Eye Drops to smart gels: The future of ocular drug delivery

Authors

Abstract

This review paper assesses traditional and modern methods to enhance ocular drug delivery. Various techniques available to administer drugs include topical application, intracameral injections, intravitreal injections, and subconjunctival injections. In Addition, this review discusses eye anatomy and the associated challenges with effectively delivering medications to this organ. It emphasizes recent progress in Ophthalmic drug delivery methods, such as on-situ gel systems, nanoparticles, liposomes, and dendrimers, which improve drug retention, bioavailability, and therapeutic efficacy. The article also explores potential improvements in drug delivery for treating eye disorders by utilizing nanotechnology and stimulus-responsive gels to improve patient outcomes. The goal is to achieve targeted and continuous release.

Keywords: Ocular drug delivery, in-situ gel, nano formulation, prolonged release

Keywords:

Ocular drug delivery, in-situ gel, nano formulation, prolong release

DOI

https://doi.org/10.22270/jddt.v15i5.7115

Author Biographies

Rajveer Bhaskar , Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Monika Ola , Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Vaishnavi Madwe, Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Rohini Tikhe , Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Arun Pawar , Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Shivani Khade , Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Sunil Shinde , Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

References

1. Vyas U, Gehalot N, Jain V, Mahajan S. A Review on in situ gelling system for ophthalmic drug delivery. Current Research in Pharmaceutical Sciences. 2021:98-106. https://doi.org/10.24092/CRPS.2021.110402

2. Lynch CR. Development and characterization of a solid lipid nanoparticle-loaded thermosensitive gel for the delivery of timolol to the eye: Department of Ophthalmology, Faculty of Health Sciences, University of the …; 2022.

3. Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming Treatment Challenges in Posterior Segment Diseases with Biodegradable Nano-Based Drug Delivery Systems. Pharmaceutics. 2023;15(4):1094. https://doi.org/10.3390/pharmaceutics15041094 PMid:37111579 PMCid:PMC10142934

4. Bertelli E. Anatomy of the eye and human visual system: Piccin Nuova Libraria spa; 2019.

5. Nishida T, Saika S, Morishige N. Cornea and sclera: anatomy and physiology. Cornea. 2017;1:1-22. https://doi.org/10.1097/ICO.0000000000001342 PMid:28902015

6. Dua HS, Said DG. Ocular Surface Epithelium: Applied Anatomy. Corneal Regeneration: Therapy and Surgery. 2019:175-90. https://doi.org/10.1007/978-3-030-01304-2_12

7. Angayarkanni N, Coral K, Bharathi Devi SR, Saijyothi AV. The biochemistry of the eye. Pharmacology of Ocular Therapeutics. 2016:83-157. https://doi.org/10.1007/978-3-319-25498-2_5

8. Reh TA. The development of the retina. Ryan's Retina E-Book. 2017:375.

9. Reichenbach A, Bringmann A. Glia of the human retina. Glia. 2020;68(4):768-96. https://doi.org/10.1002/glia.23727 PMid:31793693

10. Ahmed S, Amin MM, Sayed S. Ocular drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24(2):66. https://doi.org/10.1208/s12249-023-02516-9 PMid:36788150

11. Zeno R, Teall AM. Evidence-Based Assessment of the Eyes. Evidence-Based Physical Examination: Best Practices for Health and Well-Being Assessment. 2024:367. https://doi.org/10.1891/9780826155320.0015

12. Ranganath SH, Thanuja M, Anupama C, Manjunatha T. Systemic drug delivery to the posterior segment of the eye: Overcoming blood-retinal barrier through smart drug design and nanotechnology. Immobilization Strategies: Biomedical, Bioengineering and Environmental Applications. 2021:219-69. https://doi.org/10.1007/978-981-15-7998-1_6

13. Diwan P, Jangde R, Khunte S, Bhardwaj H, Suresh PK. Ocular drug delivery system: barrier for drug permeation, method to overcome barrier. Drug Development Life Cycle: IntechOpen; 2022. https://doi.org/10.5772/intechopen.105401

14. Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, et al. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. International journal of pharmaceutics. 2021;607:120924. https://doi.org/10.1016/j.ijpharm.2021.120924 PMid:34324989 PMCid:PMC8579814

