Cobalt nanomaterials as a delivery system in combating infectious diseases and cancer

Authors

  • Ardhendu Kumar Mandal Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India https://orcid.org/0000-0001-8336-1220
  • Anirban Mandal Software Development Division, Microsoft India (R&D) Private Limited, Bangalore, India

Abstract

Infectious diseases and cancer possessing the most serious public health hazards throughout the world require the developments of more effective strategies to control them. The conventional therapies such as chemotherapy and radiotherapy have been restricted with their side effects and low efficiency such as insolubility, toxicity, non-specificity, drug resistance and other biological barriers urging for new technologies with more suitable therapeutic efficacies. Cobalt, the essential ultra-trace component, is involved in the metabolism of various organisms owing to its pivotal role in cobalamin (vitamin B12). Cobalt nanomaterials (CoNMs) such as cobalt nanoparticles  (CoNPs) and cobalt oxide nanoparticles (CoO, Co2O3, Co3O4 NPs) have attracted attention not only for their nano-sizes, high surface area to volume ratios, intrinsic spinel crystal structures, photochemical, catalytic and bio-imaging features, ferromagnetic, antimicrobial and anticancer activities but also for their low synthesized costs, hypo-toxicity, photothermal conversion and high drug loading capabilities against anticancer and anti-infection treatments. Their surface-modifications with ligands/coatings and cargos may enhance their therapeutic efficiencies as nano-medicinal delivery system against diseases. This review demonstrates mainly the synthesis of CoNMs and their surface functionalization, characterizations, mechanisms of action, biomedical applications, toxicity, and elimination to consider them as future suitable nano-medicinal delivery system in combating infectious diseases and cancer.

Keywords: Infectious diseases and cancer; Cobalt nanomaterials; Delivery system; Therapeutic efficacies

Keywords:

Infectious diseases and cancer, Cobalt nanomaterials, Delivery system, Therapeutic efficacies

DOI

https://doi.org/10.22270/jddt.v15i12.7467

Author Biographies

Ardhendu Kumar Mandal , Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India

Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India

Anirban Mandal , Software Development Division, Microsoft India (R&D) Private Limited, Bangalore, India

Software Development Division, Microsoft India (R&D) Private Limited, Bangalore, India

References

1. Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020; 10:107. https://doi.org/10.3389/fcimb.2020.00107 PMid:32257966 PMCid:PMC7089872

2. Kim SK, Cho SW. The evation mechanisms of cancer immunity and drug invention in the tumor microenvironment. Front Pharmacol. 2022; 13:868695. https://doi.org/10.3389/fphar.2022.868695 PMid:35685630 PMCid:PMC9171538

3. Kollef MH, Shorr AF, Bassetti M, Timsit JF, Micek ST, Michelson AP, et al. Timing of antibiotic therapy in the ICU. Crit Care. 2021; 25:360. https://doi.org/10.1186/s13054-021-03787-z PMid:34654462 PMCid:PMC8518273

4. Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2017; 10:369-78. https://doi.org/10.1016/j.jiph.2016.08.007 PMid:27616769

5. Fang W, Su D, Lu W, Wang N, Mao R, Chen Y, et al. Application and future prospect of extracellular matrix targeted nanomaterials in tumor theranostics. Curr Drug Targets. 2021; 22:913-21. https://doi.org/10.2174/1389450122666210127100430 PMid:33504304

6. Gao Y, Gao J, Mu G, Zhang Y, Huang F, Zhang W, et al. Selectivity enhancing radiosensitivity of cancer cells via in situ enzyme-instructed peptide self-assembly. Acta Pharm Sin B. 2020; 10:2374-83. https://doi.org/10.1016/j.apsb.2020.07.022 PMid:33354508 PMCid:PMC7745053

7. Sanbrani R, Abdolalizadeh J, Kohan L, Jafari B. Recent advances in the application of probiotic yeasts, particularly Saccharomyces, as an adjuvant therapy in the management of cancer with focus on colorectal cancer. Mol Biol Rep. 2021; 48:951-60. https://doi.org/10.1007/s11033-020-06110-1 PMid:33389533 PMCid:PMC7778720

