Nanomaterials as targeted delivery system of therapeutics for inhibition of cancer
Abstract
Cancer, a disease with complex pathological process, is the principal cause of mortality and morbidity throughout the world. Conventional chemotherapy faces drawbacks regarding its low bioavaiability, insolubility, high dose requirements, low therapeutic indices, cytotoxicity, multiple drug resistance-development, biological barriers related obstruction, and non-specific targeting. Cancer drug resistance includes over-expression of drug efflux transporters, hypoxic environment, and defective apoptotic pathways. To overcome these discrepancies, a lot of nanomaterials (NMs), as emerging delivery system, have attracted attention for carrying and delivering therapeutics to the desired sites of interest. For improving the targeting potential of the anticancer cargos, NMs are optimized for their sizes, shapes, and surfaces for enhancing their circulation time and targeting efficiency. The NMs through encapsulation or conjugation of cargos with ligands may target them to the cancer site/s with enhanced therapeutic efficacy in a controlled release manner. Generally, NMs, as cancer therapy, are utilized to target cancer cells, tumor microenvironment, and immune system mainly through enhanced permeability and retention (EPR) effect¸ stimuli-responsive targeting or modifying their surfaces with targeting ligands such as transferin, integrins, sugar, folic acid and antibodies for the enhancement of tissue targeting recognition and their internalization. This review demonstrates mainly the biomedical applications of NMs as delivery vehicles or systems functionalized with ligands and therapeutic agents to target cancer cells / tissues passively, actively or physically with higher inhibitory therapeutic efficacies against cancer.
Keywords: Cancer; Conventional chemotherapy; Nanomaterials; Biomedical applications; Therapeutic targeting; Inhibitory therapeutic efficacies
Keywords:
Cancer, Conventional chemotherapy, Nanomaterials, Biomedical applications, Therapeutic targeting, Inhibitory therapeutic efficaciesDOI
https://doi.org/10.22270/jddt.v13i12.6014References
Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of metastasis by NK cells. Cancer Cell. 2017; 32(2):135-54. https://doi.org/10.1016/j.ccell.2017.06.009 PMid:28810142
Gallaher JA, Enriquez-Navas PM, Luddy KA, Gatenby RA, Anderson ARA. Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies. Cancer Res. 2018; 78(8):2127-39. https://doi.org/10.1158/0008-5472.CAN-17-2649 PMid:29382708 PMCid:PMC5899666
Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, et al. Mutations in the p53 gene occur in diverse human tumor types. Nature. 1989; 342(6250):705-8. https://doi.org/10.1038/342705a0 PMid:2531845
Sarkar S, Horn G, Moulton K, Oza A, Byler S, Kokolus S, et al. Cancer development, progression, and therapy: An epigenetic overview. Int J Mol Sci. 2013; 14(10):21087-113. https://doi.org/10.3390/ijms141021087 PMid:24152442 PMCid:PMC3821660
Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008; 25:2097-116. https://doi.org/10.1007/s11095-008-9661-9 PMid:18626751 PMCid:PMC2515569
Parsa N. Environmental factors inducing human cancers. Iranian J Publ Health. 2012; 41(11):1-9.
Mandal AK. Chromium induced developments of diseases and their inhibitions by cargos. Asian J Biochem Genet Mol Biol. 2022; 12(4):108-19. https://doi.org/10.9734/ajbgmb/2022/v12i4274
Miller A, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981; 47:207-14. https://doi.org/10.1002/1097-0142(19810101)47:1<207::AID-CNCR2820470134>3.0.CO;2-6 PMid:7459811
Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2012; 64:206-12. https://doi.org/10.1016/j.addr.2012.09.033
Mandal AK. Gold nanoparticles as theranostic delivery system in combating various diseases. In Book: Anatolyivna TV, Editor. "Research advances in Microbiology and Biotechnology Vol. 6". India-United Kingdom: Book Publisher International 2023; cp 8, pp 100-128. https://doi.org/10.9734/bpi/ramb/v6/5933B
Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, Fisher PB. Gene therapies for cancer: Strategies, challenges and successes. J Cell Physiol 2015; 230(2):259-271. https://doi.org/10.1002/jcp.24791 PMid:25196387 PMCid:PMC4363073
Perez E. American pharmaceutical partners announces presentation of abraxane survival data. In:22nd annual Miami Breast Cancer Conference; Miami:FL.
