Quantum dots as theranostic nano delivery system in combating various diseases
Abstract
Conventional chemotherapy lacks insolubility, selective targeting and bio-imaging of the chemotherapeutics aggravating the diseased state with developed drug resistant toxicity in the biological system. To overcome these obstacles and other biological barriers, nano-sized semiconductor quantum dots (QDs) having the unique photoluminescence and electronic physicochemical properties such as size-tunable light emission, narrow emission range, high brightness and photo-stability for making them the suitable diagnostic probe materials in bio/immune -sensing platform have attracted attention for targeted theranostic photodynamic therapy to bridge nanotechnology and cargo therapy assay. In general, QDs, linked to photoluminescence, induce generation of free radicals, disrupt cell walls/membranes and arrest gene expression as antimicrobial/anti-cancer agents in nano theranostic platform for concomitant sensing, imaging and therapy in the biological system. QDs may be conjugated with polymers, ligands, cargos and other biomolecules through covalent and non-covalent bonds for different specific targeting and controlled liberation of cargos to the diseased site/s of concern to get higher theranostic efficacy. This review focuses mainly the physicochemical characteristics of QDs, their synthesized methods, surface functionalizations, mechanism of action, biomedical applications, toxicity, biodistribution, pharmacokinetics and elimination as nano delivery system.
Keywords: Conventional chemotherapy; Diseases; Quantum dots; Theranostic efficacy; Nano delivery system.
Keywords:
Conventional chemotherapy, Diseases, Quantum dots, Theranostic efficacy, Nano delivery systemDOI
https://doi.org/10.22270/jddt.v14i9.6766References
Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020; 21(9):3233. https://doi.org/10.3390/ijms21093233 PMid:32370233 PMCid:PMC7247559
Tanwar J, Das S, Fatima Z, Hameed S. Multidrug resistance: An emerging crisis. Interdiscip Perspec Infec Dis. 2014; 541340. https://doi.org/10.1155/2014/541340 PMid:25140175 PMCid:PMC4124702
Mandal AK, Majhi R. Cerium oxide nanoparticles as delivery system against various diseases. Ind J Appl Res. 2023; 13(10): https://doi.org/10.36106/ijar
Sharma A, Choi HK, Lee HJ. Carbon dots for the treatment of inflammatory diseases: An appraisal of in vitro and in vivo studies. Oxid Med Cell Long. 2023; 3076119. https://doi.org/10.1155/2023/3076119 PMid:37273553 PMCid:PMC10234732
Hasannejadasl B, Janbaz FP, Choupani E, Fadaie M, Hamidinejad MA, Ahmadvand D. Quantum dots application in neurodegenerative diseases. Thrita. 2020; 9(2):e100105. https://doi.org/10.5812/thrita.100105
Badilli U, Mallarasouli F, Bakirhan NK, Ozkan Y, Ozkan SA. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. TrAC Trends Analy Chem. 2020; 131:116013. https://doi.org/10.1016/j.trac.2020.116013
Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, et al. Quantum dots min imaging, drug delivery and sensor applications. Int J Nanomed. 2017; 12:5421-31. https://doi.org/10.2147/IJN.S138624 PMid:28814860 PMCid:PMC5546783
Mukherjee A, Shim Y, Song JM. Quantum dot as probe for disease diagnosis and monitoring. Biotechnol J. 2016; 11:31-42. https://doi.org/10.1002/biot.201500219 PMid:26709963
Bajwa N, Mehra NK, Jain K, Jain NK. Pharmaceutical and biomedical applications of quantum dots. Artif Cell Nanomed Biotechnol. 2016; 44:758-68.
Xing SG, Xiong QR, Zhong Q, Zhang Y, Bian SM, Jin Y, et al. Recent research advances of antibody-conjugated quantum dots. Chin J Anal Chem. 2013; 41:949-55. https://doi.org/10.1016/S1872-2040(13)60663-5
Dabbousi BO, Rodriguez VJ, Mikulec FV, Heine JR, Mattoussi H, Ober R, et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B. 1997; 101:9463-75. https://doi.org/10.1021/jp971091y
Rajamani R, Mani P, John-Bastin TMM, Kumar AR, Jenifer S. Biological applications of quantum dots: A review. Int J Pharm Tech. 2010; 2(4):504-11.
Tope S, Saudagar S, Lale N, Khambayat S, Bhise K. Review: Therapeutic application of quantum dots (QD). Pharm Innovat. 2014; 2(12):86-105.
Midha K, Kalra S, Nagpal M. Quantum dots in cancer therapy. Int J Curr Sci Tech. 2015; 3(10):84-9.
Ji X, Pen F, Zhong Y, Su Y, He Y. Fluorescent quantum dots: Synthesis, biomedical optical imaging, and biosafty assessment. Colloids Surf B Biointerfaces. 2014; 124:132-39. https://doi.org/10.1016/j.colsurfb.2014.08.036 Mid:25224376
Pleskova S, Mikheeva E, Gornostaeva E. Using of quantum dots in biology and medicine. In: Saquib Q, Faisal M, Al-Khedhairy A, Alatar A, editors. Cellular and molecular toxicology of nanoparticles. 1048. Springer, Cham: Springer. 2018. P. 323-34. https://doi.org/10.1007/978-3-319-72041-8_19 PMid:29453547
Guo Z, Tan L. Fundamentals and applications of nanomaterials. Artech House. 2009.