8. Jasinki M, Basak GW, Jedrzejczak WW. Perspectives for the use of CAR-T cells for the treatment of multiple myeloma. Front Immunol. 2021; 12:632937. https://doi.org/10.3389/fimmu.2021.632937 PMid:33717171 PMCid:PMC7943463

9. Zhang J, Zhang Y, Qu B, Yang H, Hu S, Dong X. If small molecules immunotherapy comes, can the prime be far behind? Eur J Med Chem. 2021; 218:113356. https://doi.org/10.1016/j.ejmech.2021.113356 PMid:33773287

10. Leyssens L, Vinck B, VanDer Straeten C, Wuyts F, Maes L. Cobalt toxicity in humans-A review of the potential sources and systemic health effects. Toxicol. 2017; 387:43-56. https://doi.org/10.1016/j.tox.2017.05.015 PMid:28572025

11. Gonzalez-Montana JR, Escalera-Valente F, Alonso AJ, Lomillos JM, Robles R, Alonso ME. Relationship between vitamin B12 and cobalt metabolism in domestic ruminant: An update. Animals. 2020; 10:1855. https://doi.org/10.3390/ani10101855 PMid:33053716 PMCid:PMC7601760

12. Wang Z, Yan Y, Wang Y, Su Y, Qiao L. Life cycle of cobalt-based alloy for artificial joints: From bulk material to nanoparticles and ions due to bio-tribocorrosion. J Mater Sci Technol. 2020; 46:98-106. https://doi.org/10.1016/j.jmst.2019.12.010

13. Moradpoor H, Safaei M, Rezaei F, Golshah A, Jamshidy L, Hatam R, et al. Optimization of cobalt oxide nanoparticles synthesis as bactericidal agents. Open Access Maced J Med Sci. 2019; 7:2757-62. https://doi.org/10.3889/oamjms.2019.747 PMid:31844432 PMCid:PMC6901869

14. Rabani I, Yoo J, Kim HS, Lam DV, Hussain S, Karuppasamy K, et al. Highly dispersive Co3O4 nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor. Nanoscale. 2021; 13:355-70. https://doi.org/10.1039/D0NR06982E PMid:33346306

15. Zhang J, Qian B, Sun S, Tao S, Chu W, Wu D, et al. Ultrafine Co3O4 nanoparticles within nitrogen-doped carbon matrix derived from metal-organic complex for boosting lithium storage and oxygen evolution reaction. Small. 2019; 15:e1904260. https://doi.org/10.1002/smll.201904260 PMid:31565859

16. Wang L, Deng J, Lou Z, Zhang T. Nanoparticles-assembled Co3O4 nanorods p-type nanomaterials: One-pot synthesis and toluene-sensing properties. Sens Actuators B Chem. 2014; 201:1-6. https://doi.org/10.1016/j.snb.2014.04.074

17. Abbasi BA, Iqbal J, Khan Z, Ahmad R, Uddin S, Shahbaz A, et al. Phytofabrication of cobalt oxide nanoparticles from Rhamnus virgata leaves extract and investigation of different bioactivities. Microsc Res Tech. 2021; 84:192-201. https://doi.org/10.1002/jemt.23577 PMid:33332709

18. Khan S, Ansari AA, Khan AA, Ahmad R, Al-Obaid O, Al-Katlan W. In vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles. J Biol Inorg Chem. 2015; 20:1319-26. https://doi.org/10.1007/s00775-015-1310-2 PMid:26563952

19. Huang X, Cai H, Zhou H, Li T, Jin H, Evans CE, et al. Cobalt oxide nanoparticle-synergized protein degradation and phototherapy for enhanced anticancer therapeutics. Acta Biomater. 2021; 121:605-20. https://doi.org/10.1016/j.actbio.2020.11.036 PMid:33259958

20. Jarestan M, Khalatbari K, Pouraei A, Sadat Shandiz SA, Beigi S, Hedayati M, et al. Preparation, characterization, and anticancer efficacy of novel cobalt oxide nanoparticles conjugated with thiosemicarbazide. Biotech. 2020; 10:230. https://doi.org/10.1007/s13205-020-02230-4 PMid:32399380 PMCid:PMC7200957