Reshma PL, Unnikrishnan BS, Preethi GU, Syama HP, Archana MG, Remya K, et al. Overcoming drug-resistance in lung cancer cells by paclitaxel loaded galactoxyloglucan nanoparticles. Int J Biol Macromol. 2019; 136:266-74. https://doi.org/10.1016/j.ijbiomac.2019.06.075 PMid:31201909
Mandal AK, Joardar A. Manganese nanomaterials as delivery system in combating diseases. Int J Curr Res. 2021; 13(10):19306-15.
Lippert TH, Ruoff HJ, Volm M. Intrinsic and acquired drug resistance in malignant tumors: The main reason for therapeutic failure. Arzneimittelforschung. 2008; 58:261-64. https://doi.org/10.1055/s-0031-1296504 PMid:18677966
Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: An overview. Cancers (Basel). 2014; 6(3):1769-92. https://doi.org/10.3390/cancers6031769 PMid:25198391 PMCid:PMC4190567
Du B, Shim J. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016; 21:965. https://doi.org/10.3390/molecules21070965 PMid:27455225 PMCid:PMC6273543
Elaskalani O, Razak NBA, Falaska M, Metharam P. Epithelial-mesenchymal transition as a therapeutic target for overcoming chemoresistance in pancreatic cancer. World J Gastrointestinal Oncol. 2017; 9:37-41. https://doi.org/10.4251/wjgo.v9.i1.37 PMid:28144398 PMCid:PMC5241525
Islam SU, Shehzad A, Sonn JK, Lee YS. PRPF over-expression induces drug resistance through actin cytoskeleton rearrangement and epithelial-mesenchymal transition. Oncotarget. 2017; 8:56659-71. https://doi.org/10.18632/oncotarget.17855 PMid:28915620 PMCid:PMC5593591
Yang J, Yu Y, Liu W, Li Z, Wei Z, Jiang R. Microtubule-associated protein tau is associated with the resistance to docetaxel in prostate cancer cell lines. Res Rep Urol. 2017; 9: 71-7. https://doi.org/10.2147/RRU.S118966 PMid:28507979 PMCid:PMC5428793
Suzawa K, Offin M, Schoenfeld AJ, Plodkowski AJ, Odintsov I, Lu D, et al. Acquired MET Exon 14 alteration drives secondary resistance to epidermal growth factor receptor tyrosine kinase inhibitor in EGFR-mutated lung cancer. JCO Precis Oncol. 2019; 3:1-8. https://doi.org/10.1200/PO.19.00011 PMid:31157314 PMCid:PMC6541452
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Re-visiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018; 18(7):452-64. https://doi.org/10.1038/s41568-018-0005-8 PMid:29643473 PMCid:PMC6622180
Hu T, Li Z, Gao CY, Cho CH. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol. 2016; 22:6876-89. https://doi.org/10.3748/wjg.v22.i30.6876 PMid:27570424 PMCid:PMC4974586
Kim SJ, Kim S, Kim DW, Kim M, Keam B, Kim TM, et al. Alterations in PD-L1 expression associated with acquisition of resistance to ALK inhibitors in ALK-rearranged lung cancer. Cancer Res Treat. 2019; 51(3):1231-40. https://doi.org/10.4143/crt.2018.486 PMid:30653748 PMCid:PMC6639241
Wang S, Meng Y, Li C, Qian M, Huang R. Receptor mediated drug delivery systems targeting to glioma. Nanomater. 2016; 6:3. https://doi.org/10.3390/nano6010003 PMid:28344260 PMCid:PMC5302535
Dagogo-Jack I, Shaw AT. Tumor heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018; 15:81-94. https://doi.org/10.1038/nrclinonc.2017.166 PMid:29115304
Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G, Ahronian LG, et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 2016; 6(2):147-53. https://doi.org/10.1158/2159-8290.CD-15-1283 PMid:26644315 PMCid:PMC4744519
