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Abstract 
_______________________________________________________________________________________________________________ 
This review paper assesses traditional and modern methods to enhance ocular drug delivery. 
Various techniques available to administer drugs include topical application, intracameral 
injections, intravitreal injections, and subconjunctival injections. In Addition, this review 
discusses eye anatomy and the associated challenges with effectively delivering medications to 
this organ. It emphasizes recent progress in Ophthalmic drug delivery methods, such as on-situ 
gel systems, nanoparticles, liposomes, and dendrimers, which improve drug retention, 
bioavailability, and therapeutic efficacy. The article also explores potential improvements in drug 
delivery for treating eye disorders by utilizing nanotechnology and stimulus-responsive gels to 
improve patient outcomes. The goal is to achieve targeted and continuous release. 

Keywords: Ocular drug delivery, in-situ gel, nano formulation, prolonged release. 

 

A. Introduction 

The ocular drug delivery system (ODDS) seems to be both 
necessary and difficult. The eye is the most delicate organ 
of the body. Furthermore, because of the quick and 
thorough removal of medications from the pre-corneal 
lachrymal fluid by solution drainage, lachrymation, and 
ineffective absorption by the conjunctiva, traditional 
ophthalmic formulations have a short pre-corneal 
residence period and poor bioavailability 1. Most recent 
studies (ODDS) focus on integrating multiple  drug 
delivery methods, like a build-up system which prolongs 
the vehicle’s contact time on the ocular surface and 
delays  excretion 2, 3 . The In-situ gelling system is initially 
a liquid that is converted into a gel after being instilled 
into the eye. By exposing it to the ocular environment. 
This prolongs precorneal residence time and improves 
ocular bioavailability. The In-situ gelling system depends 
upon various parameters such as temperature, pH, and 
ion sensitivity, which allows the drug to be released 
gradually in a sustained manner. In-situ gelling system 
involves some advanced drug delivery which includes 
nanosuspension, nanoparticles, liposomes, niosomes, 
dendrimers, ocular iontophoresis, collagen shield, 

minidisc, ocular film, implants, Occusert, and many more 
examples of innovative dosage forms.  

B. Anatomy of Eye:  

The human eye is an extremely sensitive and intricate 
organ. Its anatomy is intriguing and complex. The human 
eye consists of 2 primary parts: the anterior chamber and 
Posterior chamber and the posterior chamber 4. These 
two parts are the most important. The anterior part 
includes the tear film, cornea, pupil, lens, and ciliary body. 
The posterior area includes the conjunctiva, sclera, 
choroid, retina, vitreous fluid, and optic nerve. The 
epithelium layer is composed of several layers of tightly 
packed cells.  The stroma is the dense layer filled with 
water, while the endothelium is vital in maintaining the 
cornea’s transparency. The orbital glands and the 
secretory epithelial cells regulate the production and 
composition of tears.  The front surface of the sclera is 
covered by the conjunctiva, a very thin and transparent 
membrane that lines the eyelids 5. Three layers make up 
this mucosal membrane: are substanatia propria, which 
includes blood, lymphatic, and nerve vessels, and the 
outer  epithelial layers 6, which attaches to the sclera, 
collagen and mucopolysaccharides make up the sclera, a 
continuous corneal layer. The vascular layer that marks 
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the choroid is located between the sclera and the retina. 
A thin layer of tissues covers the rear of the eye, called the 
retina 7, 8, which is made up of glial and neuronal cells 9 . 
It is in charge of producing electrical impulses that go to 
the brain through the optic nerve. 

 

Figure 1: Anatomy of eye 

C. Ocular Barriers 

1. Precorneal barriers 

The cul-de-sac describes the ocular obstacle 10. It is a 
shallow pocket-like structure in the lower eyelid which 
forms in the deeper recess of the upper eyelid, and where 
the palpebral and bulbar conjunctiva meets. In people, 
the cul-de-sac maximum capacity is about 30 μL. 
Although this capacity can be lowered by 70-80% if the 
lower eyelid reverts  to  its natural  position 11. 
Furthermore, the cul-de-sac capacity may be further 
reduced by eye irritation and allergic reactions. Since the 

effectiveness of any medication is directly connected to 
its residence length and concentration, the cul-de-sac 
restricted capacity reduces drug concentration in the eye, 
which minimizes its therapeutic impact. Drug loss in the 
precorneal area from the lachrymal gland.  The main 
obstacles in the pre-corneal space are the drainage of the 
ocular solution. drug absorption may also be further 
hampered by protein binding and drug metabolism. To 
keep the eyes hydrated and stop dust or infection from 
building up on the surface, tear fluid regeneration is 
essential. 

