

Available online on 15.05.2025 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Full Text Article

Review Article

Eye Drops to smart gels: The future of ocular drug delivery

Rajveer Bhaskar , Monika Ola , Vaishnavi Madwe , Rohini Tikhe , Arun Pawar , Shivani Khade , Sunil Shinde

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405

Article Info:

Article History:

Received 16 Feb 2025 Reviewed 04 April 2025 Accepted 23 April 2025 Published 15 May 2025

Cite this article as:

Bhaskar R, Ola M, Madwe V, Tikhe R, Pawar A, Khade S, Shinde S, Eye Drops to smart gels: The future of ocular drug delivery, Journal of Drug Delivery and Therapeutics. 2025; 15(5):181-193

http://dx.doi.org/10.22270/jddt.v15i5.7115

*Address for Correspondence:

Vaishnavi Devidas Madwe, Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dist. Dhule 425405, Maharashtra, India.

Abstract

This review paper assesses traditional and modern methods to enhance ocular drug delivery. Various techniques available to administer drugs include topical application, intracameral injections, intravitreal injections, and subconjunctival injections. In Addition, this review discusses eye anatomy and the associated challenges with effectively delivering medications to this organ. It emphasizes recent progress in Ophthalmic drug delivery methods, such as on-situ gel systems, nanoparticles, liposomes, and dendrimers, which improve drug retention, bioavailability, and therapeutic efficacy. The article also explores potential improvements in drug delivery for treating eye disorders by utilizing nanotechnology and stimulus-responsive gels to improve patient outcomes. The goal is to achieve targeted and continuous release.

Keywords: Ocular drug delivery, in-situ gel, nano formulation, prolonged release.

A. Introduction

The ocular drug delivery system (ODDS) seems to be both necessary and difficult. The eye is the most delicate organ of the body. Furthermore, because of the quick and thorough removal of medications from the pre-corneal lachrymal fluid by solution drainage, lachrymation, and ineffective absorption by the conjunctiva, traditional ophthalmic formulations have a short pre-corneal residence period and poor bioavailability ¹. Most recent studies (ODDS) focus on integrating multiple drug delivery methods, like a build-up system which prolongs the vehicle's contact time on the ocular surface and delays excretion 2,3. The In-situ gelling system is initially a liquid that is converted into a gel after being instilled into the eye. By exposing it to the ocular environment. This prolongs precorneal residence time and improves ocular bioavailability. The In-situ gelling system depends upon various parameters such as temperature, pH, and ion sensitivity, which allows the drug to be released gradually in a sustained manner. In-situ gelling system involves some advanced drug delivery which includes nanosuspension, nanoparticles, liposomes, niosomes, dendrimers, ocular iontophoresis, collagen shield,

minidisc, ocular film, implants, Occusert, and many more examples of innovative dosage forms.

B. Anatomy of Eye:

The human eye is an extremely sensitive and intricate organ. Its anatomy is intriguing and complex. The human eye consists of 2 primary parts: the anterior chamber and Posterior chamber and the posterior chamber ⁴. These two parts are the most important. The anterior part includes the tear film, cornea, pupil, lens, and ciliary body. The posterior area includes the conjunctiva, sclera, choroid, retina, vitreous fluid, and optic nerve. The epithelium layer is composed of several layers of tightly packed cells. The stroma is the dense layer filled with water, while the endothelium is vital in maintaining the cornea's transparency. The orbital glands and the secretory epithelial cells regulate the production and composition of tears. The front surface of the sclera is covered by the conjunctiva, a very thin and transparent membrane that lines the eyelids 5. Three layers make up this mucosal membrane: are substanatia propria, which includes blood, lymphatic, and nerve vessels, and the outer epithelial layers 6, which attaches to the sclera, collagen and mucopolysaccharides make up the sclera, a continuous corneal layer. The vascular layer that marks

ISSN: 2250-1177 [181] CODEN (USA): JDDTAO

Bhaskar et al.

the choroid is located between the sclera and the retina. A thin layer of tissues covers the rear of the eye, called the retina 7,8 , which is made up of glial and neuronal cells 9 . It is in charge of producing electrical impulses that go to the brain through the optic nerve.