15. Panda P, Mohanty S, Gouda SR, Mohapatra R. Advances in Nanomedicine for Retinal Drug Delivery: Overcoming Barriers and Enhancing Therapeutic Outcomes. Journal of Drug Targeting. 2024(just-accepted):1-49. https://doi.org/10.1080/1061186X.2024.2443144 PMid:39694681

16. Khode PD, Dongare PA. In situ gel: A Review of Pharmaceutical and Biological Evaluation and Approaches. Research Journal of Pharmaceutical Dosage Forms and Technology. 2019;11(3):217-26. https://doi.org/10.5958/0975-4377.2019.00037.5

17. Mishra D, Gade S, Glover K, Sheshala R, Singh TRR. Vitreous humor: composition, characteristics and implication on intravitreal drug delivery. Current eye research. 2023;48(2):208-18. https://doi.org/10.1080/02713683.2022.2119254 PMid:36036478

18. Shalaby WS, Shankar V, Razeghinejad R, Katz LJ. Current and new pharmacotherapeutic approaches for glaucoma. Expert Opinion on Pharmacotherapy. 2020;21(16):2027-40. https://doi.org/10.1080/14656566.2020.1795130 PMid:32717157

19. Agrahari V, Agrahari V, Hung W-T, Christenson LK, Mitra AK. Composite nanoformulation therapeutics for long-term ocular delivery of macromolecules. Molecular pharmaceutics. 2016;13(9):2912-22. https://doi.org/10.1021/acs.molpharmaceut.5b00828 PMid:26828415

20. García-Caballero C, Prieto-Calvo E, Checa-Casalengua P, García-Martín E, Polo-Llorens V, García-Feijoo J, et al. Six month delivery of GDNF from PLGA/vitamin E biodegradable microspheres after intravitreal injection in rabbits. Eur J Pharm Sci. 2017;103:19-26. https://doi.org/10.1016/j.ejps.2017.02.037 PMid:28259830

21. Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, et al. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC advances. 2020;10(46):27835-55. https://doi.org/10.1039/D0RA04971A PMid:35516960 PMCid:PMC9055630

22. Shelley H, Annaji M, Grant M, Fasina O, Babu RJ. Sustained release biodegradable microneedles of difluprednate for delivery to posterior eye. Journal of Ocular Pharmacology and Therapeutics. 2022;38(6):449-58. https://doi.org/10.1089/jop.2021.0089 PMid:35167767

23. Mitchcell N, Oliver J. Feline Ophthalmology. The manual: Grupo Asís Biomedia SL; 2021.

24. Spiess BM. Ophthalmic Pharmacology. Ophthalmic Disease in Veterinary Medicine: CRC Press; 2018. p. 39-75. https://doi.org/10.1201/b20810-2

25. Zhou X, Zhou D, Zhang X, Liao L, Wu P, Chen B, et al. Research progress of nano delivery systems for intraocular pressure lowering drugs. Heliyon. 2024. https://doi.org/10.1016/j.heliyon.2024.e32602 PMid:39005914 PMCid:PMC11239466

26. Sheppard J, Garg S, Lievens C, Brandano L, Wirostko B, Korenfeld M, et al. Iontophoretic dexamethasone phosphate compared to topical prednisolone acetate 1% for noninfectious anterior segment uveitis. American Journal of Ophthalmology. 2020;211:76-86. https://doi.org/10.1016/j.ajo.2019.10.032 PMid:31726034

27. Rajan S, Sathiyanarayanan M, Prashant S, Prashant S, Nataraj P, editors. Prevention of avoidable blindness and improving eye healthcare system in india. 2018 10th International Conference on Communication Systems & Networks (COMSNETS); 2018: IEEE. https://doi.org/10.1109/COMSNETS.2018.8328292

28. Marjanovic I. The optic nerve in glaucoma. The Mystery of Glaucoma. 2011. https://doi.org/10.5772/19811

29. Umezurike BC, Akhimien MO, Udeala O, Green UG, Okpechi-Agbo U, Ohaeri MU. Primary open angle glaucoma: the pathophysiolgy, mechanisms, future diagnostic and therapeutic directions. Ophthalmology Research: An International Journal. 2019;10(3):1-17. https://doi.org/10.9734/or/2019/v10i330106

30. Weinreb RN, Leung CK, Crowston JG, Medeiros FA, Friedman DS, Wiggs JL, et al. Primary open-angle glaucoma. Nature reviews Disease primers. 2016;2(1):1-19. https://doi.org/10.1038/nrdp.2016.67 PMid:27654570

31. Korva-Gurung I. Neovascular age-related macular degeneration: incidence, prevalence, treatment outcomes and quality of life. 2024.