2. Corneal Barrier 

The cornea behaves as a robust barrier against various 
chemical and mechanical injuries and plays a vital role in 
focusing light onto the retina. It consists of layers: 
Epithelium, Stroma, and Endothelium 5.  The epithelium 
serves as an obstacle to the hydrophilic drugs and large 
molecules, while the stroma obstructs lipophilic drugs. 
Several other factors, such as mol wt., charge, degree of 
ionization, and hydrophobicity, etc., as a result trans 
transcorneal permeation is a rate-limiting step. 

3. Blood-ocular barriers 

This is categorized into two: blood aqueous barrier (BAB) 
and blood-retinal barrier (BRB). It prevents foreign 
particles from entering blood bloodstream 12. BAB is the 
anterior part that restricts access to many substances 
from entering the intraocular environment13. It only 
allows lipophilic and small molecular weight drugs, 
which are eliminated more quickly from the anterior 
compartment 14 . Retinal pigment epithelial cells and 
endothelial cells comprise the BRB, a posterior region 
that keeps harmful substances, water, and plasma 
components out of the retina.

 

 

Figure 2: Ocular Barriers 
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D. Various routes of administration 

1. Topical route  

The topical route is the most common to administer the 
medicament 95% of marketed formulations follow the 
route. Although it is a nano-invasive method, its short 
residence time and inadequate corneal penetration 
result in a poor bioavailability(<5%) 15. It results from the 
nasolacrimal pathways' absorption into the systemic 
circulation, blinking, and tear drainage 16. This route 
requires frequent administration and high concentration, 
which can have significant side effects.  

2. Intracameral Injections: 

Intracameral injection involves directly injecting an 
antibiotic into the vitreous cavity. It is generally provided 
after cataract surgery.  

3. Intravitreal Injections /Implants:  

The intravitreal injection delivers the drug directly to the 
vitreous humor 17, which is located near to retina 17. A 
new treatment approach for glaucoma 18 Involves a single 
intravitreal injection of vitamin E/polylactic/polylactic-
co-glycolic acid microspheres 19 containing neurotrophic 
factor produced from glial cell lines  20. 

4. Juxta Scleral Injection:  

Juxta-scleral injections are used 21. Conditions include 
trauma, diabetes-related illnesses, and cystoid macular 
edema benefit greatly from these injections. New 
treatment for age-related macular degeneration involves 
juxta-scleral injection of anecortave cortisone, which has 
demonstrated prolonged release over six months into the 
retina and choroid 22 . 

5. Retrobulbar Route: 

The retrobulbar method is administering medicine 
behind the eyeball into the retrobulbar  space employing 
injection via the orbital fascia and eyelid 23. Whenever 
amphotericin is given by this route, it exhibits more 
antifungal activity than intravenous injection when 
administered retrobulbar 24.  

6. Subconjunctival Injection:  

 

Figure 3: Various Ocular route of administration 

Subconjunctival injection is given when topical treatment 
results in relatively little drug penetration into the 
anterior chamber of the eye. It is frequently utilized. For 
at least a month, the PEGylated liposomes have been used 
to. The administration of brinzolamide-encapsulated 
PLGA nanoparticles through subconjunctival injection 
effectively managed intraocular pressure for 10 days 25. 

E. Ocular diseases 

1. Cataract 

Cataracts are the leading cause of vision loss globally, 
accounting for 40 to 60 percent of blindness worldwide 
due to complications 26. According to the National 
Programme for Control of Blindness and Visual 
Impairment, cataracts cause 62.6% of instances of 
avoidable blindness in India 27. Cataract develops 
cloudiness or opacification in the lens.  