Boakye YKO, Kesse S, Opoku DY, Filli MS, Aquib M, Joelle MMB, et al. Carbon dots: Applications in bioimaging and theranostics. Int J Pharm. 2019; 564:308-17. https://doi.org/10.1016/j.ijpharm.2019.04.055 PMid:31015004
Liu ML, Chen BB, Li CM, Huang CZ. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019; 21:449-71. https://doi.org/10.1039/C8GC02736F
Delehanty JB, Mattoussi H, Medintz IL. Delivering quantum dots into cells: Strategies, progress and remaining issues. Anal Bioanal Chem. 2009; 393:1091-105. https://doi.org/10.1007/s00216-008-2410-4 PMid:18836855
Zhao C, Song X, Liu Y, Fu Y, Ye L, Wang N, et al. Synthesis of graphene quantum dots and their applications in drug delivery. J Nanobiotechnol. 2020; 18:142. https://doi.org/10.1186/s12951-020-00698-z PMid:33008457 PMCid:PMC7532648
Xue Y, Liu C, Andrews G, Wang J, Ge Y. Recent advances in carbon quantum dots for virus detection, as well as inhibition and treatment of viral infection. Nano Convergence. 2022; 9:15. https://doi.org/10.1186/s40580-022-00307-9 PMid:35366117 PMCid:PMC8976173
Su W, Guo R, Yuan F, Li Y, Li X, Zhang Y, et al. Red-emissive carbon quantum dots for nuclear drug delivery in cancer stem cells. J Phys Chem Lett. 2020; 11:1357-63. https://doi.org/10.1021/acs.jpclett.9b03891 PMid:32017568
Ramamurthy SK, Sridhar C. Parthenium mediated synthesis of zinc oxide nanoparticles and its characterization. Int J Appl Pharm. 2019; 11:113-6. https://doi.org/10.22159/ijap.2019v11i1.29550
Sivapriya V, Ponnarmadha S, Azeezand NA, Sudarshanadeepa V. Novel nanocarriers for ethnopharmacological formulations. Int J Appl Pharm. 2018; 10:26-30. https://doi.org/10.22159/ijap.2018v10i4.26081
Wegner KD, Hildebrandt N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015; 44:4792-834. https://doi.org/10.1039/C4CS00532E PMid:25777768
Lee JH, Yigit MV, Mazumdar D, Lu Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Delivery Rev. 2010; 62:592-605. https://doi.org/10.1016/j.addr.2010.03.003 PMid:20338204 PMCid:PMC2924639
Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev. 2016; 116:12234-327. https://doi.org/10.1021/acs.chemrev.6b00290 PMid:27657177
Chinnathambi S, Chen S, Ganesan S, Hanagata N. Silicon quantum dots for biological applications. Adv Healthcare Mater. 2014; 3:10-29. https://doi.org/10.1002/adhm.201300157 PMid:23949967
Wolfbeisa OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. 2015; 44:4743-68. https://doi.org/10.1039/C4CS00392F PMid:25620543
Coe S, Woo WK, Bawendi M, Bulovic V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature. 2002; 420:800-3. https://doi.org/10.1038/nature01217 PMid:12490945
Swarnkar A, Marshall AR, Sanehira EM, Chernomordik BD, Moore DT, Christians JA, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high efficiency photovoltaics. Science. 2016; 354:92-5. https://doi.org/10.1126/science.aag2700 PMid:27846497
Bak S, Kim D, Lee H. Graphene quantum dots and their possible energy applications: A review. Curr Appl Physics. 2016; 16:1192-201. https://doi.org/10.1016/j.cap.2016.03.026
Lee SK, McLaurin EJ. Recent advances in colloidal indium phosphide quantum dot production. Curr Opin Green Sustain Chem. 2018; 12:76. https://doi.org/10.1016/j.cogsc.2018.06.004
Grisorio R, Debellis D, Suranna GP, Gigli G, Giansante C. The dynamic organic / inorganic interface of colloidal PbS quantum dots. Angew Chem Int Ed. 2016; 55:6628-33. https://doi.org/10.1002/anie.201511174 PMid:27038221
Seguin R, Schliwa A, Rodt S, Potschke K, Pohl UW, Bimberg D. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys Rev Lett. 2005; 95:257402. https://doi.org/10.1103/PhysRevLett.95.257402 PMid:16384505
Bhattacharya P, Ghosh S, Stiff Roberts AD. Quantum dot opto-electronic devices. Annu Rev Mater Res. 2004; 34:1-40. https://doi.org/10.1146/annurev.matsci.34.040203.111535
Kim S, Fisher B, Eisler HJ, Bawendi M. Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc. 2003; 125:11466-7. https://doi.org/10.1021/ja0361749 PMid:13129327
Su Y, Hu M, Fan C, He Y, Li Q, Li W, et al. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomater. 2010; 31:4829-34. https://doi.org/10.1016/j.biomaterials.2010.02.074 PMid:20346495
Lu Z, Li CM, Bao H, Qiao Y, Toh Y, Yang X. Mechanism of antimicrobial activity mof CdTe quantum dots. Langmuir. 2008; 24:5445-52. https://doi.org/10.1021/la704075r PMid:18419147
Tian P, Tang L, Teng KS, Lau SP. Graphene quantum dots from chemistry to applications. Mater Today Chem. 2018; 10:221-58. https://doi.org/10.1016/j.mtchem.2018.09.007
Baruah S, Dutta J. Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 2009; 10:013001. https://doi.org/10.1088/1468-6996/10/1/013001 PMid:27877250 PMCid:PMC5109597
Wang Q, Zheng H, Long Y, Zhang L, Gao M, Bai W. Microwave-hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon NY. 2011; 49:3134-40. https://doi.org/10.1016/j.carbon.2011.03.041
Prasannan A, Imae T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res. 2013; 52:15673-8. https://doi.org/10.1021/ie402421s
Tong L, Qiu F, Zeng T, Long J, Yang J, Wang R, et al. Recent progress in the preparation and application of quantum dots / graphene composite materials. RSC Adv. 2017; 7(76):47999-48018. https://doi.org/10.1039/C7RA08755A
Liu F, Zhu J, Wei J, Li Y, Lv M, Yang S, et al. Numerical stimulation: Toward the design of high-efficiency planar perovskite solar cells. Appl Phys Lett. 2014; 104(25):253508. https://doi.org/10.1063/1.4885367
Zhao K, Zhang L, Xia R, Dong Y, Xu W, Niu C, et al. SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small. 2015; 12(5):588-94. https://doi.org/10.1002/smll.201502183 PMid:26680110
Chahal S, Macairan JR, Yousefi N, Tufenkji N, Naccache R. Green synthesis of carbon dots and their applications. RSC Adv. 2021; 11:25354. https://doi.org/10.1039/D1RA04718C PMid:35478913 PMCid:PMC9037072
Yadav PK, Singh VK, Chandra S, Bano D, Kumar V, Talat M, et al. Green synthesis of fluorescent carbon quantum dots from Azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits. ACS Biomater Sci Eng. 2018; 5:623. https://doi.org/10.1021/acsbiomaterials.8b01528 PMid:33405826
Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci. 2000; 30(1):545-610. https://doi.org/10.1146/annurev.matsci.30.1.545
Peng ZA, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc. 2001; 123(1):183-4. https://doi.org/10.1021/ja003633m PMid:11273619
Liu YF, Yu JS. Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots: The effect of ligands. J Colloid Interface Sci. 2009; 333(2):690-8. https://doi.org/10.1016/j.jcis.2009.01.008 PMid:19215940
Feldmann C, Metzmacher C. Polyol mediated synthesis of nanoscale MS particles (M=Zn, Cd, Hg). J Mater Chem. 2001; 11(10):2603-6. https://doi.org/10.1039/b103167h
Brisebois PP, Siaj M. Harvesting graphene oxide-years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation. J Mater Chem C. 2020; 8:1517-47. https://doi.org/10.1039/C9TC03251G
Pan M, Xia X, Liu K, Yang J, Hong L, Wang S. Fluorescent carbon quantum dots-synthesis, functionalization and sensing application in food analysis. Nanomater. 2020; 10:930. https://doi.org/10.3390/nano10050930 PMid:32403325 PMCid:PMC7279393
Lu Q, Wu C, Liu D, Wang H, Su W, Li H, et al. A facile and simple method for synthesis of graphene oxide quantum dots from black carbon. Green Chem. 2017; 19:900-4. https://doi.org/10.1039/C6GC03092K
Kushwaha N, Mittal J, Pandey S, Kumar R. High temperature acidic oxidation of multiwalled carbon nanotubes and synthesis of graphene quantum dots. Int J Nano Dimension. 2018; 9:191-7.
