel (II) 
ions into the cells may activate the calcium-dependent 
cascades to disrupt DNA repair mechanisms leading to 
apoptotic cellular killing49,83 (Figure 2).
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Figure 2. Anti-cancer mechanisms of NiNMs (NiONPs). 

 

Biomedical applications of nickel nanomaterials 

NiNMs with or without drug/s as delivery systems have 
been utilized to treat various diseases/ pathogens/ 
diseased cells such as against microbes, fungi, drug-
resistant biofilms, inflammations, cancer cells, 
leishmania parasites and diabetes.  

Antimicrobial activities   

NiONPs have been used to treat various human 
pathogenic microorganisms with substantial anti-
pathogenic outcomes49,78. NiONPs synthesized utilizing 
Aegle marmelos and Moringa oleifera leaf extracts have 
shown potential bactericidal effects towards multi-drug-
resistant Gram positive and negative bacteria with a 
variation owing to the polarity differences between their 
membranes49,71. Gram positive bacteria having excess 
positive charges and multiple layers of thicken 
peptidoglycans on their surrounding cell walls compared 
to Gram negative bacteria having a single layer of thinner 
peptidoglycan and lipopolysaccharide contents on their 
outer membranes lead to easy penetration of negatively 
charged free radicals to cause more cells damages and 
cell deaths in Gram positive than Gram negative bacteria, 
while the outer membranes of Gram negative bacteria act 
as permeability barriers to reduce the entry of ROS into 
the cells84-86. 

The antibacterial and antibiofilm activities of 
biosynthesized NiONPs with or without drugs such as 
chloramphenicol and gentamicin, and the exposure of UV 
illumination towards S. aureus, P. aeruginosa, E. coli, B. 
subtilis, K. pneumonia, E. faecalis, A. baumannii and S. 
typhi have exhibited shrinking, fragmentation, and 
disorganization of outer surfaces including the formation 
of gaps and pits, and higher zones of bacterial growth 
inhibitions evaluated on agar plates50,74,76-78,87-90.  

Antifungal activities 

The antifungal activities of biosynthesized NiONPs 
utilizing Rhamnus virgata, Rhamnus triquetra and 
Sageretia thea leaf extracts against various pathogenic 
fungal strains such as A. flavus, R. solani, M. racemosus, A. 
niger, C. albicans, and F. solani have exhibited their 
various levels of growth inhibition rates correlated with 
ROS-produced mitochondria and DNA damages in the 
dose-dependent manners75,77,88. The antifungal 
applications of the biosynthesized NiONPs@C-dots 
against C. albicans fungus strain have shown their higher 
inhibition zones compared to NiONPs74. 

Anti-inflammatory activities 

The ROS-induced TNFα and NFkB activations, the 
secretions of pro-inflammatory cytokines, and the over-
expressions of adhesion molecules by the endothelial 
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cells lead to endothelium dysfunctions and chronic 
inflammatory atherosclerosis31,91. The applications of 
biosynthesized NiNPs with Aegle marmelos correa (AmC) 
accompanied by β-sitosterol have shown their 
synergistic anti-inflammatory activities through the 
elimination of free-radical oxidants in extracellular 
regions through H-atom donations and the supporting 
proliferations of lymphocytes to enhance the cytotoxic 
efficiency of natural killer cells92.  

Anti-cancer activities 

The various concentrations of NiONPs (500-3.9 µg/mL) 
synthesized with Geranium wallichianum plant extract 
have shown their anticancer activities exposed on human 
hepatocarcinoma (HepG2) cells for 24 h as the dose-
dependent inhibitions of cancerous cells50. Fabricated 
NiONPs utilizing Andrographis paniculata leaf extract 
have exhibited the concentration-dependent inhibitions 
against human breast cancer cells (MCF-7)93. NiONPs 
synthesized with Moringa oleifera have shown higher 
toxicity and gradual decrement in cell viability through 
ROS-generated mitochondrial dysfunctions towards 
human colorectal adrenocarcinoma (HT-29) cells in a 
dose-dependent manner71. The NiONPs synthesized with 
Euphorbia heterophylla leaf extracts have exhibited the 
dose-dependent anticancer activities against human lung 
cancer cells (A549), and HepG2 cells94. NiONPs 
orchestrated with Rhamnus virgata leaf extracts have 
shown their anticancer potentiality towards HepG2 cells 
in the dose-dependent manners75. Biosynthesized 
NiONPs utilizing Abutilon indicum leaf extracts have 
shown their anticancer activities against cervical cancer 
cells (HeLa)48. NiONPs fabricated Salvia macrosiphon 
extracts have exhibited the concentration-dependent 
cytotoxicity towards Neuro 2A cells, while the liberation 
of nickel (II) ions inside the cells results in cell death95. 
NiONPs fabricated utilizing egg white have exhibited 
significant toxicity against gliobastoma cancer cells 
(U87MG)65. Biosynthesized NiONPs utilizing Calendula 
officinalis extracts have exhibited their anticancer 
efficacies towards esophageal carcinoma cells (FLO-1, 
ESO26, OE33, and KYSE-270096. 

Anti-leishmanial activities 

Bio-synthesized NiONPs utilizing Geranium 
wallichianum, Rhamnus virgata, Rhamnus triquetra and 
Sageretia thea extracts against amastigotes and 
promastigotes cultures of Leishmania have exhibited 
dose-dependent anti-leishmanial activities suppressing 
the leishmanial growths50,75,77,88.   

Anti-diabetic activities  

NiONPs fabricated with Averrhoa bilimbi and Arcea 
catechu leaf extracts have shown their potential anti-
diabetic activities on α-amylase inhibitory efficacies, and 
also higher anti-diabetic activities than metformin97,98.  