Glaucoma 

A common optic neuropathy is glaucoma. Blurred vision 
is the first symptom, and in later stages, it may lead to 
permanent blindness 28. It causes retinal ganglion cells to 
die and the optic nerve axons to gradually deteriorate, 
resulting in blindness. It is frequently linked to an 
increase in intraocular pressure due to abnormal 
aqueous fluid production or blockage. Open-angle and 
closed-angle glaucoma are the two types. Widening optic 
disc cupping and visual field loss due to increasing 
resistance to aqueous humor outflow through the 
trabecular meshwork are characteristic of open-angle 
glaucoma, which is often asymptomatic 29, 30.  

Age-related Macular degeneration (AMD):  

ADM is one of the main causes of vision loss in affluent 
countries. After the age of 50, it is more common. ADM 
causes around 8.7% of blindness globally. In 2020, 
around 196 million individuals had AMD, and by 2040, 
that figure is predicted to rise to 288 million31. It is a  
complicated degenerative disease that affects the 
posterior part of the eye 32. AMD currently has no known 
cure, however, appropriate medicine may slow its 
development 33. AMD comes in two varieties: Dry 
(atrophic or non-exudative) and wet (non-vascular or 
exudative). The primary feature of AMD is irregular 
angiogenesis, or the formation of new blood vessels, in 
the retinal epithelium, which leads to Bruch’s membrane 
separation, atrophy, and drusen, or yellow deposits 
beneath the retina 33, 34. 

2. Conjunctivitis:  

Conjunctivitis is characterized by conjunctival irritation, 
which is very common. This condition can affect 
individuals of all ages, races, and genders 33. 
Conjunctivitis can be classified as Infectious and non-
infectious 35. Infectious conjunctivitis occurs due to 
microbial infections, whereas non-infectious 
conjunctivitis is caused by allergens and irritants 36, 37. 
Conjunctivitis symptoms include redness, pain, tears, and 
excessive eye secretion. the prevalence of allergic 
conjunctivitis is close to 40% worldwide 38.  
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3. Diabetic retinopathy: 

Diabetes mellitus is a cause of Diabetic Retinopathy. All 
patients with diabetes type II will develop some degree 
of retinopathy after 20 years, and about 60% of 
individuals with type II diabetes will do the same. The 
main causes of diabetic retinopathy are inflammation 
and oxidative stress. These are caused by hyperglycemic 
conditions that cause pro-inflammatory mediators to be  
overexpressed 39. Proliferative and non-proliferative 
diabetic retinopathy are the two primary forms. Both 
eventually cause the retina to deteriorate more and more. 
Nowadays, therapies for  diabetic retinopathy include 
vitrectomy, laser, photocoagulation, and  pharmaceutical 
measures  40. Although treatment may leave scars, laser 
photocoagulation can stop blindness by closing leaky 
blood vessels  41.  

4. Retinoblastoma: 

Retinoblastoma, a malignant tumor that destroys the 
retina, mostly affects children under five if left untreated. 
99% of cases result in blindness and finally death. Its 
frequency is about 1 out of 20,000 live births. The 
occurrence occurs at the same rate in both sexes. A 
mutation in the tumor suppressor gene RB1, which 
produces the protein retinoblastoma, is the cause of it. 
Both unilateral (60%) and bilateral (40%) are possible  
42. Retinoblastoma can be treated with radiation, 
cryotherapy, systemic chemotherapy, and surgery. 

5. Fungal keratitis:  

Fungal keratitis only develops with corneal damage 
because a healthy cornea would be impervious to 
infection by fungus 43. Fungi Such as Candida albicans, 
Candida glabrata, Candida tropicalis, Candida krusei, and 
Candida parasitosis are the cause of fungal keratitis, 
which affects 40% of people worldwide. There are two 
types of risk factors for fungal keratitis: one is systemic 
and another is the eye.  Leprosy, diabetes, and HIV-
positive examples of systemic issues. complications from 
fungal keratitis include corneal ulceration, poor wound 
healing, and inflammation seeping into the corneal 
stroma. The corneal inflammation may alter miRNA 
expression 44.  