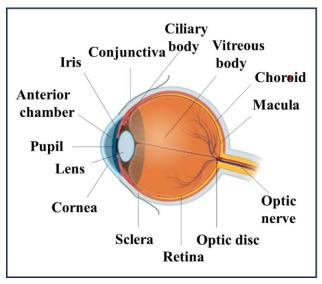
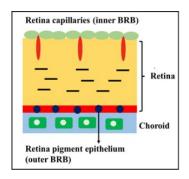


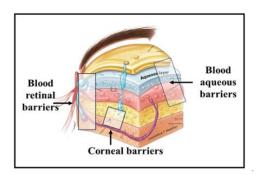
Figure 1: Anatomy of eye

C. Ocular Barriers

1. Precorneal barriers

The cul-de-sac describes the ocular obstacle 10 . It is a shallow pocket-like structure in the lower eyelid which forms in the deeper recess of the upper eyelid, and where the palpebral and bulbar conjunctiva meets. In people, the cul-de-sac maximum capacity is about 30 μ L. Although this capacity can be lowered by 70-80% if the lower eyelid reverts to its natural position 11 . Furthermore, the cul-de-sac capacity may be further reduced by eye irritation and allergic reactions. Since the


effectiveness of any medication is directly connected to its residence length and concentration, the cul-de-sac restricted capacity reduces drug concentration in the eye, which minimizes its therapeutic impact. Drug loss in the precorneal area from the lachrymal gland. The main obstacles in the pre-corneal space are the drainage of the ocular solution. drug absorption may also be further hampered by protein binding and drug metabolism. To keep the eyes hydrated and stop dust or infection from building up on the surface, tear fluid regeneration is essential.


2. Corneal Barrier

The cornea behaves as a robust barrier against various chemical and mechanical injuries and plays a vital role in focusing light onto the retina. It consists of layers: Epithelium, Stroma, and Endothelium ⁵. The epithelium serves as an obstacle to the hydrophilic drugs and large molecules, while the stroma obstructs lipophilic drugs. Several other factors, such as mol wt., charge, degree of ionization, and hydrophobicity, etc., as a result trans transcorneal permeation is a rate-limiting step.

3. Blood-ocular barriers

This is categorized into two: blood aqueous barrier (BAB) and blood-retinal barrier (BRB). It prevents foreign particles from entering blood bloodstream ¹². BAB is the anterior part that restricts access to many substances from entering the intraocular environment ¹³. It only allows lipophilic and small molecular weight drugs, which are eliminated more quickly from the anterior compartment ¹⁴. Retinal pigment epithelial cells and endothelial cells comprise the BRB, a posterior region that keeps harmful substances, water, and plasma components out of the retina.

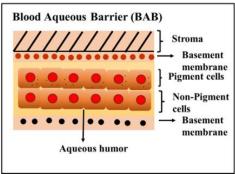
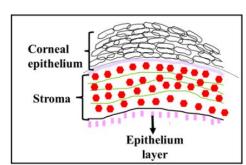



Figure 2: Ocular Barriers

D. Various routes of administration

1. Topical route

The topical route is the most common to administer the medicament 95% of marketed formulations follow the route. Although it is a nano-invasive method, its short residence time and inadequate corneal penetration result in a poor bioavailability (<5%) ¹⁵. It results from the nasolacrimal pathways' absorption into the systemic circulation, blinking, and tear drainage ¹⁶. This route requires frequent administration and high concentration, which can have significant side effects.

2. Intracameral Injections:

Intracameral injection involves directly injecting an antibiotic into the vitreous cavity. It is generally provided after cataract surgery.

3. Intravitreal Injections /Implants:

The intravitreal injection delivers the drug directly to the vitreous humor ¹⁷, which is located near to retina ¹⁷. A new treatment approach for glaucoma ¹⁸ Involves a single intravitreal injection of vitamin E/polylactic/polylactic-co-glycolic acid microspheres ¹⁹ containing neurotrophic factor produced from glial cell lines ²⁰.