32. Deng Y, Qiao L, Du M, Qu C, Wan L, Li J, et al. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes & diseases. 2022;9(1):62-79. https://doi.org/10.1016/j.gendis.2021.02.009 PMid:35005108 PMCid:PMC8720701

33. Hernández-Zimbrón LF, Zamora-Alvarado R, Ochoa-De la Paz L, Velez-Montoya R, Zenteno E, Gulias-Cañizo R, et al. Age‐related macular degeneration: new paradigms for treatment and management of AMD. Oxidative medicine and cellular longevity. 2018;2018(1):8374647. https://doi.org/10.1155/2018/8374647 PMid:29484106 PMCid:PMC5816845

34. Joseph A. Tissue characteristics in retinal surface disorders: University of Split. School of Medicine. Ophthalmology; 2019.

35. Shivaji S. Antimicrobial Resistance of the Diseased Human Eye: Conjunctivitis. Antimicrobial Resistance of the Human Eye: CRC Press. p. 372-417. https://doi.org/10.1201/9781003451105-13

36. Azari AA, Arabi A. Conjunctivitis: a systematic review. Journal of ophthalmic & vision research. 2020;15(3):372. https://doi.org/10.18502/jovr.v15i3.7456 PMid:32864068 PMCid:PMC7431717

37. Mukherjee P, Bandyopadhyay P. Infectious Diseases of the Eye: Wolters kluwer india Pvt Ltd; 2020.

38. Dupuis P, Prokopich CL, Hynes A, Kim H. A contemporary look at allergic conjunctivitis. Allergy, Asthma & Clinical Immunology. 2020;16:1-18. https://doi.org/10.1186/s13223-020-0403-9 PMid:31993069 PMCid:PMC6975089

39. Nalini M, Raghavulu B, Annapurna A, Avinash P, Chandi V, Swathi N. Correlation of various serum biomarkers with the severity of diabetic retinopathy. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2017;11:S451-S4. https://doi.org/10.1016/j.dsx.2017.03.034 PMid:28420575

40. Mansour SE, Browning DJ, Wong K, Flynn Jr HW, Bhavsar AR. The evolving treatment of diabetic retinopathy. Clinical Ophthalmology. 2020:653-78. https://doi.org/10.2147/OPTH.S236637 PMid:32184554 PMCid:PMC7061411

41. Global estimates on the number of people blind or visually impaired by glaucoma: A meta-analysis from 2000 to 2020. Eye. 2024:1-11.

42. Soliman SE, Racher H, Zhang C, MacDonald H, Gallie BL. Genetics and molecular diagnostics in retinoblastoma-an update. The Asia-Pacific Journal of Ophthalmology. 2017;6(2):197-207.

43. Donovan C, Arenas E, Ayyala RS, Margo CE, Espana EM. Fungal keratitis: Mechanisms of infection and management strategies. Survey of ophthalmology. 2022;67(3):758-69. https://doi.org/10.1016/j.survophthal.2021.08.002 PMid:34425126 PMCid:PMC9206537

44. Boomiraj H, Mohankumar V, Lalitha P, Devarajan B. Human corneal microRNA expression profile in fungal keratitis. Investigative ophthalmology & visual science. 2015;56(13):7939-46. https://doi.org/10.1167/iovs.15-17619 PMid:26720440

45. Maulvi FA, Shetty KH, Desai DT, Shah DO, Willcox MD. Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. International journal of pharmaceutics. 2021;608:121105. https://doi.org/10.1016/j.ijpharm.2021.121105 PMid:34537269

46. Gibson M. Ophthalmic dosage forms. Pharmaceutical preformulation and formulation: CRC Press; 2016. p. 443-67. https://doi.org/10.3109/9781420073188-15 PMCid:PMC5154371

47. Rahić O, Tucak A, Omerović N, Sirbubalo M, Hindija L, Hadžiabdić J, et al. Novel drug delivery systems fighting glaucoma: Formulation obstacles and solutions. Pharmaceutics. 2020;13(1):28. https://doi.org/10.3390/pharmaceutics13010028 PMid:33375224 PMCid:PMC7824381