F. Dosage Form  

1. Liquid Dosage Forms  

i. Eye Drops:  

More than 95% of marketed eye medications are eye 
drops  45, which provides medicine to the front region of 
the eye. Their benefits include strong stability and ease of 
administration. Their limited retention period, poor 
bioavailability, and possibly dangerous side effects from 
regular usage of high concentrations are some of the 
major disadvantages. 

ii. Eye suspension: 

Ocular suspensions are a dispersion of hydrophobic 
drugs in an aqueous solution. These formulations 
enhance contact time by retaining the drug in the 
conjunctival cul-de-sac. Key factors during the 
preparation process include particle size, solubility, and 

dissolution rate in tear fluid. Generally, particles larger 
than 10 µm can cause ocular irritation and increased 
tearing. However, ocular suspensions have some 
disadvantages, including poor stability. 

iii. Eye Emulsion: 

An emulsion is a biphasic system maintained in a stable 
form with the help of surfactants or stabilizing agents 46. 
The capacity to administer hydrophobic medications is 
one of the benefits of ocular emulsion. In addition, oil-in-
water emulsion improves bioavailability, provides longer 
contact durations, and is less ocular irritating.  

2. Semisolid Dosage Forms 

i. Eye gel:  

Eye gels have a higher water content and are semisolid 
dose formulations. Their increased viscosity enhances 
retention time and bioavailability, although they can still 
cause blurred vision 47. Different polymers can be utilized 
to formulate ocular gels, such as Polyacrylic acid, acrylic 
acid, hydroxypropyl methylcellulose, and carboxymethyl 
cellulose 48. Curcumin-containing proniosomal gel was 
prepared  using  the coacervation approach, which 
resulted in a  notable reduce size of particles  and an 
increase in anti-inflammatory activity 49. Moreover, a 
phytantriol-based liquid crystalline  gel using a vortex 
process increased retention time 50 

iv. Eye Ointment: 

Eye ointments are semisolid dosage forms made of 
mineral oil and white petroleum. Due to their potential to 
impair eyesight, they are exclusively administered to the 
lower eyelid at night 45. These ointments are frequently 
used in young patients and are anhydrous, making them 
appropriate for Drugs that are moisture-sensitive and 
lipophilic. They also show a longer residence period and 
greater Bioavailability than solution. 

3. Solid dosage forms 

i. Occusert Inserts: 

Ocular inserts are solid dosage forms with a zero-order 
drug release mechanism that are composed of 
biodegradable polymers  51. Longer residence time, 
continuous medication delivery, steady release rates, and 
fewer adverse effects are some advantages of these 
inserts 52. Triamcinolone acetonide-infused nanofibers 
were produced using the electrospinning method. These 
nanofibers exhibited smaller particle sizes, enhanced 
systemic absorption, and minimized side effects.  

ii. Therapeutic Contact Lens: 

According to recent research, therapeutic contact lenses' 
prolonged residence duration and close contact with the 
cornea can increase medication absorption by more than 
50%. They have a ten-fold longer residence period than 
traditional eye drops. These lenses decrease the 
necessary dosage, the time between dosages, and 
systemic absorption. There are several methods for 
encapsulating the medication in contact lenses, such as 
soaking, ion ligation, molecular imprinting, and the 
application of nanoparticles 53.  However, several issues, 
including protein attachment, ion and oxygen 
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permeability, medication loss during production or 
storage, light transmittance, and lens swelling, make it 
difficult to employ them clinically 54. 

G. Benefits of the in-situ gelling method over 
traditional ocular formulation: 

1. Extended Residence time 

2. Enhanced bioavailability.  

3. Reduced systemic absorption 

4. Accurate drug delivery 

5. Improved therapeutic efficacy 

H. Disadvantages of in-situ gels: 

1. Required an appropriate amount of tear fluid. 

2. The drug present in the solution may degrade. 

3. Chemical degradation leads to stability issues 55. 

4. Only a small dose can be administered. 

5. Low mechanical strength leads to premature 
dissolution. 

I. Types of In-situ gelling systems 

1. pH-sensitive in-situ gelling system: 

The physiological environment's pH shift causes the sol-
to-gel transition. Pendant acidic or basic groups found in 
pH-sensitive polymers can either receive or release a 
proton in response to pH changes. Polyelectrolytes are 
polymers that contain a lot of ionizable groups. Anionic 
groups in weakly acidic polymers cause swelling when 
the pH rises, although edema falls in weakly basic 
medications. When designing the ophthalmic drops, the 
buffer is crucial. They have a major impact on clinical 
response and chemical stability. They also affect the 
product's safety and comfort. Gelling brought on by a pH 
shift is one of the possible ophthalmic in situ gels 
described in the literature 56. The polymers that show pH-
responsive in-situ gelling are as follows: hydroxypropyl 
methylcellulose (HPMC), polyacrylic acids, cellulose 
acetate, etc. These are stable, non-irritating, and offer 
sustained release of the medication 48. 