4. Juxta Scleral Injection:

Juxta-scleral injections are used 21 . Conditions include trauma, diabetes-related illnesses, and cystoid macular edema benefit greatly from these injections. New treatment for age-related macular degeneration involves juxta-scleral injection of anecortave cortisone, which has demonstrated prolonged release over six months into the retina and choroid 22 .

5. Retrobulbar Route:

The retrobulbar method is administering medicine behind the eyeball into the retrobulbar space employing injection via the orbital fascia and eyelid ²³. Whenever amphotericin is given by this route, it exhibits more antifungal activity than intravenous injection when administered retrobulbar ²⁴.

6. Subconjunctival Injection:

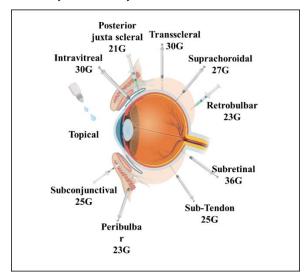


Figure 3: Various Ocular route of administration

Subconjunctival injection is given when topical treatment results in relatively little drug penetration into the anterior chamber of the eye. It is frequently utilized. For at least a month, the PEGylated liposomes have been used to. The administration of brinzolamide-encapsulated PLGA nanoparticles through subconjunctival injection effectively managed intraocular pressure for 10 days ²⁵.

E. Ocular diseases

1. Cataract

Cataracts are the leading cause of vision loss globally, accounting for 40 to 60 percent of blindness worldwide due to complications ²⁶. According to the National Programme for Control of Blindness and Visual Impairment, cataracts cause 62.6% of instances of avoidable blindness in India ²⁷. Cataract develops cloudiness or opacification in the lens.

Glaucoma

A common optic neuropathy is glaucoma. Blurred vision is the first symptom, and in later stages, it may lead to permanent blindness ²⁸. It causes retinal ganglion cells to die and the optic nerve axons to gradually deteriorate, resulting in blindness. It is frequently linked to an increase in intraocular pressure due to abnormal aqueous fluid production or blockage. Open-angle and closed-angle glaucoma are the two types. Widening optic disc cupping and visual field loss due to increasing resistance to aqueous humor outflow through the trabecular meshwork are characteristic of open-angle glaucoma, which is often asymptomatic ^{29,30}.

Age-related Macular degeneration (AMD):

ADM is one of the main causes of vision loss in affluent countries. After the age of 50, it is more common. ADM causes around 8.7% of blindness globally. In 2020, around 196 million individuals had AMD, and by 2040, that figure is predicted to rise to 288 million³¹. It is a complicated degenerative disease that affects the posterior part of the eye ³². AMD currently has no known cure, however, appropriate medicine may slow its development ³³. AMD comes in two varieties: Dry (atrophic or non-exudative) and wet (non-vascular or exudative). The primary feature of AMD is irregular angiogenesis, or the formation of new blood vessels, in the retinal epithelium, which leads to Bruch's membrane separation, atrophy, and drusen, or yellow deposits beneath the retina ^{33,34}.

2. Conjunctivitis:

Conjunctivitis is characterized by conjunctival irritation, which is very common. This condition can affect individuals of all ages, races, and genders ³³. Conjunctivitis can be classified as Infectious and non-infectious ³⁵. Infectious conjunctivitis occurs due to microbial infections, whereas non-infectious conjunctivitis is caused by allergens and irritants ^{36, 37}. Conjunctivitis symptoms include redness, pain, tears, and excessive eye secretion. the prevalence of allergic conjunctivitis is close to 40% worldwide ³⁸.