DaSouza DRS, Caminhas LD, DeMesquita JP, Pereira FV. Luminescent carbon dots obtained from cellulose. Mater Chem Phys. 2018; 203:148. https://doi.org/10.1016/j.matchemphys.2017.10.001
Iannazzo D, Pistone A, Ferro S, DeLuca L, Monforte AM, Romeo R, et al. Graphene quantum dots based systems as HIV inhibitors. Bioconjug Chem. 2018; 29:3084-93. https://doi.org/10.1021/acs.bioconjchem.8b00448 PMid:30106563
Gu S, Hsieh CT, Chiang YM, Tzou DY, Chen YF, Gandomi YA. Optimization of graphene quantum dots by chemical exfoliation from graphite powders and carbon nanotubes. Mater Chem Phys. 2018; 215:104-11. https://doi.org/10.1016/j.matchemphys.2018.05.016
Ding H, Zhang F, Zhao C, Lv Y, Ma G, Wei W, et al. Beyond a carrier: Graphene quantum dots as a probe for programmatically monitoring anti-cancer drug delivery, release, and response. ACS Appl Mater Interfaces. 2017; 9:27396-401. https://doi.org/10.1021/acsami.7b08824 PMid:28782357
Wang N, Li L, Zhou N, Chen S. Cage breaking of C60 into photoluminescent graphene oxide quantum dots: An efficient peroxidase mimic. Phys Status Solidi B. 2018; 255:1700535. https://doi.org/10.1002/pssb.201700535
Qian Z, Zhou J, Chen J, Wang C, Chen C, Feng H. Nanosized N-doped graphene oxide with visible fluorescence in water for metal ion sensing. J Mater Chem. 2011; 21:17635. https://doi.org/10.1039/c1jm13430b
Liu F, Sun Y, Zhang Y, Tang N, Li M, Zhong W, et al. Gram-scale synthesis of high-purity graphene quantum dots with multicolor photoluminescence. RSC Adv. 2015; 5:103428-32. https://doi.org/10.1039/C5RA19219F
Halder A, Godoy-Gallardo M, Ashley J, Feng X, Zhou T, Hosta-Rigau L, et al. One-pot green synthesis of biocompatible graphene quantum dots and their cell uptake studies. ACS Appl Bio Mater. 2018; 1:452-61. https://doi.org/10.1021/acsabm.8b00170 PMid:35016368
Vasudevan D, Gaddam RR, Trinchi A, Cole I. Cor-shell quantum dots: Properties and applications. J Alloys Compounds. 2015; 636:395-404. https://doi.org/10.1016/j.jallcom.2015.02.102
Wu YL, Lim CS, Fu S, Tok AIY, Lau HM, Boey FYC, et al. Surface modifications of ZnO quantum dots for bio-imaging. Nanotechnol. 2007; 18:215604. https://doi.org/10.1088/0957-4484/18/21/215604
Monopoli MP, Pitek AS, Lynch I, Dawson KA. Nanomaterial interfaces in biology. In: Nanomaterial interfaces in biology: Methods and protocols, Methods in Molecular Biology. 2013; 1025:137155.
Yuan CT, Chou WC, Chuu DS, Chang WH, Lin HS, Ruaan RC. Fluorescence properties of colloidal CdSe/ZnS quantum dots with various surface modifications. J Med Biol Eng. 2006; 26:131-5.