2. Temperature sensitivity in-situ gelling system:  

The formulation is liquid at room temperature (20- 250 
°C), but when it comes into contact with the application 
site (35- 37 °C), the temperature rises and it becomes a 
gel. There is a volume phase transition in temperature-
sensitivity hydrogels at certain higher critical solution 
temperatures (UCST) or lower critical solution 
temperatures (LCST) 57. The sol–to–gel transformation 
mechanism is based on the progressive desolvation of the 
polymer with increasing temperature, which causes the 
polymeric network to become more entangled and 
aggregate into micellar. The dehydration of the 
polyoxypropylene block leads to the production of 
micelles. After coming into contact, the micelles lose their 
freedom of motion.  

 

 

3. Ion active sensitive in situ-gelling system: 

The ion active gelling system is a solution initially, and 
when it comes in contact with the tear fluid of the eye 
instantly converts into a gel. There is a variety of ion-
responsive gelling agents as follows: Gellan gum, sodium 
alginate undergoes cross-linking with the ions, and so 
that the gel is formed. Ion ion-activated in-situ gelling 
system provides extended retention time in the ocular, 
which increases patient compliance 58. 

 

Figure 4: Typical Mechanism of ocular in-situ gel 

J. Benefits of the in-situ gelling method 
containing nanoparticles: 

Ocular in-situ nanogels are better than other drug 
delivery methods for eye diseases. They improve the 
drug’s bioavailability 59. The gel’s nanoparticles ' size 
makes it easier for drugs to enter the tissues of the eyes, 
increasing concentrations of medication at the desired 
place 60. Ocular in-situ nanogels are additionally used to 
regulate drug release medications gradually, extending 
the therapeutic concentration at a specific location, in 
contrast to ocular drops, which may remove medications 
rapidly 61. A contrast supply of drugs is required for 
chronic eye disorders.  Ophthalmic in-situ nanogels are 
easy to use for doctors 62. Because they are biocompatible 
and biodegradable, they do not cause toxicity or 
unpleasant responses. Ocular in-situ therapy is one 
potential way to provide medication for eye disorders 63. 

K. Types of nanoparticles: 

1. Liposomes: 

Liposomes provide several benefits, including increased 
bioavailability, safety, biodegradability, and ease of 
manufacturing 64. One or more concentric lipid bilayers 
make up these spherical nanocarriers. Liposomes can 
transport hydrophilic medications in their central core 
and lipophilic medications in their lipid layer. The 
formation procedure and composition may be changed to 
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change their temperature responsiveness, surface 
charge, sensitivity to ions or pH, and ultimately particle 
size. Since the corneal epithelium typically has a negative 
charge, using liposomes that are positively charged can 
improve absorption and extend retention duration.  

2. Niosomes: 

Niosomes are nano-ionic surfactants that self-aggregate 
in two layers, which are nanocarriers. They can contain 
both hydrophilic and lipophilic medications without 
inciting an immunological reaction, and they are 
biodegradable and biocompatibility 65. Niosomes can 
increase and extend the release of drugs. However, it 
shows drawbacks, including the possibility for 
hydrolysis, chemical instability, and drug loss or buildup. 
Cholesterol or its derivatives are frequently added to 
niosomes to increase their stiffness and stability. 

3. Nanoemulsion: 

Nanoemulsions might be used as delivery systems for the 
eyes. Oil-in-water nanoemulsions are composed of a 
dispersed oil phase stabilised by surfactants in an 
aqueous medium 66. These nanoemulsion interacts with 
the lipids in tears and act as a reservoir for lipophilic 
medications. Provides prolonged release 67. Because they 
interact with the corneal surface and improve medication 
solubility, surfactants are essential. however, employing 
Nanoemulsions creates a milky solution, and decreased 
tolerance to eye irritation brought on by elevated 
amounts of surfactants might result in impaired vision if 
the size of the particle exceeds 100nm. 