Mansoori B, Mahammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull. 2017; 7:339-48. https://doi.org/10.15171/apb.2017.041 PMid:29071215 PMCid:PMC5651054
Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC. New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater. 2009; 19:1553-66. https://doi.org/10.1002/adfm.200801655
Sana S, Ghosh S, Das N, Sarkar S, Mandal AK. Vesicular melatonin efficaciently downregulates sodium fluoride-induced rat hepato and broncho TNF-α, TGF-β expressions and associated oxidative injury: A comparative study of liposomal and nanocapsulated forms. Int J Nanomed. 2017; 12:4059-71. https://doi.org/10.2147/IJN.S124119 PMid:28603418 PMCid:PMC5457176
Mandal AK. Dendrimers in targeted drug delivery applications: A review of diseases and cancer. Int J Polym Mater Polym Biomater. 2021; 70(4):287-97. https://doi.org/10.1080/00914037.2020.1713780
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Rel. 2000; 65:271-84. https://doi.org/10.1016/S0168-3659(99)00248-5 PMid:10699287
Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Res. 2011; 63:131-35. https://doi.org/10.1016/j.addr.2010.03.011 PMid:20304019
Mandal AK, Ghosh D, Sarkar S, Ghosh A, Swarnakar S, Das N. Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls diethylnitrosamine induced carcinoma. Nanomed (Lond). 2014; 9(15):2323-37. https://doi.org/10.2217/nnm.14.11 PMid:24593002
Jaracz S, Chen J, Kuznetsova LV, Ojima I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem. 2005; 13:5043-54. https://doi.org/10.1016/j.bmc.2005.04.084 PMid:15955702
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014; 66:2-25. https://doi.org/10.1016/j.addr.2013.11.009 PMid:24270007 PMCid:PMC4219254
Ruoslahti E. Specialization of tumor vasculature. Nat Rev Cancer. 2002; 2(2):83-90. https://doi.org/10.1038/nrc724 PMid:12635171
Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med. 2017; 14:228-41. https://doi.org/10.20892/j.issn.2095-3941.2017.0052 PMid:28884040 PMCid:PMC5570600
Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol Oncol. 2021; 14:85. https://doi.org/10.1186/s13045-021-01096-0 PMid:34059100 PMCid:PMC8165984
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020; 7:193. https://doi.org/10.3389/fmolb.2020.00193 PMid:32974385 PMCid:PMC7468194
Hosseini M, Haji-Fatahaliha M, Jadidi-Niaragh F, Majidi J, Yousefi M. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artific Cells Nanomed Biotechnol. 2016; 44:1051-61. https://doi.org/10.3109/21691401.2014.998830 PMid:25612903
Large DE, Soucy JR, Hebert J, Auguste DT. Advances in receptor-mediated, tumor-targeted drug delivery. Adv Ther. 2019; 2:1800091. https://doi.org/10.1002/adtp.201800091
Wei X, Song M, Li W, Huang J, Yang G, Wang Y. Multifunctional nanoplatforms co-delivering combinatorial dual-drug for eliminating cancer multidrug resistance. Theranos. 2021; 11(13):6334-54. https://doi.org/10.7150/thno.59342 PMid:33995661 PMCid:PMC8120214
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduc Target Ther. 2018; 3:7. https://doi.org/10.1038/s41392-017-0004-3 PMid:29560283 PMCid:PMC5854578
Mandal AK, Das S, Mitra M, Chakrabarti RN, Chatterjee M, Das N. Vesicular flavonoid in combating diethylnitrosamine induced hepatocarcinoma in rat model. J Experiment Therapeut Oncol. 2008; 7(2):123-33.
Ghawanmeh AA, Ali GAM, Algarni H, Sarkar SM, Chong KF. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res. 2019; https://doi.org/10.1007/s 12274-019-2300-4.