Krogmeier JR, Kang HG, Clarke ML, Yim P, Hwang J. Probing the dynamic fluorescence properties of single water-soluble quantum dots. Opt Commun. 2008; 281:1781-8. https://doi.org/10.1016/j.optcom.2007.07.068
Pardo J, Peng Z, Leblanc RM. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules. 2018; 23:378. https://doi.org/10.3390/molecules23020378 PMid:29439409 PMCid:PMC6017112
Howarth M, Takao K, Hayashi Y, Ting AY. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci USA. 2005; 102:7583-8. https://doi.org/10.1073/pnas.0503125102 PMid:15897449 PMCid:PMC1129026
Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, et al. Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc. 2008; 130:1274-84. https://doi.org/10.1021/ja076069p PMid:18177042 PMCid:PMC2665712
Smith AM, Duan H, Mohs AM, Nie S. Bio conjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev. 2008; 60:1226-40. https://doi.org/10.1016/j.addr.2008.03.015 PMid:18495291 PMCid:PMC2649798
Hezinger AF, Tebmar J, Gopferich A. Polymer coating of quantum dots- a powerful tool toward diagnostics and sensories. Eur J Pharmaceut Biopharmaceut. 2008; 68(1):138-52. https://doi.org/10.1016/j.ejpb.2007.05.013 PMid:17689938
Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002; 13:40-6. https://doi.org/10.1016/S0958-1669(02)00282-3 PMid:11849956
Alivisatos P, Gu W, Larabell C. Quantum dots as fluorescent probes. Ann Rev Biomed Eng. 2005; 7:55-76. https://doi.org/10.1146/annurev.bioeng.7.060804.100432 PMid:16004566
Kang EC, Ogura A, Kataoka K, Nagasaki Y. Preparation of water-soluble PEGylated semiconductor nanocrystals. Chem Lett. 2004; 33(7):840-1. https://doi.org/10.1246/cl.2004.840
Pharm XH, Park SM, Ham KM, Kyeong S, Son BS, Kim J, et al. Synthesis and application of silica-coated quantum dots in biomedicine. Int J Mol Sci. 2021; 22:10116. https://doi.org/10.3390/ijms221810116 PMid:34576279 PMCid:PMC8468474
Drbohlavova J, Adam V, Kizek R, Hubalek J. Quantum dots-caharacterization, preparation and usage in biological systems. Int J Mol Sci. 2009, 10:656-73. https://doi.org/10.3390/ijms10020656 PMid:19333427 PMCid:PMC2660652
Murray CB, Kagan CR, Bawendi MG. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot super lattices. Science. 1995; 270:1335-8. https://doi.org/10.1126/science.270.5240.1335
Micic OI, Curtis CJ, Jones KM, Sprague JR, Nozik AJ. Synthesis and characterization of InP quantum dots. J Phys Chem. 1994; 98:4966-9. https://doi.org/10.1021/j100070a004
Lipovskii A, Kolobkova E, Petrikov V, Kang I, Olkhovets A, Krauss T, et al. Synthesis and characterization of PbSe quantum dots in phosphate glass. Appl Phys Lett. 1997; 71(23):3406-8. https://doi.org/10.1063/1.120349
Yamashita K, Nakate T, Okimoto K, Ohike A, Tokunaga Y, Ibuki R, et al. Establishment of new preparation method for solid dispersion form of tacrolimus. Int J Pharm. 2003; 267:79-91. https://doi.org/10.1016/j.ijpharm.2003.07.010 PMid:14602386
Knittel F, Gravel E, Cassette E, Pons T, Pillon F, Dubertret B, et al. On the characterization of the surface chemistry of quantum dots. Nano Lett. 2013; 13:5075-8. https://doi.org/10.1021/nl402192d PMid:24111602
Guzelian AA, Banin U, Kadavanich AV, Peng X, Alivisatos AP. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl Phys Lett. 1996; 69(10):1432-4. https://doi.org/10.1063/1.117605
Rajh T, Micic OI, Nozik AJ. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J Phys Chem. 1993; 97(46):11999-12003. https://doi.org/10.1021/j100148a026
Kuzyniak W, Adegoke O, Sekhosana K, D'Souza S, Tshangana SC, Hoffmann B, et al. Synthesis and characterization of quantum dots designed for biomedical use. Int J Pharmaceut. 2014; 466(1-2):382-9. https://doi.org/10.1016/j.ijpharm.2014.03.037 PMid:24657286
Mahamuni S, Borgohain K, Bendre BS, Leppert VJ, Risbud SH. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J Appl Phys. 1999; 85(5):2861-5. https://doi.org/10.1063/1.369049
Patra P, Roy S, Sarkar S, Mitra S, Pradhan S, Debnath N, et al. Damage of lipopolysaccharides in outer cell membrane and production of ROS-mediated stress within bacteria makes nano zinc oxide a bactericidal agent. Appl NanoSci. 2014; 5:857-66. https://doi.org/10.1007/s13204-014-0389-z
Repp S, Erden E. Controlling the exciton energy of zinc oxide (ZnO) quantum dots by changing the confinement conditions. Spectrochim Acta, Part A. 2016; 152:637-44. https://doi.org/10.1016/j.saa.2015.01.110 PMid:25708483
Mir IA, Radhakrishnan VS, Rawat K, Prasad T, Bohidar HB. Bandgap tunable AgInS based quantum dots for high contrast cell imaging with enhanced photodynamic and antifungal applications. Sci Rep. 2018; 8:9322-33. https://doi.org/10.1038/s41598-018-27246-y PMid:29921973 PMCid:PMC6008435
Joshi P, Chakraborti S, Chakrabarti P, Haranath D, Shanker V, Ansari ZA. Role of surface absorbed anionic species in antibacterial activity of ZnO quantum dots against Escherichia coli. J Nanosci Nanotechnol. 2009; 9:6427-33. https://doi.org/10.1166/jnn.2009.1584 PMid:19908545
Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. 2011; 7:184-92. https://doi.org/10.1016/j.nano.2010.10.001 PMid:21034861
Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci. 2009; 74(1):M46-52. https://doi.org/10.1111/j.1750-3841.2008.01013.x