4. Nanosuspension:  

Lipophilic drugs dispersed in a mixture of media 
maintained by polymer or surfactants make up colloidal 
nanocarriers. Its advantages are enhanced solubility and 
bioavailability, longer residence time, and prolonged 
drug release 68. among the most Eudragit® polymers are 
often used mucoadhesive agents in nanosuspensions  69. 

5. Nano micelles: 

Nanocarriers are anionic, cationic, or zwitterionic 
surfactants that make up nanocarriers, which can be 
spherical, cylindrical, or star-shaped, among other 
shapes. Both hydrophilic and lipophilic medications can 
be encapsulated in these carriers 70. These carriers have 
simple preparation methods that lead to better drug 
penetration, higher bioavailability, decreased toxicity, 
and increased stability 71. They are capable of delivering 
drugs to both the anterior and posterior segments of the 
eye 72. 

6. Polymeric nanoparticles: 

Based on their shape and technique of synthesis, 
polymeric nanoparticles may be divided into two types: 
nanospheres and nanocapsules. Small, solid spheres 
made of a dense network of polymers are called 
nanospheres. Their matrix-like structure provides a lot of 
surface area, enabling medications to get trapped inside 
the particles or absorbed onto their surface. Nano 
capsules, on the other hand, are made up of tiny liquid 
cores encapsulated in a polymeric membrane like 
nanospheres. Medications can be encapsulated within 

the liquid core of the capsule or adsorbed onto its surface. 
Because of their tiny particle size, these polymeric 
nanoparticles may reach both eye segments, improving 
patient compliance, especially when controlling chronic 
illness. They provide better penetration, extended drug 
release, and decreased elimination. 

7. Solid lipid nanoparticles (SLNs): 

Drugs that are lipophilic and hydrophilic are 
encapsulated in solid lipid nanoparticles, which are made 
up of a solid lipid matrix. Triglycerides, fatty acids, 
steroids, and waxes are common lipids employed to make 
these nanoparticles 73, 74. One of the SLN's main benefits 
is that they don’t need surfactant can stabilize lipid 
dispersion in place of organic solvents. Furthermore, the 
production of SLNs is economical, safe, biodegradable, 
and biocompatible.  

8. Nanostructure Lipid Carriers: 

Although being a second-generation lipid nanoparticles, 
which contain around 30% liquid lipids, the final product 
is solid and does not have a crystalline structure 75. The 
content is higher than with solid lipid nanoparticles 
because the liquid oil droplets provide the drug with 
additional space in the lipid matrix. Low toxicity, 
improved effectiveness, and controlled release are all 
displayed by these nanoparticles. 

9. Nanocrystals:  

The main component of the medication is nanocrystals, 
which are stabilized and encased by a variety of 
excipients. Small particle size, simple production 
methods, strong mucoadhesive qualities, and improved 
bioavailability are some of the characteristics of these 
nanocrystals 76. Nanocrystals are considered potential 
nanocarriers deserving of immediate further research 77. 

10.Dendrimers:  

Dendrimers are three-dimensional structures of 
repeating molecular units that surround a central core 
and are extremely branched, star-shaped, tree-shaped, or 
tree-shaped 78. Because of their many terminal 
functionalities, they can be used to deliver both 
hydrophilic and lipophilic medications 79. Its benefits 
include longer residence time, enhanced bioavailability, 
targeted distribution, extended activity, and antibacterial 
qualities have all been shown for dendrimers. They can 
provide drugs to both eye segments. 

11.Cubosomes: 

Lipids are emulsified in water with a stabilizer from 
bicontinuous cubic liquid crystalline nanocarriers known 
as cubosomes 80. Because of their vast surface area, they 
can encapsulate a large number of medications and are 
stable, easy to produce, biodegradable, and generally 
safe. 

12.Olaminosomes: 

The primary constituents of the olaminosomes are a 
surfactant, oleic acid, and Oleylamine. A common option 
for manufacturing ocular nanocarriers is oleic acid, a 
naturally occurring unsaturated fatty acid that is safe and 
biodegradable. Oleic acid is the source of Oleylamine, an 
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unsaturated fatty amine that is widely utilized as a 
surfactant or co-stabilizer. It includes tiny particles, high 
drug entrapment capabilities, improved corneal 
penetration, and general safety and efficiency. 