Ayazi H, Akhavan O, Raoufi M, Varshochian R, Motlagh NSH, Atyabi F. Graphene aerogel nanoparticles for in-situ loading / pH sensitive releasing anticancer drugs. Colloids and Surfaces B: Biointerfaces. 2020; 186:110712. https://doi.org/10.1016/j.colsurfb.2019.110712 PMid:31846894
Babavalian A, Tekie FSM, Ayazi H, Ranjbar S, Varshochian R, Rad-Malelkshahi M, Akhavan O, Dinarvand R. Reduced polydopamine coated graphene for delivery of Hset1 antisense as a photothermal and gene therapy of breast cancer. J Drug Deliv Sci Technol. 2022; 73: 103462. https://doi.org/10.1016/j.jddst.2022.103462
Wu H, Zhao Y, Mu X, Wu H, Chen L, Liu W, Mu Y, Liu J, Wei X. A silica polymer composite nanosystem for tumor targeted imaging and p53 gene therapy of lung cancer. J Biomater Sci, Polymer Edition. 2015; 26(6):384-400. https://doi.org/10.1080/09205063.2015.1012035 PMid:25624096
Assali A, Akhavan O, Adeli M, Razzazan S, Dinavand R, Zanganesh S, Soleimani M, Dinarvand M, Atyabi F. Multifunctional core-shell nanoplatforms (gold@graphene oxide) with mediated NIR thermal therapy to promote miRNA delivery. Nanomed: Nanothechnol Biol Med. 2018; 14: 1891-1903. https://doi.org/10.1016/j.nano.2018.05.016 PMid:29885900
Rezaei A, Akhavan O, Hashemi E, Shamsara M. Toward chemical perfection of graphene-based gene carrier via Ugi multicomponent assembly process. Macromolecules. 2016; 17: 2963-2971. https://doi.org/10.1021/acs.biomac.6b00767 PMid:27499268
Hatamie S, Akhavan O, Sadrnezhaad SK, Ahadian MM, Shirolkar MM, Wang HQ. Curcumin-reduced graphene oxide sheets and theireffects on human breast cancer cells. Mater Sci Eng C. 2015; 55: 482-489. https://doi.org/10.1016/j.msec.2015.05.077 PMid:26117780
Majidzadeh H, Araj-Khodaei M, Ghaffari M, Torbati M, Dolatabadi JEN, Hamblin MR. Nano-based delivery systems for berberine: A modern anti-cancer herbal medicine. Colloids Surfaces B: Biointerfaces. 2020; 194: 111188. https://doi.org/10.1016/j.colsurfb.2020.111188 PMid:32540763
Abdolahad M, Janmaleki M, Mohajerzadeh S, Akhavan O, Abbasi S. Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells. Mater Sci Eng C. 2013; 33: 1498-1505. https://doi.org/10.1016/j.msec.2012.12.052 PMid:23827601
Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem. 2012; 22: 13773-81. https://doi.org/10.1039/c2jm31396k
Mirza Z, Karim S. Nanoprticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin Cancer Biol. 2021; 69: 226-37. https://doi.org/10.1016/j.semcancer.2019.10.020 PMid:31704145
Aoi A, Watanabe Y, Mori S, Takahashi M, Vassaux G, Kodama T. Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/micro bubbles and ultrasound. Ultrasound Med Biol. 2008; 34(3):425-34. https://doi.org/10.1016/j.ultrasmedbio.2007.09.004 PMid:18096302
Mahato M, Patra S, Gogoi M. Herbal nanocarriers for cancer therapy. In Book: Yata VK, Ranjan S, Dasgupta N, Lichtfouse E, Editors. "Nanopharmaceuticals: Principles and Applications Vol. 2, Environmental chemistry for a sustainable world 47". Springer Nature Switzerland AG. 2021, cp 2, pp 41-75. https://doi.org/10.1007/978-3-030-44921-6_2
Mandal AK. Mesoporous silica nanoparticles as delivery system against diseases. Int J Recent Sci Res. 2018; 9(9C):28817-25.