Meshram JV, Koli V, Kumbhar SG, Borade L, Phadatare MR, Pawar S. Structural, spectroscopic and anti-microbial inspection of PEG-capped ZnO nanoparticles for biomedical applications. Mater Res Exp. 2018; 5:045016-29. https://doi.org/10.1088/2053-1591/aab917
Pati R, Sahu R, Panda J, Sonawane A. Encapsulation of zinc-rifampicin complex into transferring-conjugated silver quantum dots improves its antimycobacterial activity and stability and facilitates drug delivery into macrophages. Sci Rep. 2016; 6:24184-98. https://doi.org/10.1038/srep24184 PMid:27113139 PMCid:PMC4845008
Neelgund GM, Oki A, Luo Z. Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly(amidoamine)grafted carbon nanotubes. Colloids Surf B Biointerfaces. 2012; 100:215-21. https://doi.org/10.1016/j.colsurfb.2012.05.012 PMid:22766300 PMCid:PMC3424272
Priester JH, Stoimenov PK, Mielke RE, Webb SM, Ehrhardt C, Zhang JP. Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic pseudomonas aeruginosa. Environ Sci Technol. 2009; 43:2589-94. https://doi.org/10.1021/es802806n PMid:19452921
Dhar R, Singh S, Kumar A. Effect of capping agents on optical and antibacterial properties of cadmium selenide quantum dots. Bull Mater Sci. 2015; 38:1247-52. https://doi.org/10.1007/s12034-015-1006-9
Hahn MA, Tabb JS, Krauss TD. Detection of single bacterial pathogens with semi-conductor quantum dots. Anal Chem. 2005; 77:4861-9. https://doi.org/10.1021/ac050641i PMid:16053299
Ma X, Xiang Q, Liao Y, Wen T, Zhang H. Visible-light-driven CdSe quantum dots/graphene/TiO2 nanosheets composite with excellent photocatalytic activity for E.coli disinfection and organic pollutant degradation. App Surface Sci. 2018; 457:846-55 https://doi.org/10.1016/j.apsusc.2018.07.003
Luo Z, Wu Q, Zhang M, Li P, Ding Y. Cooperative antimicrobial activity of CdTe quantum dots with rocephin and fluorescence monitoring for Escherichia coli. J Colloid Interface Sci. 2011; 362:100-6. https://doi.org/10.1016/j.jcis.2011.06.039 PMid:21757199
Geraldo DA, Arancibia-Miranda N, Villagra NA, Mora GC, Arratia-Perez R. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria. J Nanoparticle Res. 2012; 14:1286-94. https://doi.org/10.1007/s11051-012-1286-6
Sun H, Gao N, Dong K, Ren J, Qu X. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano. 2014; 8:6202-10. https://doi.org/10.1021/nn501640q PMid:24870970
Biswas A, Khandelwal P, Das R, Salunke G, Alam A, Ghorai S, et al. Oxidant mediated one-step complete conversion of multi-walled carbon nanotubes to graphene quantum dots and their bioactivity against mammalian and bacterial cells. J mater Chem B. 2017; 5:785-96. https://doi.org/10.1039/C6TB02446G PMid:32263847
Kuo WS, Chen HH, Chen SY, Chang CY, Chen PC, Hou YI, et al. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomater. 2017; 120:185-94. https://doi.org/10.1016/j.biomaterials.2016.12.022 PMid:28063357
Habiba K, Bracho-Rincon DP, Gonzalez-Feliciano JA, Villalobos-Santos JC, Makarov VI, Ortiz D. Synergistic antibacterial activity of PEGylated silver-graphene quantum dots nanocomposites. App Mater Today. 2015; 1:80-7. https://doi.org/10.1016/j.apmt.2015.10.001
Tripp RA. Bioconjugated nanoparticle detection of respiratory syncytial virus infection. Int J Nanomed. 2007; 2(1):117-24. https://doi.org/10.2147/nano.2007.2.1.117 PMid:17722519 PMCid:PMC2673827
Bentzen EL. Progression of respiratory syncytial virus infection monitored by fluorescent quantum dot probes. Nano Lett. 2005; 5(4):591-5. https://doi.org/10.1021/nl048073u PMid:15826092
Klostranec JM, Xiang Q, Farcas GA. Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics. Nano Lett. 2007; 7(9):2812-18. https://doi.org/10.1021/nl071415m PMid:17705551
Lin F, Bao YW, Wu FG. Carbon dots for sensing and killing microorganisms. C J Carbon Res. 2019; 5:33. https://doi.org/10.3390/c5020033
Li Y, Ma P, Tao Q, Krause HJH, Yang S, Ding G, et al. Magnetic graphene quantum dots facilitate closed-tube one-step detection of SARS-CoV-2 with ultra-low field NMR relaxometry. Sens Actuators B Chem. 2021; 337:129786. https://doi.org/10.1016/j.snb.2021.129786 PMid:33753963 PMCid:PMC7959688
Zare M, Sillanpaa M, Ramakrishna S. Essential role of quantum science and nanoscience in antiviral strategies for COVID-19. Mater Adv. 2021; 2:2188. https://doi.org/10.1039/D1MA00060H
Barras A, Pagneux Q, Sane F, Wang Q, Boukherroub R, Hober D, et al. High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS Appl Mater Interfaces. 2016; 8:9004-13. https://doi.org/10.1021/acsami.6b01681 PMid:27015417
Fahmi MZ, Sukmayani W, Khairunisa SQ, Witaningrum AM, Indriati DW, Matondang MQY, et al. Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry. RSC Adv. 2016; 6:92996. https://doi.org/10.1039/C6RA21062G
Loczechin A, Seron K, Barras A, Giovanelli E, Belouzard S, Chen YT, et al. Functinal carbon quantum dots as medical counter measures to human coronavirus. ACS Appl Mater Interfaces. 2019; 11:42964-74. https://doi.org/10.1021/acsami.9b15032 PMid:31633330 PMCid:PMC7075527
Huang S, Gu J, Ye J, Fang B, Wan S, Wang C, et al. Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. J Colloid Interface Sci. 2019; 542:198-206. https://doi.org/10.1016/j.jcis.2019.02.010 PMid:30739009
Qaddare SH, Salimi A. Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: A novel coupling of FRET and DNA hybridization for homogenous HIV-1 gene detection at femtomolar level. Biosens Bioelectron. 2017; 89:773-80. https://doi.org/10.1016/j.bios.2016.10.033 PMid:27816581