21. Alarifi S, Ali D, Y AO, Ahamed M, Siddiqui MA, Al-Khedhairy AA. Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells. Int J Nanomed. 2013; 8:189-99. https://doi.org/10.2147/IJN.S37924 PMid:23326189 PMCid:PMC3544340

22. Chattopadhyay S, Chakraborty SP, Laha D, Baral R, Pramanik P, Roy S. Surface-modified cobalt oxide nanoparticles: New opportunities for anti-cancer drug development. Cancer Nanotechnol. 2012; 3:13-23. https://doi.org/10.1007/s12645-012-0026-z PMid:26069493 PMCid:PMC4452042

23. Javed KR, Ahmad M, Ali S, Butt MZ, Nafees M, Butt AR, et al. Comparison of doxorubicin anticancer drug loading on different metal oxide nanoparticles. Medicine. 2015; 94:e617. https://doi.org/10.1097/MD.0000000000000617 PMid:25789952 PMCid:PMC4602492

24. Chattopadhyay S, Dash SK, Ghosh T, Das S, Tripathy S, Mandal D, et al. Anticancer and immunostimulatory role of encapsulated tumor antigen containing cobalt oxide nanoparticles. J Biol Inorg Chem. 2013; 18:957-73. https://doi.org/10.1007/s00775-013-1044-y PMid:24043470

25. Lin WC, Chuang CC, Chang CJ, Chiu YH, Yan M, Tang CM. The effect of electrode topography on the magnetic properties and MRI application of electrochemically-deposited, synthesized, cobalt-substituted hydroxyapatite. Nanomater. 2019; 9(2):200. https://doi.org/10.3390/nano9020200 PMid:30717496 PMCid:PMC6409796

26. Lin W, Chuang C, Yao C, Tang C. Effect of cobalt precursors on cobalt-hydroxy-apatite used in bone regeneration and MRI. J Dent Res. 2020; 0022034519897006. https://doi.org/10.1177/0022034519897006 PMid:31905313

27. Wang G, Ma Y, Wei Z, Qi M. Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery. Chem Eng J. 2016; 289:150-60. https://doi.org/10.1016/j.cej.2015.12.072

28. Dey C, Baishya K, Ghosh A, Goswami MM, Ghosh A, Mandal K. Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles. J Magn Magn Mater. 2017; 427:168-74. https://doi.org/10.1016/j.jmmm.2016.11.024

29. Zhu H, Deng J, Yang Y, Li Y, Shi J, Zhao J, et al. Cobalt nanowire-based multifunctional platform for targeted chemo-photothermal synergistic cancer therapy. Colloids Surf B Biointerf. 2019; 180:401-10. https://doi.org/10.1016/j.colsurfb.2019.05.005 PMid:31082778

30. Zhu H, Deng J, Yang Z, Deng Y, Yang W, Shi XL, et al. Facile synthesis and characterization of multifunctional cobalt-based nanocomposites for targeted chemo-photothermal synergistic cancer therapy. Compos B Eng. 2019; 178:107521. https://doi.org/10.1016/j.compositesb.2019.107521

31. Shouheng S, Murray CB. Synthesis of nanodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J Appl Phys. 1999; 85:4325-30. https://doi.org/10.1063/1.370357

32. Mandal AK, Mandal A. Quantum dots as theranostic nanodelivery system in combating various diseases. J Drug Deliv Therapeut. 2024; 14(9):137-50. https://doi.org/10.22270/jddt.v14i9.6766

33. Mandal AK. Platinum nanoparticles as delivery system in combating various diseases. J Drug Deliv Therapeut. 2024; 14(7):101-15. https://doi.org/10.22270/jddt.v14i7.6644

34. Esa YA, Sapawe N. A short review on biosynthesis of cobalt metal nanoparticles. Mater Today Proc. 2020; 31:378-85. https://doi.org/10.1016/j.matpr.2020.07.183