13.Bilosomes:  

Bilayered nanocarriers called bilosomes are made up of 
bile salts. They feature a tiny particle

size, sufficient zeta potential, favourable safety profiles, 
greater corneal penetration, higher activity, and high 
drug entrapment capabilities 81.  Abdelbary and 
associates create terconazole-infused edge activators, 

span 60, and cholesterol to create bilosomes.  Superior 
drug entrapment, higher activity, and better permeability 
we all displayed by the final formulation 82.

  

 

Figure 5: Various types of Nanoparticles

Table 1: Characterization of nanoparticles loaded in-situ gelling system: 

Parameter Description Procedure  

pH 

Measurement 

pH impacts drug stability, permeation, 

and ocular comfort. Formulations 

with very low (<4) or high (>10) pH 

can irritate the eye. 

Ideal pH range: 4–8 (enhances permeation, avoids 

irritation). Measured using a digital pH meter. Ocular 

formulation pH typically falls between 3.50 and 8.50 83.   

Visual 

Appearance 

Influenced by particle size, oil type, 

and surfactant. Important for product 

appeal and user compliance. 

Nano formulations may appear transparent, 

translucent, or turbid. % Transmittance measured 

using UV spectroscopy to assess clarity 84. 

Gelling Ability Indicates the ability of sol to 

transform into gel in a lachrymal fluid. 

A drop of formulation is added to 2 mL of simulated 

tear fluid. Gelation is visually observed 58. 

Osmolarity Important for ocular comfort. 

Osmolarity imbalances can cause 

irritation or damage. 

Normal tear osmolarity: 231–446 mOsm/kg. Values 

<100 or >640 mOsm/kg may cause discomfort. Takes 

into account vapor pressure, freezing/boiling point, 

and osmotic pressure  85. 

Rheological 

Studies 

Determines viscosity and flow 

behaviour before and after gelation, 

critical for in-situ gels. 

Measured using a Brookfield viscometer. 

Before gelation: 5–1000 mPa·s 

After gelation: 50–50000 mPa·s 

At Temperature: 25°C (before), 37±0.05°C (after) 86 
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In Vitro Drug 

Release 

Simulates drug release into the eye to 

evaluate performance. 

Conducted using a Franz diffusion cell with dialysis 

membrane (0.22 µm pore). Receptor: Simulated tear 

fluid Donor: Formulation Assembly kept at 37±0.5°C on 

magnetic stirrer. Sample analyzed by UV 

spectrophotometer  87. 

Texture Analysis Determines gel’s mechanical 

properties, indicating patient 

acceptability. 

Done using Texture Analyzer to assess cohesion, 

stiffness, and consistency. High adhesiveness indicates 

better contact with the eye surface 88. 

Isotonicity 

Testing 

Ensures osmotic balance with tears to 

prevent irritation or cell damage. 

Formulations are mixed with drops of blood and 

observed under a 45x microscope. Compared with 

commercial ophthalmic products for isotonic behaviour 
89 

Compatibility & 

Melting Point 

Studies 

Detects drug-polymer interactions 

and thermal properties. 

FTIR (Fourier Transform Infrared Spectroscopy): for 

interaction via the KBr pellet method. DSC (Differential 

Scanning Calorimetry): for phase transition/thermal 

shifts. TGA (Thermogravimetric Analysis): for water 

content determination 90. 

Stability Studies Checks shelf-life, formulation 

robustness under storage. 

Short-term accelerated stability (ICH guidelines)  

Storage: 40±2°C, 75±5% RH 

Parameters: drug release, drug content, viscosity, 

clarity, pH, gelling capacity, tested weekly 91. 

Size and 

Uniformity 

Analysis 

Determines nanoparticle size and 

distribution uniformity. 

Conducted through Dynamic Light Scattering (DLS) 

using instruments like Zetasizer. Particle size (PS) and 

Polydispersity Index (PDI) were measured. PDI = 0 

(uniform), PDI = 1 (non-uniform) 92. 

Zeta Potential 

(ZP) 

Indicates physical stability and ability 

to interact with the ocular surface. 

Measured through electrophoretic mobility. ZP: ±20 mV 

is considered to be ideal and leads to stability 93.  