Achadu OJ, Abe F, Hossain F, Nasrin F, Yamazaki M, Suzuki T, et al. Sulfur-doped carbon dots@polydopamine-functionalized magnetic silver nanocubes for dual-modality detection of norovirus. Biosens Bioelectron. 2021; 193:113540. https://doi.org/10.1016/j.bios.2021.113540 PMid:34403935
Li S, Guo Z, Zeng G, Zhang Y, Xue W, Liu Z. Polyethyleneimine-modified fluorescent carbon dots as vaccine delivery system for intranasal immunization. ACS Biomater Sci Eng. 2018; 4:142. https://doi.org/10.1021/acsbiomaterials.7b00370 PMid:33418684
Cheng J, Xu Y, Zhou D, Liu K, Geng N, Lu J, et al. Novel carbon quantum dots can serve as an excellent adjuvant for the gp85 protein vaccine against avian leukosis virus subgroup J in chickens. Poult Sci. 2019; 98:5315. https://doi.org/10.3382/ps/pez313 PMid:31198967
Samimi S, Ardestani MS, Dorkosh FA. Preparation of carbon quantum dots quinic acid for drug delivery of gemcitabine to breast cancer cells. J Drug Deliv Sci Tech. 2021; 61:102287. https://doi.org/10.1016/j.jddst.2020.102287
Chiu SH, Gedda G, Girma WM, Chen JK, Ling YC, Ghule AV, et al. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater. 2016; 46:151-64. https://doi.org/10.1016/j.actbio.2016.09.027 PMid:27662808
Han C, Zhang X, Wang F, Yu Q, Chen F, Shen D, et al. Duplex metal co-doped carbon-quantum dots-based drug delivery system with intelligent adjustable size as adjuvant for synergistic cancer therapy. Carbon. 2021; 183:789-808. https://doi.org/10.1016/j.carbon.2021.07.063
Yan C, Wang C, Hou T, Guan P, Qiao Y, Guo L, et al. Lasting tracking and rapid discrimination of live Gram-positive bacteria by peptidoglycan-targeting carbon quantum dots. ACS Appl Materials Interfaces. 2021; 13(1):1277-87. https://doi.org/10.1021/acsami.0c19651 PMid:33393300
Cai X, Luo Y, Zhang W, Du D, Lin Y. pH-sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl Mater Interfaces. 2016; 8:22442-50. https://doi.org/10.1021/acsami.6b04933 PMid:27463610
Yang X, Shang C, Zhou S, Zhao J. MBenes: Emerging 2D materials as efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale Horiz. 2020; 5(7):1106-15. https://doi.org/10.1039/D0NH00242A PMid:32432627
Liu YY, Yu NY, Fang WD, Tan QG, Ji R, Yang LY, et al. Photodegradation of carbon dots cause cytotoxicity. Nat Commun. 2021; 12(1):812. https://doi.org/10.1038/s41467-021-21080-z PMid:33547279 PMCid:PMC7864953
Zhang W, Dang G, Dong J, Li Y, Jiao P, Yang M, et al. A multifunctional nanoplatform based on graphitic carbon nitride quantum dots for imaging-guided and tumor-targeted chemo-photodynamic combination therapy. Colloids Surf B: Biointerfaces. 2021; 199:111549. https://doi.org/10.1016/j.colsurfb.2020.111549 PMid:33388720
Xie Y, Wan B, Yang Y, Cui X, Xin Y, Guo LH. Cytotoxicity and autophagy induction by graphene quantum dots with different functional groups. J Environ Sci. 2019; 77:198-209. https://doi.org/10.1016/j.jes.2018.07.014 PMid:30573083
Friler M, Pho C, Lee BH, Dobrovolny H, Akkaraju GR, Naumov AV. Effects of doxorubicin delivery by nitrogen-doped graphene quantum dots on cancer cell growth: Experimental study and mathematical modeling. Nanomaterials. 2021; 11:140. https://doi.org/10.3390/nano11010140 PMid:33435595 PMCid:PMC7827955
Sui X, Luo C, Wang C, Zhang F, Zhang J, Guo S. Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake. Nanomedicine. 2016; 12(7):1997-2006. https://doi.org/10.1016/j.nano.2016.03.010 PMid:27085903
Nfiujjaman M, Khan HA, Yong-Kyu L. Peptide-influenced grapheme quantum dots on iron oxide nanoparticles for dual imaging of lung cancer cells. J Nanosci Nanotechnol. 2017; 17(3):1704-1711. https://doi.org/10.1166/jnn.2017.12825
Qi L, Pan T, Ou L, Ye Z, Yu C, Bao B, et al. Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage. Commun Biol. 2021; 4:214. https://doi.org/10.1038/s42003-021-01713-1 PMid:33594275 PMCid:PMC7886873
Shi Y, Pramanik A, Tchounwou C, Pedraza F, Crouch RA, Chavva SR, et al. Multifunctional biocompatible grapheme oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells. ACS Appl Mater Interfaces. 2015; 7:10935-43. https://doi.org/10.1021/acsami.5b02199 PMid:25939643 PMCid:PMC4570252
Ma Z, Xu Y, Li P, Cheng D, Zhu X, Liu M, et al. Self-catalyzed surface reaction-induced fluorescence resonance energy transfer cysteine-stabilized MnO2 quantum dots for selective detection of dopamine. Anal Chem. 2021; 93(7):3586-93. https://doi.org/10.1021/acs.analchem.0c05102 PMid:33543940
Hu Z, Song B, Xu L, Zhong Y, Peng F, Ji X, et al. Aqueous synthesized quantum dots interfere with the NF-κB pathway and confer anti-tumor, anti-viral and anti-inflammatory effects. Biomaterials. 2016; 108:187-96. https://doi.org/10.1016/j.biomaterials.2016.08.047 PMid:27639114
Jia N, Lian Q, Shen H, Wang C, Li X, Yang Z. Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multi-walled carbon nanotubes. Nano Lett. 2007; 7(10):2976-80. https://doi.org/10.1021/nl071114c PMid:17725375
Olerile LD, Liu Y, Zhang B, Wang T, Mu S, Zhang J, et al. Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theranostic. Colloids Surf B Biointerfaces. 2017; 150:121-30. https://doi.org/10.1016/j.colsurfb.2016.11.032 PMid:27907859
Yuan Y, Zhang J, An L, Cao Q, Deng Y, Liang G. Oligomeric nanoparticles functionalized with NIR-emitting CdTe/CdS QDs and folate for tumor-targeted imaging. Biomaterials. 2014; 35:7881-6. https://doi.org/10.1016/j.biomaterials.2014.05.071 PMid:24952975