Tang M, Russell PJ, Khatri A. Magnetic nanoparticles: Prospects in cancer imaging and therapy. Discov Med. 2007; 7(38):68-74.
Raman S, Murugaiyah V, Parumasivam T. Andrographis paniculata dosage forms and advances in nanoparticulate delivery systems: An overview. Molecules. 2022; 27: 6164. https://doi.org/10.3390/molecules27196164 PMid:36234698 PMCid:PMC9570691
Akhavan O, Meidanchi A, Ghaderi E, Khoci S. Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer. J Mater Chem B. 2014; 2:3306-3314. https://doi.org/10.1039/c3tb21834a PMid:32261593
Akhavan O, Ghaderi E. Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small. 2013; 9(21): 3593-3601. https://doi.org/10.1002/smll.201203106 PMid:23625739
Kim SH, Lee JE, Sharker SM, Jeong JH, In I, Park SY. In vitro and in vivo tumor targeted photothermal cancer therapy using functionalized graphene nanoparticles. Biomacromolecules. 2015; 16: 3519-3529. https://doi.org/10.1021/acs.biomac.5b00944 PMid:26451914
Akhavan O, Ghaderi E, Emamy H. Nontoxic concentrations of PEGylated graphene nanoribbons for selective cancer cell imaging and photothermal therapy. J Mater Chem. 2012; 22: 20626-33. https://doi.org/10.1039/c2jm34330d
Gu Z, Zhu S, Yan L, Zhao F, Zhao Y. Graphene-based smart platforms for combined cancer therapy. Adv Mater. 2019; 31: 1800662. https://doi.org/10.1002/adma.201800662 PMid:30039878
Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomater. 2014; 35(18):4969-85. https://doi.org/10.1016/j.biomaterials.2014.03.001 PMid:24674460
Hu X, Tan H, Wang X, Chen P. Surface functionalization of hydrogel by thiol-yne click chemistry for drug delivery. Colloids Surf A Physicochem Eng Asp. 2016; 489:297-304. https://doi.org/10.1016/j.colsurfa.2015.11.007
Mahajan S, Pathakar A, Kuche K, Maheshwari R, Deb PK, Kalia K, et al. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int J Pharm. 2018; 548(1):540-58. https://doi.org/10.1016/j.ijpharm.2018.07.027 PMid:29997043
Loh KP, Ho D, Chiu GNC, Leong DT, Pastorin G, Chow EKH. Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv Mater. 2018; 30(47):e1802368. https://doi.org/10.1002/adma.201802368 PMid:30133035
Taghavi S, Nia AH, Abnous K, Ramezani M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int J Pharm. 2017; 516:301-12. https://doi.org/10.1016/j.ijpharm.2016.11.027 PMid:27840158
Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun. 2018; 9:1440. https://doi.org/10.1038/s41467-018-03903-8 PMid:29650959 PMCid:PMC5897348
Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, et al. Magnetoferritin nanoparticles for targeting and visualizing tumor tissues. Nat Nanotechnol. 2012; 7(7):459-64. https://doi.org/10.1038/nnano.2012.90 PMid:22706697
Alexander A, Agrawal M, Yadav P, Jeswani G, Verma VS, Siddique S, et al. Chapter-17-Targeted delivery through carbon nanomaterials: Applications in bioactive delivery systems. Edited by Singh MR, Singh D, Kanwar JR, Chauhan NSBT- A and A in the D of NC for B and BA. Academic Press. 2020, pp.509-24. https://doi.org/10.1016/B978-0-12-819666-3.00017-1 PMid:32966106
Pei X, Zhu Z, Gan Z, Chen J, Zhang X, Cheng X, et al. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep. 2020; 10:1-15. https://doi.org/10.1038/s41598-020-59624-w PMid:32066812 PMCid:PMC7026168
Qian R, Maiti D, Zhong J, Xiong S, Zhou H, Zhu R, et al. Multi functional nano-graphene based nano-composites for multimodal imaging guided combined radioisotope therapy and chemotherapy. Carbon NY. 2019; 149:55-62. https://doi.org/10.1016/j.carbon.2019.04.046
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol. 2022; 15:132. https://doi.org/10.1186/s13045-022-01320-5 PMid:36096856 PMCid:PMC9469622
Mandal AK. Mitochondrial targeting of potent nanoparticulated drugs in combating diseases. J Biomater Appl. 2022; 37(4):614-33. https://doi.org/10.1177/08853282221111656 PMid:35790487
Mandal AK, Sarkar S. Aluminium nanomaterials as delivery system in combating diseases. Int J Curr Res. 2023; 15(01):23431-34.