Drug 

Distribution 

Determines how well the drug is 

incorporated and retained in the 

system. 

 % Entrapment Efficiency (%EE): Drug entrapped 

relative to total drug used. 

% Drug Loading (%DL): Drug mass relative to system 

mass. Affected by the drug's hydrophobicity, MW, and 

carrier material properties 94. 

Ocular 

Biocompatibility 

(Hen's Egg Test) 

Evaluates the irritation potential of 

the formulation. 

Uses Hen’s Egg Chorioallantois Membrane (HET-CAM) 

assay. Fertilized eggs were incubated at 37±0.5°C, 

67±5% RH for 10 days. Observed for hemorrhage, 

clotting, hyperemia. Confirms ocular safety 95. 

Table 2: Ocular in-situ Gels approved for market 

Product name  Polymers used Types of in-situ gel systems  Company name  

Akten  Hydroxypropyl methyl cellulose Temperature active 96 Akorn Operating Company 

Azasite  Poloxamer407  Temperature active 97 InSite Vision 

Pilocarpine-HS  Poloxamer407  pH active 97  

 

Table 3: Patents of Ocular in-situ gels  

Patent no.  Patent Title Gelling agents  

US 2011/0082 128 A1 Ocular medication delivery system 
using in-situ gel 

Deacetylated gellan gum  98 

US 2002/0 114 778 A1 Reversible gelling technique Propylene oxide, ethylene oxide with Hydroxy 
propyl methyl cellulose 120. 

WO 2 011 018 800 A3 In-situ gel for ocular delivery A blend of Thermoreversible natural 
polysaccharide polymer 99, 100. 

 US 6 703 039 B2 Reversible gelling technique Propylene oxide and ethylene oxide with hydroxy 
propyl methyl cellulose US 6 703 039 B2 101 
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Table 4: Reported nanoparticles loaded in-situ gelling system 

APIs Polymer Type of stimuli Major Findings 

Curcumin Kolliphor 188 and 
407 

Thermo-active 
nanostructured lipid 
carriers 

Noticeably improved preocular retention time. 97 

Dorzolamide Pluronic 407 Thermo-active 
nanoemulsion 

Non-irritating and extremely therapeutically 
effective. 102 

Ketorolac Poloxamer@F-127 
and hydroxypropyl 
methylcellulose 

Thermo-active 
nanoemulsion 

Enhanced drug release, ocular bioavailability, 
and no irritation 103 

Loteprednol Pluronic-407and 
188 

Ion-Active nanoemulsion Increase residence time,2,54 times 
bioavailability. 104 

Timolol Gelerite Ion-Active Liposomes Low intraocular pressure and more effective. 105 

 

Table 5: Reported multi-stimuli responsive in-situ gels 

API Polymers Response Results 

Ciprofloxacin Carbomer pH and thermo-
responsive 

Increased effectiveness of treatment and 
provides 8 hr of prolonged-release 100 

Levofloxacin Algin and chitin Ions and pH-
responsive 

Retention time was improved 106 

Nepafenac Chitosan N-(carboxymethyl) 
and pluronic 

pH and thermo-
responsive 

Gellation was on  32-33°C 107  

Sparfloxacin Algin and Chitin Ion and pH-
responsive 

Rapid gelation occurs at pH 7.4 and prolonged 
release for 24 hrs 106 

Timolol Chitin with gellan gum pH and ion-
responsive 

Improved corneal penetration and prolonged 
drug release.105 

 

L. Conclusion:  

Effective drug delivery to the eyes is the most challenging 
due to various natural barriers, like tear drainage and 
limited absorption. Traditional methods like drops and 
injections have limitations, such as short retention time 
and potential side effects. To overcome these issues, 
advanced drug delivery systems like in-situ gels, 
nanoparticles, and nanocarriers have been developed. 
These modern approaches improve drug retention, 
bioavailability, and patient comfort by promising 
controlled and sustained release. In-situ gels are 
particularly promising as they transform into a gel upon 
contact with the eye, extending drug retention and 
minimizing the need for frequent dosing. With 
continuous advancements in nanotechnology and smart 
drug delivery systems, the future of ocular drug 

treatment looks promising, offering efficiency and 
improved patient care. 
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