Shao D, Li J, Pan Y, Zhang X, Zheng X, Wang Z, et al. Non-invasive theranostic imaging of HSV-TK/GCV suicide gene therapy in liver cancer by folate targeted quantum dot-based liposomes. Biomater Sci. 2015; 3:833-41. https://doi.org/10.1039/C5BM00077G PMid:26221843
Yang X, Zhang W, Zhao Z, Li N, Mou Z, Sun D, et al. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J Inorg Biochem. 2017; 167:36-48. https://doi.org/10.1016/j.jinorgbio.2016.11.023
Han H, Valdeperez D, Jin Q, Yang B, Li Z, Wu Y, et al. Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy. ACS Nano. 2017; 11(2):1281-91. https://doi.org/10.1021/acsnano.6b05541 PMid:28071891
Bagalkot V, Zhang LF, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007; 7:3065-70. https://doi.org/10.1021/nl071546n PMid:17854227
Gui R, Wan A, Zhang Y, Li H, Zhao T. Ratiometric and time-resolved fluorimetry from quantum dots featuring drug carriers for real-time monitoring of drug release in situ. Anal Chem. 2014; 86:5211-14. https://doi.org/10.1021/ac501293e PMid:24827984
Chen AA, Derfus AM, Khetani SR, Bhatia SN. Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res. 2005; 33(22):e190. https://doi.org/10.1093/nar/gni188 PMid:16352864 PMCid:PMC1312364
Tan WB, Jiang S, Zhang Y. Quantum dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials. 2007; 28(8):1565-71. https://doi.org/10.1016/j.biomaterials.2006.11.018 PMid:17161865
Zhao T, Liu X, Li Y, Zhang M, He J, Zhang X, et al. Fluorescence and drug loading properties of ZnSe:Mn/ZnS-paclitaxel/SiO2 nanocapsules template by F127 micelles. J Colloid Interface Sci. 2017; 490:436-43. https://doi.org/10.1016/j.jcis.2016.11.079 PMid:27914343
Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Alitheen NB, Hussein MZ, et al. In vivo tumor targeting and anti-tumor effects of 5-fluorouracil loaded, folic acid targeted quantum dot system. J Colloid Interface Sci. 2016; 480:146-58. https://doi.org/10.1016/j.jcis.2016.07.011 PMid:27428851
Wang Y, Yang C, Hu R, Toh HT, Liu X, Lin G, et al. Assembling MnZnSe quantum dots-siRNA nanoplexes for gene silencing in tumor cells. Biomater Sci. 2015; 3:192-202. https://doi.org/10.1039/C4BM00306C PMid:26214202
Subramaniam P, Lee SJ, Shah S, Patel S, Starovoytov V, Lee KB. Generation of a library of non-toxic quantum dots for cellular imaging and siRNA delivery. Adv Mater. 2012; 24(29):4014-9. https://doi.org/10.1002/adma.201201019 PMid:22744954 PMCid:PMC3668976
Yang Y, Wang J, Li X, Lin X, Yue X. A near infra red fluorescent / ultrasonic bimodal contrast agent for imaging guided pDNA delivery via ultrasound targeted micro bubble destruction. RSC Adv. 2015; 5(11):8404-14. https://doi.org/10.1039/C4RA15066J
Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem. 2007; 18(5):1391-6. https://doi.org/10.1021/bc060367e PMid:17630789
Xiao S, Zhou D, Luan P, Gu B, Feng L, Fan S, et al. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials. 2016; 106:98-110. https://doi.org/10.1016/j.biomaterials.2016.08.021 PMid:27552320
Li S, Liu Z, Ji F, Xiao Z, Wang M, Peng Y, et al. Delivery of quantum dot-siRNA nanoplexes in SK-N-SH cells for BACE1 gene silencing and intracellular imaging. Mol Ther Nucleic Acids. 2012; 1:e20. https://doi.org/10.1038/mtna.2012.11 PMid:23343930 PMCid:PMC3381642
Feng L, Long HY, Liu RK, Sun DN, Liu C, Long LL, et al. A quantum dot probe conjugated with Aβ antibody for molecular imaging of Alzheimer's disease in a mouse model. Cell Mol Neurobiol. 2013; 33:759-65. https://doi.org/10.1007/s10571-013-9943-6 PMid:23695800
Medina SM, Miserere S, Morales NE, Merkoci A. On-chip magneto-immunoassay for Alzheimer's biomarker electrochemical detection by using quantum dots as labels. Biosens Bioelectron. 2014; 54:279-84. https://doi.org/10.1016/j.bios.2013.10.069 PMid:24287417
Kim D, Yoo JM, Hwang H, Lee J, Lee SH, Yun SP, et al. Graphene quantum dots prevent α-synucleinnopathy in Parkinson's disease. Nat Nanotechnol. 2018; 13(9):812-8. https://doi.org/10.1038/s41565-018-0179-y PMid:29988049 PMCid:PMC6351226
Mohammadi S, Nikkhah M, Hosseinkhani S. Investigation of the effects of carbon-based nanomaterials on A53T alpha-synuclein aggregation using a whole-cell recombinant biosensor. Int J Nanomedicine. 2017; 12:8831-40. https://doi.org/10.2147/IJN.S144764 PMid:29276384 PMCid:PMC5734227
Diaz-DD, Thapa B, Beltran HJ, Weiner BR, Morell G. L-cysteine capped ZnS:Mn quantum dots for room temperature detection of dopamine with high sensitivity and selectivity. Biosens Bioelectron. 2017; 87:693-700. https://doi.org/10.1016/j.bios.2016.09.022 PMid:27631684
Zhao X, Zhou Y, Weissmiller AM, Pearn ML, Mobley WC, Wu C. Real-time imaging of axonal transport of quantum dot-labeled BDNF in primary neurons. J Vis Exp. 2014; 91:e51899. https://doi.org/10.3791/51899
Xiao SJ, Hu PP, Wu XD, Zou YL, Chen LQ, Peng L, et al. Sensitive discrimination and detection of prion disease-assocoated isoform with a dual-aptamer strategy by developing a sandwich structure of magnetic microparticles and quantum dots. Anal Chem. 2010; 82(23):9736-42. https://doi.org/10.1021/ac101865s PMid:21038863
Xie M, Luo K, Huang BH, Liu SL, Hu J, Cui D, et al. PEG-interspersed nitrilotriacetic acid-functionalized quantum dots for site-specific labeling of prion proteins expressed on cell surfaces. Biomaterials. 2010; 31(32):8362-70. https://doi.org/10.1016/j.biomaterials.2010.07.063 PMid:20723972