35. Vishwanath R, Negi B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Curr Res Green Sustain Chem. 2021; 4:100205. https://doi.org/10.1016/j.crgsc.2021.100205

36. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol. 2019; 53:101174. https://doi.org/10.1016/j.jddst.2019.101174

37. Vijayanandan AS, Balakrishnan RM. Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. J Environ Manag. 2018; 218:442-50. https://doi.org/10.1016/j.jenvman.2018.04.032 PMid:29709813

38. Khusnuriyalova A, Caporali M, Hey-Hawkins E, Sinyashin O, Yakhvarov D. Preparation of cobalt nanoparticles. Eur J Inorg Chem. 2021; 2021:3023-47.

https://doi.org/10.1002/ejic.202100367

39. Tripathi D, Modi A, Narayan G, Rai SP. Green and cost-effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater Sci Eng C Mater Biol Appl. 2019; 100:152-64. https://doi.org/10.1016/j.msec.2019.02.113 PMid:30948049

40. Iravani S, Varma R. Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications. Green Chem. 2020; 22:2643-61. https://doi.org/10.1039/D0GC00885K

41. Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, et al. Green-nanotechnology: A review on green synthesis of silver nanoparticles-An ecofriendly approach. Int J Nanomed. 2019; 14:5087-107. https://doi.org/10.2147/IJN.S200254 PMid:31371949 PMCid:PMC6636611

42. Singh AK. A review on plant extract-based route for synthesis of cobalt nanoparticles: Photocatalytic, electrochemical sensing and antibacterial applications. Curr Res Green Sustain Chem. 2022; 5:100270. https://doi.org/10.1016/j.crgsc.2022.100270

43. Krishna PG, Chandra Mishra P, Naika MM, Gadewar M, Ananthaswamy PP, Rao S, et al. Photocatalytic activity induced by metal nanoparticles synthesized by sustainable approaches: A comprehensive review: Front Chem. 2022; 10:917831. https://doi.org/10.3389/fchem.2022.917831 PMid:36118313 PMCid:PMC9479337

44. Sheta RC, Fernandes PR, Borhade BR, Pawar AA, Sonawane MC, Warude NS. Review of cobalt oxide nanoparticles: Green synthesis, biomedical applications, and toxicity studies. J Chem Rev. 2022; 4(4):331-45.

45. Vodyashkin AA, Kezimana P, Prokonov FY, Vasilenko IA, Stanishevskiy YM. Current methods for synthesis and potential applications of cobalt nanoparticles: A review. Crystals. 2022; 12:272. https://doi.org/10.3390/cryst12020272

46. Mariano A, Pastoriza-Gallego MJ, Lugo L, Mussari L, Pineiro MM. Co3O4 ethylene glycol-based nanofluids: Thermal conductivity, viscosity and high-pressure density. Int J Heat Mass Transfer. 2015; 85:54-60. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.061

47. Kharade S, Nikam G, Mane-Gavade S, Patil S, Gaikwad K. Biogenic synthesis of cobalt nanoparticles using Hibiscus cannabinus leaf extract and their antibacterial activity. Res J Chem Environ. 2020; 24:9-13.

48. Abass AA, Abdulridha WAM, Alaarage WK, Abdulrudha NH, Haider J. Evaluating the antibacterial effect of cobalt nanoparticles against multi drug-resistant pathogens. J Med Life. 2021; 14:823-33. https://doi.org/10.25122/jml-2021-0270 PMid:35126754 PMCid:PMC8811680

49. Tanvir F, Yaqub A, Tanvir S, Anderson WA. Poly-L-arginine coated silver nanoprisms and their anti-bacterial properties. Nanomater. 2017; 7:296. https://doi.org/10.3390/nano7100296 PMid:28953233 PMCid:PMC5666461

50. Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Kamal MA, et al. A review on nano-antimicrobials: Metal nanoparticles, methods and mechanisms. Curr Drug Metab. 2017; 18:120-8. https://doi.org/10.2174/1389200217666161201111146 PMid:27908256