48. Gupta B, Mishra V, Gharat S, Momin M, Omri A. Cellulosic polymers for enhancing drug bioavailability in ocular drug delivery systems. Pharmaceuticals. 2021;14(11):1201. https://doi.org/10.3390/ph14111201 PMid:34832983 PMCid:PMC8621906

49. Dargude S, Dhake P, Hole A, Pinjari RR, Hingne S. A REVIEW ON CURCUMIN LOADED NANO DRUG DELIVERY SYSTEMS: NANO FORMULATIONS AND RECENT ADVANCES.

50. Wang X, Zhang Y, Huang J, Tian C, Xia M, Liu L, et al. A novel phytantriol-based lyotropic liquid crystalline gel for efficient ophthalmic delivery of pilocarpine nitrate. AAPS PharmSciTech. 2019;20:1-14. https://doi.org/10.1208/s12249-018-1248-0 PMid:30603986

51. Mariz M, Murta J, Gil M, Ferreira P. An ocular insert with zero-order extended delivery: release kinetics and mathematical models. European Journal of Pharmaceutics and Biopharmaceutics. 2022;181:79-87. https://doi.org/10.1016/j.ejpb.2022.10.023 PMid:36351492

52. Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Advances in colloid and interface science. 2021;288:102342. https://doi.org/10.1016/j.cis.2020.102342 PMid:33444845

53. Trujillo-de Santiago G, Sharifi R, Yue K, Sani ES, Kashaf SS, Alvarez MM, et al. Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials. 2019;197:345-67. https://doi.org/10.1016/j.biomaterials.2019.01.011 PMid:30690421 PMCid:PMC6687460

54. Chaudhari P, Ghate VM, Lewis SA. Next-generation contact lenses: Towards bioresponsive drug delivery and smart technologies in ocular therapeutics. European Journal of Pharmaceutics and Biopharmaceutics. 2021;161:80-99. https://doi.org/10.1016/j.ejpb.2021.02.007 PMid:33607239

55. Kempe S, Mäder K. In situ forming implants-an attractive formulation principle for parenteral depot formulations. Journal of controlled release. 2012;161(2):668-79. https://doi.org/10.1016/j.jconrel.2012.04.016 PMid:22543012

56. Kushwaha SK, Saxena P, Rai A. Stimuli sensitive hydrogels for ophthalmic drug delivery: A review. International journal of pharmaceutical investigation. 2012;2(2):54. https://doi.org/10.4103/2230-973X.100036 PMid:23119233 PMCid:PMC3482766

57. Taylor MJ, Tomlins P, Sahota TS. Thermoresponsive gels. Gels. 2017;3(1):4. https://doi.org/10.3390/gels3010004 PMid:30920501 PMCid:PMC6318636

58. Ahmed B, Jaiswal S, Naryal S, Shah RM, Alany RG, Kaur IP. In situ gelling systems for ocular drug delivery. Journal of Controlled Release. 2024;371:67-84. https://doi.org/10.1016/j.jconrel.2024.05.031 PMid:38768662

59. Liu R, Sun L, Fang S, Wang S, Chen J, Xiao X, et al. Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: development, characterization, in vitro permeation and in vivo pharmacokinetic studies. Pharmaceutical development and technology. 2016;21(5):576-82. https://doi.org/10.3109/10837450.2015.1026607 PMid:26024239

60. Ameeduzzafar, Ali J, Fazil M, Qumbar M, Khan N, Ali A. Colloidal drug delivery system: amplify the ocular delivery. Drug delivery. 2016;23(3):700-16. https://doi.org/10.3109/10717544.2014.923065 PMid:24892625

61. Pal P, Sambhakar S, Paliwal S. Revolutionizing Ophthalmic Care: A Review of Ocular Hydrogels from Pathologies to Therapeutic Applications. Current Eye Research. 2024:1-17. https://doi.org/10.1080/02713683.2024.2396385 PMid:39261982

62. Pandey M, Choudhury H, binti Abd Aziz A, Bhattamisra SK, Gorain B, Su JST, et al. Potential of Stimuli-Responsive In Situ Gel System for Sustained Ocular Drug Delivery: Recent Progress and Contemporary Research. Polymers. 2021;13(8):1340. https://doi.org/10.3390/polym13081340 PMid:33923900 PMCid:PMC8074213