Luo W, Wang Y, Lin F, Liu Y, Gu R, Liu W, et al. Selenium-doped carbon quantum dots efficiently ameliorate secondary spinal cord injury via scavenging reactive oxygen species. Int J Nanomed. 2020; 15:10113-25. https://doi.org/10.2147/IJN.S282985 PMid:33363370 PMCid:PMC7754097
Dahan M. Diffusion dynamics of glycine receptors revealed by single quantum dot tracking. Science. 2003; 302(6544):442-5. https://doi.org/10.1126/science.1088525 PMid:14564008
Pathak S. Quantum dot applications to neuroscience: New tools for probing neurons and glia. J Neurosci. 2006; 26(7):1893-5. https://doi.org/10.1523/JNEUROSCI.3847-05.2006 PMid:16481420 PMCid:PMC6674918
Vu TQ. Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano Lett. 2005; 5(4):603-7. https://doi.org/10.1021/nl047977c PMid:15826094
Sundara RS, Vu TQ. Quantum dots monitor TrkA receptor dynamics in the interior of neural PC12 cells. Nano Lett. 2006; 6(9):2049-59. https://doi.org/10.1021/nl0612650 PMid:16968024
Prasad B. Long-term exposure of CdTe quantum dots on PC12 cellulat activity and the determination of optimum non-toxic concentrations for biological use. J Nanobiotechnol. 2010; 8(1):7. https://doi.org/10.1186/1477-3155-8-7 PMid:20338051 PMCid:PMC2856518
Maluleke R, Parani S, Oluwafemi OS. Preparation of grapheme oxide-CuInS2/ZnS quantum dots nanocomposite as "Turn on" fluorescent probe for the detection of polycyclic aromatic hydrocarbons in aqueous medium. J Fluoresc. 2021; 31:1297-302. https://doi.org/10.1007/s10895-021-02761-w PMid:34101098
Martynenko IV, Baimuratov AS, Weigert F, Soares JX, Dhamo L, Nickl P, et al. Photoluminescence of Ag-In-S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure. Nano Res. 2019; 12:1595-603. https://doi.org/10.1007/s12274-019-2398-4
Lin WJ, Chien WH. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery. J Nanopart Res. 2015; 17:349. https://doi.org/10.1007/s11051-015-3132-0
Yong KT, Law WC, Hu R, Ye L, Liu L, Swihart MT, et al. Nanotoxicity assessment of quantum dots: From cellular to primate studies. Chem Soc Rev. 2013; 42:1236-50. https://doi.org/10.1039/C2CS35392J PMid:23175134
Derfus AM, Chan WC, Bhatia SN. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mat. 2004; 16:961-6. https://doi.org/10.1002/adma.200306111
Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004; 4:11-8. https://doi.org/10.1021/nl0347334 PMid:28890669 PMCid:PMC5588688
Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007; 28:4717-32. https://doi.org/10.1016/j.biomaterials.2007.07.014 PMid:17686516
Rzigalinski BA, Strobl JS. Cadmium-containing nanoparticles: Perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol. 2009; 238:280-8. https://doi.org/10.1016/j.taap.2009.04.010 PMid:19379767 PMCid:PMC2709954
Chen N. The cytotoxicity of cadmium-based quantum dots. Biomaterials. 2012; 33(5):1238-44. https://doi.org/10.1016/j.biomaterials.2011.10.070 PMid:22078811
Deng D, Chen Y, Cao J, Tian J, Qian Z, Achilefu S, et al. High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging. Chem Mater. 2012; 24:3029-37. https://doi.org/10.1021/cm3015594
Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, et al. Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem Mater. 2013; 25:2503-9. https://doi.org/10.1021/cm400812v
Regulacio MD, Win KY, Lo SL, Zhang SY, Zhang X, Wang S, et al. Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications. Nanoscale. 2013; 5:2322-7. https://doi.org/10.1039/c3nr34159c PMid:23392168
Huang S, Li B, Ashraf U, Li Q, Lu X, Gao X, et al. Quaternized cationic carbon dots as antigen delivery systems for improving humoral and cellular immune responses. ACS Appl Nano Mater. 2020; 3:9449-61. https://doi.org/10.1021/acsanm.0c02062
Deng D, Qu L, Zhang J, Ma Y, Gu Y. Quaternary Zn-Ag-In-Se quantum dots for biomedical optical imaging of RGD-modified micelles. ACS Appl Mat Interf. 2013; 5:10858-65. https://doi.org/10.1021/am403050s PMid:24083409
Yong KT, Roy I, Hu R, Ding H, Cai H, Zhu J, et al. Synthesis of ternary CuInS2/ZnS quantum dot bioconjugates and their applications for targeted cancer bioimaging. Integr Biol. 2010; 2:121-9. https://doi.org/10.1039/b916663g PMid:20473390
Li L, Daou TJ, Texier I, Kim CTT, Liem NQ, Reiss P. Highly luminescent CuInS2/ZnS core/shell nanocrystals: Cadmium-free quantum dots for in vivo imaging. Chem Mater. 2009; 21:2422-9. https://doi.org/10.1021/cm900103b
Lays JC, Caeboe AM, Toufanian R, Kurant DE, Dennis AM. Shell-free copper indium sulfide quantum dots induce toxicity in vitro and in vivo. Nano Lett. 2020; 202020(3):1980-91. https://doi.org/10.1021/acs.nanolett.9b05259 PMid:31999467 PMCid:PMC7210713
Tang H, Yang ST, Yang YF, Ke DM, Liu JH, Chen X, et al. Blood clearance, distribution, transformation, excretion, and toxicity of near-infrared quantum dots Ag2Se in mice. ACS Appl Mater Interfaces. 2016; 8(28):17859-69. https://doi.org/10.1021/acsami.6b05057 PMid:27351208
Mandal AK. Platinum nanoparticles as delivery system in combating various diseases. J Drug Deliv Ther. 2024; 14(7):101-115. https://doi.org/10.22270/jddt.v14i7.6644 PMid:27898345
Published
Abstract Display: 739
PDF Downloads: 462
PDF Downloads: 148 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.