51. Rauwel E, Al-Arag S, Salehi H, Amorim CO, Cuisinier F, Guha M, et al. Assessing cobalt metal nanoparticles uptake by cancer cells using Live Raman Spectroscopy. Int J Nanomed. 2020; 15:7051-62. https://doi.org/10.2147/IJN.S258060 PMid:33061367 PMCid:PMC7522600

52. Andleeb A, Andleeb A, Asghar S, Zaman G, Tariq M, Mehmood A, et al. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers. 2021; 13:2818. https://doi.org/10.3390/cancers13112818 PMid:34198769 PMCid:PMC8201057

53. Zhao J, Liu Y, Sun J, Zhu H, Chen Y, Dong T, et al. Magnetic targeting cobalt nanowire-based multi-functional therapeutic system for anticancer treatment and angiogenesis. Colloids Surf B Biointerf. 2020; 194:111217. https://doi.org/10.1016/j.colsurfb.2020.111217 PMid:32622255

54. Akhtar MJ, Ahamed M, Alhadlar HA, Alshamsan A. Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells. Toxicol Vitr. 2017; 40:94-101. https://doi.org/10.1016/j.tiv.2016.12.012 PMid:28024936

55. Hafeez M, Shaheen R, Akram B, Zain-ul A, Haq S, Mahsud S, et al. Green-synthesis of cobalt oxide nanoparticles for potential biological applications. Mater Res Express. 2020; 7:025019. https://doi.org/10.1088/2053-1591/ab70dd

56. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, et al. Nano-strategies to fight multidrug resistant bacteria - "A battle of the Titans". Front Microbiol. 2018; 9:1441. https://doi.org/10.3389/fmicb.2018.01441 PMid:30013539 PMCid:PMC6036605

57. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019; 111:802-12. https://doi.org/10.1016/j.biopha.2018.12.146 PMid:30616079

58. Horvat S. Development of nanocarriers for treatment and diagnostics of Aspergillosis. Doctoral Thesis. Universitat Wurzburg, Wurzburg, Germany. 2021.

59. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2):71-9. https://doi.org/10.1016/j.jpha.2015.11.005 PMid:29403965 PMCid:PMC5762448

60. Gurunathan S, Qasim M, Choi Y, Do JT, Park C, Hong K, et al. Antiviral potential of nanoparticles - Can nanoparticles fight against coronaviruses? Nanomater. 2020; 10:1645. https://doi.org/10.3390/nano10091645 PMid:32825737 PMCid:PMC7557932

61. DeLong RK, Swanson R, Niederwerder MC, Khanal P, Aryal S, Marasini R, et al. Zn-based physimetacomposite nanoparticles: Distribution, tolerance, imaging, and antiviral and anticancer activity. Nanomed. 2021; 16:1857-72. https://doi.org/10.2217/nnm-2021-0179 PMid:34282923

62. Kevadiya BD, Woldstad C, Ottemann BM, Dash P, Sajja BR, Lamberty B, et al. Multimodal theranostic nanoformulations permit magnetic resonance bioimaging of antiretroviral drug particle tissue-cell biodistribution. Theranostics. 2018; 8:256-76. https://doi.org/10.7150/thno.22764 PMid:29290806 PMCid:PMC5743473

63. Waris A, Din M, Ali A, Afridi S, Baset A, Khan AU, et al. Green-fabrication of Co and Co3O4 -nanoparticles and their biomedical applications: A review. Open Life Sci. 2021; 16:14-30. https://doi.org/10.1515/biol-2021-0003 PMid:33817294 PMCid:PMC7968533

64. Al-Fakeh MS, Alsaedi RO. Synthesis, characterization, and antimicrobial activity of CoO nanoparticles from a Co(II) complex derived from polyvinyl alcohol and aminobenzoic acid derivative. Sci World J. 2021; 2021:6625216. https://doi.org/10.1155/2021/6625216 PMid:33994882 PMCid:PMC8096567

65. Sharma P, Sharma A, Sharma M, Bhalla N, Estrela P, Jain A, et al. Nanomaterial fungicides: In vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Glob Chall. 2017; 1:1700041. https://doi.org/10.1002/gch2.201700041 PMid:31565296 PMCid:PMC6607179