63. Liu H, Jian R, Chen H, Tian X, Sun C, Zhu J, et al. Application of biodegradable and biocompatible nanocomposites in electronics: current status and future directions. Nanomaterials. 2019;9(7):950. https://doi.org/10.3390/nano9070950 PMid:31261962 PMCid:PMC6669760

64. Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. Application of nanotechnology in drug delivery. 2014;1:1-50. https://doi.org/10.5772/58459

65. Ana Rd, Fonseca J, Karczewski J, Silva AM, Zielińska A, Souto EB. Lipid-based nanoparticulate systems for the ocular delivery of bioactives with anti-inflammatory properties. International Journal of Molecular Sciences. 2022;23(20):12102. https://doi.org/10.3390/ijms232012102 PMid:36292951 PMCid:PMC9603520

66. Silva HD, Cerqueira MA, Vicente AA. Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. Journal of Food Engineering. 2015;167:89-98. https://doi.org/10.1016/j.jfoodeng.2015.07.037

67. Dukovski BJ, Juretić M, Bračko D, Randjelović D, Savić S, Moral MC, et al. Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment. International Journal of Pharmaceutics. 2020;576:118979. https://doi.org/10.1016/j.ijpharm.2019.118979 PMid:31870964

68. Lopes CM, Bettencourt C, Rossi A, Buttini F, Barata P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. International journal of pharmaceutics. 2016;510(1):144-58. https://doi.org/10.1016/j.ijpharm.2016.05.016 PMid:27173823

69. Fathi-Karkan S, Ramsheh NA, Arkaban H, Narooie-Noori F, Sargazi S, Mirinejad S, et al. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. International Journal of Pharmaceutics. 2024;658:124226. https://doi.org/10.1016/j.ijpharm.2024.124226 PMid:38744414

70. Tarannum N, Suhani, Kumar D. Synthesis, characterization and applications of copolymer of β-cyclodextrin: a review. Journal of Polymer Research. 2020;27:1-30. https://doi.org/10.1007/s10965-020-02058-9

71. Asyikin binti Abdul Aziz Z, Ahmad A, Hamidah Mohd-Setapar S, Hassan H, Lokhat D, Amjad Kamal M, et al. Recent advances in drug delivery of polymeric nano-micelles. Current drug metabolism. 2017;18(1):16-29. https://doi.org/10.2174/1389200217666160921143616 PMid:27654898

72. Nayak K, Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomedicine & pharmacotherapy. 2018;107:1564-82. https://doi.org/10.1016/j.biopha.2018.08.138 PMid:30257375

73. Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug delivery. 2010;17(7):467-89. https://doi.org/10.3109/10717544.2010.483257 PMid:20491540

74. Kumar S, Randhawa JK. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Materials Science and Engineering: C. 2013;33(4):1842-52. https://doi.org/10.1016/j.msec.2013.01.037 PMid:23498204

75. Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. European Journal of Pharmaceutics and Biopharmaceutics. 2018;133:285-308. https://doi.org/10.1016/j.ejpb.2018.10.017 PMid:30463794

76. Liu P. Nanocrystal formulation for poorly soluble drugs. Dissertationes bioscientiarum molecularium Universitatis Helsingiensis in Viikki. 2013:62.

77. Pardhi VP, Verma T, Flora S, Chandasana H, Shukla R. Nanocrystals: an overview of fabrication, characterization and therapeutic applications in drug delivery. Current pharmaceutical design. 2018;24(43):5129-46. https://doi.org/10.2174/1381612825666190215121148 PMid:30767737

78. Lu A. Amphiphilic and thermoresponsive block copolymers based on hydroxypropyl methyl cellulose as nano-carrier of hydrophobic drugs: Université Montpellier; 2020.