Mandal AK. Carbon nanotubes as delivery system in combating diseases. Int J Sci Res. 2018; 7(8):1244-50.
Mandal AK. Iron oxide nanoparticles as delivery system against diseases. Int J Curr Res. 2018; 10(6):69957-65.
Mandal AK. Gold nanoparticles as delivery system against diseases. Book. Lativa, European Union: LAP LAMBERT Academic Publishing (SIA OmniScriptum Publishing). 2018; p.1-45.
Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z. Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater. 2016; 2016:1087250. https://doi.org/10.1155/2016/1087250 PMid:27398083 PMCid:PMC4936496
Biotin-Fact sheet for health professionals (https://ods.od.nih.gov/factsheets/Biotin-Health Professionals/). Office of dietary supplements, US National Institutes of Health. December 8, 2017. Retrieved February 25, 2018.
Institute of Medicine (1998). Biotin (http://www.nap.edu/open book. php? record_id=6015 and page=374). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: The National Academies Press. pp. 374-389. Retrieved August 29, 2017.
Biotin (http://lpi. oregonstate.edu/mic/vitamins/biotin). Micronutrient information center, Linus Pauling Institute, Oregon State University, Corvallis, OR. October 21, 2015. Retrieved January 16, 2018.
Penberthy WT, Sadri M, Zempleni J. Biotin. In BP Marriott, DF Birst, VA Stallings, AA Yates (eds.). Present knowledge in nutrition, Eleventh edition. London, United Kingdom: Academic Press (Elsevier). 2020; pp. 289-304. https://doi.org/10.1016/B978-0-323-66162-1.00017-2
Fam KT, Callot M, Klymchenko AS. Probing biotin receptors in cancer cells with rationally designed fluorogenic squaraine dimmers. Chem Sci. 2020; 11:8240-48. https://doi.org/10.1039/D0SC01973A PMid:34094177 PMCid:PMC8163205
Yan C, Liang N, Li Q, Yan P, Sun S. Biotin and arginine modified hydroxypropyl-β-cyclodextrin nanoparticles as novel drug delivery systems for paclitaxel. Carbohydr Polym. 2019; 216:129-39. https://doi.org/10.1016/j.carbpol.2019.04.024 PMid:31047049
Gupta GS. Gupta GS (ed.). Animal lectins: Form, functions and clinical applications. Wien: Springer-Verlag, 2012. Doi: 10.1007/978-3-7091-1065-2. https://doi.org/10.1007/978-3-7091-1065-2
ASGR1 cell lines. Human Protein Atlas.
Locksley RM, Killen N, Lenardo MJ. The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell. 2001; 104(4):487-501. https://doi.org/10.1016/S0092-8674(01)00237-9 PMid:11239407
Hehlgans T, Pfeffer K. The intriguing biology of the tumor necrosis factor / tumor necrosis factor receptor superfamily: Players, rules and the games. Immunol. 2005; 115(1):1-20. https://doi.org/10.1111/j.1365-2567.2005.02143.x PMid:15819693 PMCid:PMC1782125
Gravestein LA, Borst J. Tumor necrosis factor receptor family members in the immune system. Semin Immunol. 1998; 10(6):423-34. https://doi.org/10.1006/smim.1998.0144 PMid:9826575
Published
Abstract Display: 468
PDF Downloads: 548
PDF Downloads: 341 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.