Toxicity 

The accumulations of Ni at intracellular targeted zones 
lead to free radicals-induced inflammations, damages of 
different cell structures including proteins, lipids, nucleic 
acids, and membranes, resulting in apoptosis and 
cytotoxicity at high exposure levels of NiNMs (mainly NiO 

and Ni(OH)2 NPs) affecting the various levels of toxicities 
generated in the biological systems99-101. 

Acute and chronic exposures of NiNMs may induce lung 
inflammations characterized by delayed type-
hypersensitivity (DTH), pulmonary alveolar proteinosis 
(PAP), lymphocytic foci, epithelial proliferation, 
granulocytic infiltration, enhanced levels of lactate 
dehydrogenase (LDH), 8-hydroxy-2ʹ-deoxyguanosine (8-
OHdG), total polymorpho nuclear leukocytes (PMNs), γ-
gutamyl transferase, amylase, alkaline phosphatase and 
aspartate amino transferase102-105.  

The cardiovascular toxicity may appear by the exposures 
of NiNMs at high concentrations characterized by 
inflammations, contractile and Vaso-relaxation 
responses, enhanced population of bone marrow and 
circulating endothelial / progenitor cells, down-
regulated MCP-1 levels in the aorta correlated with 
diminished chemotaxis signaling, down-regulated 
transferrin, up-regulated Ccl-2, IL-6 and HO-1, 
mitochondrial DNA damage in aorta, and enhanced 
plaque lesions, Vcam-1 and Cd68 levels in the aorta106-109. 

The acute / chronic exposures of NiO and Ni(OH)2 NPs in 
various dose and time -dependent manners have shown 
the damages of systemic organs (such as liver, spleen, 
kidney, lung, heart, aorta, stomach and brain) through 
changes of biochemical, functional and histopathological 
indices in animals administered via intra-tracheal 
instillations, inhalations, intra-peritoneal injections or 
oral gavages. Various authors have reported significant 
enhancements in liver weight and lactate 
dehydrogenase, leukocytosis, systemic inhibitions of the 
oxidation-reduction energy metabolisms, increased lipid 
peroxidation, stimulation of erythropoiesis (elevated 
hemoglobin contents, erythrocytes count, reticulocytes 
and hematocrits), increased numbers of akaryotic and bi-
nucleated hepatocytes, and kupffer cells, cellular edema, 
disappearance of hepatic sinus, spleens growing 
increased diameters of the follicles, and kidneys growing 
brush border loss in proximal tubules, up-regulated HO-
1, SAP, Ccl-2 and IL-6 mRNA levels, up-regulated TNF-α 
levels, decreased GSH levels, enhanced glutathione-S-
transferase and catalase activities, significant 
decrements in total antioxidant capacity and increments 
in MDA levels, including hyperemia, gliosis, necrosis and 
spongy changes in brain105,109-118. 

The exposures of NiONPs at various dose and time 
dependent manners have shown their genotoxicity and 
carcinogenicity related to increased DNA fragmentations 
in circulating nucleated blood cells, enhancement in % 
tail DNA in peripheral blood leukocytes, kidney and 
hepatic cells, increment in polychromatic erythrocytes 
micronuclei and chromosomal aberrations in bone 
marrow cells105,112,119. 

The administrations of NiONPs (200 mg/kg/day) daily 
through oral gavage for 28 days have exhibited no 
mortality to rats except a few symptoms such as 
irritation, dullness and distress114. 
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Biodistribution and elimination   

The accumulations / eliminations of NiNMs in / from 
different systemic organs and blood depend on the 
various routes of exposures (such as intratracheal 
instillation, inhalation, intravenous, intraperitoneal, 
subcutaneous, and oral) and assay variables such as 
species, methodology, time, dose, chemical / green / 
biological synthesized forms, shapes and sizes of NPs. 
The intratracheal instillations of spherical / irregular 
shaped NiONPs (0.67- 6.0 mg/kg) to rats have shown the 
higher NiO accumulations in most of the thoracic lymph 
nodes and liver120. The oral administrations of NiONPs 
(125-500 mg/kg) to rats have exhibited accumulations of 
Ni more in liver followed by the brain, kidney and 
spleen113. In general, endocytosed NPs are processed and 
broken within the phago-lysosomal compartments and 
eliminated through hepato-pancreatic biliary system and 
the small intestine as fecal clearances, while non-
decomposed larger NPs (>6 nm) are sequestered chiefly 
in the liver and spleen for a few months or excreted 
through the glomeruli bed (<5 nm)1. 

Conclusions and future perspectives 

As NiNMs having toxic features to eukaryotic cells at high 
level and their chemical synthesized forms carrying toxic 
impurities, eco-friendly green synthesized NiNMs 
encapsulated / functionalized with ligand-binding 
cargo/s may be suitable approach to overcome these 
obstacles as well as non-specificity and drug-resistance 
as targeted delivery system owing to their high surface-
to-mass ratio, capability of adsorbing and transporting 
additional compounds121. In this context, the 
explorations of the proper optimizations of the 
synthesized delivery formulations, functionalization, 
characterizations with or without ligands and cargos, 
repeated batch-to-batch uniformed large scale 
productions of the NiNMs along with their interactions 
with biomolecules are needed before applications to 
avail higher therapeutic efficiencies against diseases. 
Additionally, a thorough investigation regarding their 
cytotoxicity, immune responses, biodistributions, 
pharmacokinetics and eliminations, and routes of 
administration is required for achieving maximal 
therapeutic efficacies of NiNMs for considering them as 
suitable delivery system as well as nanomedicine before 
clinical translation against diseases. 
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