66. Rehman S, Almessiere MA, Al-Jameel SS, Ali U, Slimani Y, Tashkandi N, et al. Designing of Co0.5Ni0.5GaxFe2-xO4 (0.0≤x≤1.0) microspheres via hydrothermal approach and their selective inhibition on the growth of cancerous and fungal cells. Pharmaceut. 2021; 13:962. https://doi.org/10.3390/pharmaceutics13070962 PMid:34206751 PMCid:PMC8309058

67. El-Sayed ER, Abdelhakim HK, Zakaria Z. Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: Yield enhancement by gamma irradiation. Mater Sci Eng C Mater Biol Appl. 2020; 107:110318. https://doi.org/10.1016/j.msec.2019.110318 PMid:31761250

68. Fierascu I, Fierascu IC, Brazdis RI, Baroi AM, Fistos T, Fierascu RC. Phytosynthesized metallic nanoparticles - between nanomedicine and toxicology. A brief review of 2019's findings. Mater. 2020; 13:574. https://doi.org/10.3390/ma13030574 PMid:31991830 PMCid:PMC7040630

69. Hasan M, Zafar A, Shahzadi I, Luo F, Hassan SG, Tariq T, et al. Fractionation of biomolecules in Withania coagulans extract for bioreductive nanoparticle synthesis, antifungal and biofilm activity. Molecules. 2020; 25:3478. https://doi.org/10.3390/molecules25153478 PMid:32751780 PMCid:PMC7435783

70. Thamilarasan V, Sengottuvelan N, Sudha A, Srinivasan P, Chakkaravarthi G. Cobalt (III) complexes as potential anticancer agents: Physicochemical, structural, cytotoxic activity and DNA/protein interactions. J Photochem Photobiol B. 2016; 162:558-69. https://doi.org/10.1016/j.jphotobiol.2016.06.024 PMid:27475779

71. Chattopadhyay S, Dash SK, Tripathy S, Pramanik P, Roy S. Phosphonomethyl iminodiacetic acid-conjugated cobalt oxide nanoparticles liberate Co(++) ion-induced stress associated activation of TNF-alpha/p38 MAPK/caspase 8-caspase 3 signaling in human leukemia cells. J Biol Inorg Chem. 2015; 20:123-41. https://doi.org/10.1007/s00775-014-1221-7 PMid:25534662

72. Fishman MA. Th1/Th2 differentiation and cross-regulation. Bull Math Biol. 1999; 61:403-36. https://doi.org/10.1006/bulm.1998.0074 PMid:17883225

73. Chattopadhyay S, Dash SK, Kar Mahapatra S, Tripathy S, Ghosh T, Das B, et al. Chitosan-modified cobalt oxide nanoparticles stimulate TNF-alpha-mediated apoptosis in human leukemic cells. J Biol Inorg Chem. 2014; 19:399-414. https://doi.org/10.1007/s00775-013-1085-2 PMid:24445996

74. Arsalan N, Hassan Kashi E, Hasan A, Edalat Doost M, Rasti B, Ahamad Paray B, et al. Exploring the interaction of cobalt oxide nanoparticles with albumin, leukemia cancer cells and pathogenic bacteria by multi-spectroscopic, docking, cellular and antibacterial approaches. Int J Nanomed. 2020; 15:4607-23. https://doi.org/10.2147/IJN.S257711 PMid:32636621 PMCid:PMC7328876

75. Bejarbaneh M, Moradi-Shoeili Z, Jalali A, Salehzadeh A. Synthesis of cobalt hydroxide nano-flakes functionalized with glutamic acid and conjugated with thiosemicarbazide for anticancer activities against human breast cancer cells. Biol Trace Elem Res. 2020; 198:98-108. https://doi.org/10.1007/s12011-020-02049-3 PMid:31983053

76. Tombuloglu H, Khan FA, Almessiere MA, Aldakheel S, Baykal A. Synthesis of niobium substituted cobalt-nickel nanoferrite (Co0.5Ni0.5NbxFe2-xO4 (x≤0.1)) by hydrothermal approach show strong anti-colon cancer activities. J Biomol Struct Dyn. 2021; 39:2257-65. https://doi.org/10.1080/07391102.2020.1748719 PMid:32241211