79. Arpicco S, Battaglia L, Brusa P, Cavalli R, Chirio D, Dosio F, et al. Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. Journal of Drug Delivery Science and Technology. 2016;32:298-312. https://doi.org/10.1016/j.jddst.2015.09.004

80. Garg G, Saraf S, Saraf S. Cubosomes: an overview. Biological and Pharmaceutical Bulletin. 2007;30(2):350-3. https://doi.org/10.1248/bpb.30.350 PMid:17268078

81. Zembala J, Forma A, Zembala R, Januszewski J, Zembala P, Adamowicz D, et al. Technological Advances in a Therapy of Primary Open-Angle Glaucoma: Insights into Current Nanotechnologies. Journal of Clinical Medicine. 2023;12(18):5798. https://doi.org/10.3390/jcm12185798 PMid:37762739 PMCid:PMC10531576

82. Abdelbary AA, Abd-Elsalam WH, Al-Mahallawi AM. Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: In vitro characterization, ex vivo permeation and in vivo safety assessment. Int J Pharm. 2016;513(1-2):688-96. https://doi.org/10.1016/j.ijpharm.2016.10.006 PMid:27717916

83. Lim LT, Ah-Kee EY, Collins CE. Common eye drops and their implications for pH measurements in the management of chemical eye injuries. Int J Ophthalmol. 2014;7(6):1067-8. https://doi.org/10.4137/OED.S16031 PMid:25002817 PMCid:PMC4076205

84. Gawin-Mikołajewicz A, Nartowski KP, Dyba AJ, Gołkowska AM, Malec K, Karolewicz Be. Ophthalmic nanoemulsions: From composition to technological processes and quality control. Molecular pharmaceutics. 2021;18(10):3719-40. https://doi.org/10.1021/acs.molpharmaceut.1c00650 PMid:34533317 PMCid:PMC8493553

85. Hirata H, Mizerska K, Dallacasagrande V, Rosenblatt MI. Estimating the Osmolarities of Tears During Evaporation Through the "Eyes" of the Corneal Nerves. Invest Ophthalmol Vis Sci. 2017;58(1):168-78. https://doi.org/10.1167/iovs.16-20501 PMid:28114576 PMCid:PMC5256685

86. Cassano R, Di Gioia ML, Trombino S. Gel-based materials for ophthalmic drug delivery. Gels. 2021;7(3):130. https://doi.org/10.3390/gels7030130 PMid:34563016 PMCid:PMC8482217

87. Patil S, Kadam A, Bandgar S, Patil S. Formulation and evaluation of an in situ gel for ocular drug delivery of anticonjunctival drug. Cellulose Chem Technol. 2015;49(1):35-40.

88. Patlolla V, Holbrook W, Gizurarson S, Kristmundsdottir P. Evaluation of in vitro mucoadhesiveness and texture profile analysis of doxycycline in situ hydrogels. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2020;75(1):7-12.

89. Askarkar SS, Gupta KR. Design and Evaluation of Ophthalmic Delivery of Bepotastine Besilate From Eye Drop. Pharmaceutical Methods. 2016;7(2). https://doi.org/10.5530/phm.2016.7.16

90. Bose A, Majumdar S, Halder A. Development and statistical optimization of timolol maleate encapsulated liposome using 32 full factorial design. Proceedings of the Indian National Science Academy. 2025:1-15. https://doi.org/10.1007/s43538-025-00387-1

91. Pavčnik L, Prunk M, Trdan Lušin T, Roškar R. Accelerated Predictive Stability Testing: Accelerating Registration Phase and Application of Reduced Designs for Shelf-Life Determination of Parenteral Drug Product. Pharmaceutics. 2025;17(2):160. https://doi.org/10.3390/pharmaceutics17020160 PMid:40006527 PMCid:PMC11858995

92. Slavkova M, Voycheva C, Popova T, Tzankov B, Tzankova D, Spassova I, et al. Ophthalmic In Situ Nanocomposite Gel for Delivery of a Hydrophobic Antioxidant. Gels. 2025;11(2):105. https://doi.org/10.3390/gels11020105 PMid:39996648 PMCid:PMC11854355

93. Patel N, Desai A, Vyas B, Shah P, Shubhada M, Milind U, et al. Integration of Synchronizing In Silico, In Vitro, and In Vivo Strategies for the Development of Antipsoriatic Apremilast-loaded Nanostructured Lipid Carrier Embedded in Hydrogel. AAPS PharmSciTech. 2025;26(5):115. https://doi.org/10.1208/s12249-025-03103-w PMid:40281236

94. Singh AK, Upadhyay PK, Kumar M. Formulation Development and Permeation Studies of Vancomycin Hydrochloride-Loaded Nanostructured Lipid Carrier Incorporated Thermoresponsive In-Situ Gel: A Box-Behnken Design Implemented Approach for Ocular Delivery in Endophthalmitis. Recent Advances in Drug Delivery and Formulation. 2025.

95. Alves dos Santos PN, Braga Andrade Y, Moraes Santana AA, Cordeiro Cardoso J, dos Santos Polidoro A, Loreiro dos Santos A, et al. Characterization of volatile compounds in Eugenia uniflora L. essential oil by GC× GC/TOFMS: exploring its antioxidant potential and in vitro ocular irritation assessment. Journal of Essential Oil Research. 2025;37(1):56-64. https://doi.org/10.1080/10412905.2024.2447713

96. Tan EYS. Biofabrication of choroid-retina tissue construct for modelling of age-related macular degeneration disease 2019.

97. Soliman KA, Ullah K, Shah A, Jones DS, Singh TR. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discovery Today. 2019;24(8):1575-86. https://doi.org/10.1016/j.drudis.2019.05.036 PMid:31175956

98. Iohara D, Okubo M, Anraku M, Uramatsu S, Shimamoto T, Uekama K, et al. Hydrophobically modified polymer/α-cyclodextrin thermoresponsive hydrogels for use in ocular drug delivery. Molecular pharmaceutics. 2017;14(8):2740-8. https://doi.org/10.1021/acs.molpharmaceut.7b00291 PMid:28661690

99. Chandavarkar N, Jindal KC, Malayandi R. In-situ gel forming solution for ocular drug delivery. WO2011018800. 2011.

100. Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian journal of pharmaceutical sciences. 2019;14(1):1-15. https://doi.org/10.1016/j.ajps.2018.04.008 PMid:32104434 PMCid:PMC7032175

101. Li H, Su X, Cheng H, Zhao F. Thermoplastic and Reprocessable Polyureas Synthesized from CO2-Based Oligourea. ACS Applied Polymer Materials. 2025.

102. Kesavan K, Mohan P, Gautam N, Sheffield VC. Topical Ocular Delivery of Nanocarriers: A Feasible Choice for Glaucoma Management. Current pharmaceutical design. 2020;26(42):5518-32. https://doi.org/10.2174/1381612826666200916145609 PMid:32938345

103. Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent advances in the excipients used for modified ocular drug delivery. Materials. 2021;14(15):4290. https://doi.org/10.3390/ma14154290 PMid:34361483 PMCid:PMC8347600

104. Das B, Chattopadhyay D, Rana D. The gamut of perspectives, challenges, and recent trends for in situ hydrogels: A smart ophthalmic drug delivery vehicle. Biomaterials Science. 2020;8(17):4665-91. https://doi.org/10.1039/D0BM00532K PMid:32760957

105. Ahmed T, Islam MN, Monalisa R, Ehsan F, Huang S-W. Polysaccharides polymers for glaucoma treatment-a review. European Journal of Ophthalmology. 2024;34(2):338-56. https://doi.org/10.1177/11206721231178057 PMid:37231538

106. Tsung T-H, Tsai Y-C, Lee H-P, Chen Y-H, Lu D-W. Biodegradable polymer-based drug-delivery systems for ocular diseases. International Journal of Molecular Sciences. 2023;24(16):12976. https://doi.org/10.3390/ijms241612976 PMid:37629157 PMCid:PMC10455181

107. Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, et al. Chitosan and its derivatives for ocular delivery formulations: Recent advances and developments. Polymers. 2020;12(7):1519. https://doi.org/10.3390/polym12071519 PMid:32650536 PMCid:PMC7407599

Published

2025-05-15
Statistics
Abstract Display: 888
PDF Downloads: 705
PDF Downloads: 90

How to Cite

1.
Bhaskar R, Ola M, Madwe V, Tikhe R, Pawar A, Khade S, et al. Eye Drops to smart gels: The future of ocular drug delivery. J. Drug Delivery Ther. [Internet]. 2025 May 15 [cited 2026 Jan. 20];15(5):181-93. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7115

How to Cite

1.
Bhaskar R, Ola M, Madwe V, Tikhe R, Pawar A, Khade S, et al. Eye Drops to smart gels: The future of ocular drug delivery. J. Drug Delivery Ther. [Internet]. 2025 May 15 [cited 2026 Jan. 20];15(5):181-93. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7115