77. Raeisi M, Alijani HQ, Peydayesh M, Khatami M, Baravati FB, Borhani F, et al. Magnetic cobalt oxide nanosheets: Green synthesis and in vitro cytotoxicity. Bioprocess Biosyst Eng. 2021; 44:1423-32. https://doi.org/10.1007/s00449-021-02518-6 PMid:33709297

78. Verma SK, Panda PK, Kumari P, Patel P, Arunima A, Jha E, et al. Determining factors for the nano-biocompatibility of cobalt oxide nanoparticles: Proximal discrepancy in intrinsic atomic interactions at differential vicinage. Green Chem. 2021; 23:3439-58. https://doi.org/10.1039/D1GC00571E

79. Kgosiemang IK, Lefojane R, Direko P, Madlanga Z, Mashele S, Sekhoacha M. Green synthesis of magnesium and cobalt oxide nanoparticles using Euphorbia tirucalli: Characterization and potential application for breast cancer inhibition. Inorg Nano-Metal Chem. 2020; 50:1070-80. https://doi.org/10.1080/24701556.2020.1735422

80. Maghsoudi S, Mohammadi A. Reduced grapheme oxide nanosheets decorated with cobalt oxide nanoparticles: A nonenzymatic electrochemical approach for glucose detection. Synth Met. 2020; 269:116543. https://doi.org/10.1016/j.synthmet.2020.116543

81. Ren Q, Yang K, Zou R, Wan Z, Shen Z, Wu G, et al. Biodegradable hollow manganese/cobalt oxide nanoparticles for tumor theranostics. Nanoscale. 2019; 11:23021-6. https://doi.org/10.1039/C9NR07725A PMid:31774090

82. Li Z, Hu S, Liu J, Hu Y, Chen L, Jiang T, et al. Cobalt phosphide nanoparticles applied as a theranostic agent for multimodal imaging and anticancer photothermal therapy. Part Part Syst Charact. 2018; 35:1800127. https://doi.org/10.1002/ppsc.201800127

83. Li Z, Li Z, Chen L, Hu Y, Hu S, Miao Z, et al. Polyethylene glycol-modified cobalt sulfide nanosheets for high-performance photothermal conversion and photoacoustic/magnetic resonance imaging. Nano Res. 2018; 11:2436-49. https://doi.org/10.1007/s12274-017-1865-z

84. Dhawan U, Tseng CL, Wang HY, Hsu SY, Tsai MT, Chung RJ. Assessing suitability of Co@Au core/shell nanoparticle geometry for improved theranostics in colon carcinoma. Nanomater. 2021; 11:2048. https://doi.org/10.3390/nano11082048 PMid:34443879 PMCid:PMC8401835

85. Ravichandran M, Oza G, Velumani S, Ramirez JT, Garcia-Sierra F, Andrade NB, et al. Plasmonic/magnetic multifunctional nanoplatform for cancer theranostics. Sci Rep. 2016; 6:34874. https://doi.org/10.1038/srep34874 PMid:27721391 PMCid:PMC5056510

86. Tian J, Zhu H, Chen J, Zheng XT, Duan H, Pu K, et al. Cobalt phosphide double-shelled nanocages: Broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing. Small. 2017; 13:1700798. https://doi.org/10.1002/smll.201700798 PMid:28445007

87. Cavallo D, Ciervo A, Fresegna AM, Maiello R, Tassone P, Buresti G, et al. Investigation on cobalt-oxide nanoparticles cyto-genotoxicity and inflammatory response in two types of respiratory cells. J Appl Toxicol. 2015; 35:1102-13. https://doi.org/10.1002/jat.3133 PMid:25772588

88. Renfrew AK, O'Neill ES, Hambley T, New EJ. Harnessing the properties of cobalt coordination complexes for biological application. Coord Chem Rev. 2018; 375:221-33. https://doi.org/10.1016/j.ccr.2017.11.027

89. Chamaon K, Schonfeld P, Awiszus F, Bertrand J, Lohmann CH. Ionic cobalt but not metal particles induces ROS generation in immune cells in vitro. J Biomed Mater Res B Appl Biomater. 2019; 107:1246-53. https://doi.org/10.1002/jbm.b.34217 PMid:30261124

90. Wan R, Mo Y, Zhang Z, Jiang M, Tong S, Zhang Q. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol. 2017; 14:38. https://doi.org/10.1186/s12989-017-0219-z PMid:28923112 PMCid:PMC5604172

91. Kim SH, Lee JH, Jung K, Yang JY, Shin HS, Lee JP, et al. Copper and cobalt ions released from metal oxide nanoparticles trigger skin sensitization. Front Pharmacol. 2021; 12:627781. https://doi.org/10.3389/fphar.2021.627781 PMid:33679407 PMCid:PMC7933575

92. Gupta G, Gliga A, Hedberg J, Serra A, Greco D, Odnevall Wallinder I, et al. Cobalt nanoparticles trigger ferroptosis-like cell death (oxytosis) in neuronal cells: Potential implications for neurodegenerative disease. FASEB J. 2020; 34:5262-81. https://doi.org/10.1096/fj.201902191RR PMid:32060981

93. Taterra D, Skinningsrud B, Pekala PA, Tomaszewska IM, Marycz K, Radomski MW, et al. In vitro effects of cobalt and chromium nanoparticles on human platelet function. Nanotoxicol. 2021; 15:52-65. https://doi.org/10.1080/17435390.2020.1841845 PMid:33147415

94. Xu J, Yang J, Nyga A, Ehteramyan M, Moraga A, Wu Y, et al. Cobalt (II) ions and nanoparticles induce macrophage retention by ROS-mediated down-regulation of Rho A expression. Acta Biomater. 2018; 72:434-46. https://doi.org/10.1016/j.actbio.2018.03.054 PMid:29649639 PMCid:PMC5953279

95. Borgese M, Rossi F, Bonfanti P, Colombo A, Mantecca P, Valdatta L, et al. Recovery ability of human adipose stem cells exposed to cobalt nanoparticles: Outcome of dissolution. Nanomed. 2020; 15:453-65. https://doi.org/10.2217/nnm-2019-0195 PMid:32031036

96. Liu Y, Zhu W, Ni D, Zhou Z, Gu JH, Zhang W, et al. Alpha lipoic acid antagonizes cytotoxicity of cobalt nanoparticles by inhibiting ferroptosis-like cell death. J Nanobiotechnol. 2020; 18:141. https://doi.org/10.1186/s12951-020-00700-8 PMid:33008409 PMCid:PMC7532644

97. Gaikar PS, Shivankar VS, Patil PA, Chavan AU, Wadhawa GC. Preliminary phytochemical analysis and antioxidant, anti-inflammatory activity of Dicliptera ghatica santapau. Int J Aquat Sci. 2021; 12(2):4973-80.

98. Mirgane NA, Magar P, Khirnar S, Wadhawa GC. Dakin-West reaction for synthesis of β-acetamido ketones catalyzed by red mud - Green-approach. Int J Adv Sci Technol. 2020; 29(7):13151-5.

99. Vach W, Hoilund-Carlsen PF, Fischer BM, Gerke O, Weber W. How to study optimal timing of PET/CT for monitoring of cancer treatment. Am J Nucl Med Mol Imag. 2011; 1:54-62.

Published

2025-12-15
Statistics
Abstract Display: 117
PDF Downloads: 102
PDF Downloads: 14

How to Cite

1.
Mandal AK, Mandal A. Cobalt nanomaterials as a delivery system in combating infectious diseases and cancer. J. Drug Delivery Ther. [Internet]. 2025 Dec. 15 [cited 2026 Feb. 1];15(12):167-74. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7467

How to Cite

1.
Mandal AK, Mandal A. Cobalt nanomaterials as a delivery system in combating infectious diseases and cancer. J. Drug Delivery Ther. [Internet]. 2025 Dec. 15 [cited 2026 Feb. 1];15(12):167-74. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7467

Most read articles by the same author(s)