3. Diabetic retinopathy:

Diabetes mellitus is a cause of Diabetic Retinopathy. All patients with diabetes type II will develop some degree of retinopathy after 20 years, and about 60% of individuals with type II diabetes will do the same. The main causes of diabetic retinopathy are inflammation and oxidative stress. These are caused by hyperglycemic conditions that cause pro-inflammatory mediators to be overexpressed ³⁹. Proliferative and non-proliferative diabetic retinopathy are the two primary forms. Both eventually cause the retina to deteriorate more and more. Nowadays, therapies for diabetic retinopathy include vitrectomy, laser, photocoagulation, and pharmaceutical measures ⁴⁰. Although treatment may leave scars, laser photocoagulation can stop blindness by closing leaky blood vessels ⁴¹.

4. Retinoblastoma:

Retinoblastoma, a malignant tumor that destroys the retina, mostly affects children under five if left untreated. 99% of cases result in blindness and finally death. Its frequency is about 1 out of 20,000 live births. The occurrence occurs at the same rate in both sexes. A mutation in the tumor suppressor gene RB1, which produces the protein retinoblastoma, is the cause of it. Both unilateral (60%) and bilateral (40%) are possible ⁴². Retinoblastoma can be treated with radiation, cryotherapy, systemic chemotherapy, and surgery.

5. Fungal keratitis:

Fungal keratitis only develops with corneal damage because a healthy cornea would be impervious to infection by fungus ⁴³. Fungi Such as Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, and Candida parasitosis are the cause of fungal keratitis, which affects 40% of people worldwide. There are two types of risk factors for fungal keratitis: one is systemic and another is the eye. Leprosy, diabetes, and HIV-positive examples of systemic issues. complications from fungal keratitis include corneal ulceration, poor wound healing, and inflammation seeping into the corneal stroma. The corneal inflammation may alter miRNA expression ⁴⁴.

F. Dosage Form

1. Liquid Dosage Forms

i. Eye Drops:

More than 95% of marketed eye medications are eye drops 45 , which provides medicine to the front region of the eye. Their benefits include strong stability and ease of administration. Their limited retention period, poor bioavailability, and possibly dangerous side effects from regular usage of high concentrations are some of the major disadvantages.

ii. Eye suspension:

Ocular suspensions are a dispersion of hydrophobic drugs in an aqueous solution. These formulations enhance contact time by retaining the drug in the conjunctival cul-de-sac. Key factors during the preparation process include particle size, solubility, and

dissolution rate in tear fluid. Generally, particles larger than 10 μ m can cause ocular irritation and increased tearing. However, ocular suspensions have some disadvantages, including poor stability.

iii. Eye Emulsion:

An emulsion is a biphasic system maintained in a stable form with the help of surfactants or stabilizing agents ⁴⁶. The capacity to administer hydrophobic medications is one of the benefits of ocular emulsion. In addition, oil-inwater emulsion improves bioavailability, provides longer contact durations, and is less ocular irritating.

2. Semisolid Dosage Forms

i. Eye gel:

Eye gels have a higher water content and are semisolid dose formulations. Their increased viscosity enhances retention time and bioavailability, although they can still cause blurred vision ⁴⁷. Different polymers can be utilized to formulate ocular gels, such as Polyacrylic acid, acrylic acid, hydroxypropyl methylcellulose, and carboxymethyl cellulose ⁴⁸. Curcumin-containing proniosomal gel was prepared using the coacervation approach, which resulted in a notable reduce size of particles and an increase in anti-inflammatory activity ⁴⁹. Moreover, a phytantriol-based liquid crystalline gel using a vortex process increased retention time ⁵⁰

iv. Eye Ointment:

Eye ointments are semisolid dosage forms made of mineral oil and white petroleum. Due to their potential to impair eyesight, they are exclusively administered to the lower eyelid at night ⁴⁵. These ointments are frequently used in young patients and are anhydrous, making them appropriate for Drugs that are moisture-sensitive and lipophilic. They also show a longer residence period and greater Bioavailability than solution.

3. Solid dosage forms

i. Occusert Inserts:

Ocular inserts are solid dosage forms with a zero-order drug release mechanism that are composed of biodegradable polymers ⁵¹. Longer residence time, continuous medication delivery, steady release rates, and fewer adverse effects are some advantages of these inserts ⁵². Triamcinolone acetonide-infused nanofibers were produced using the electrospinning method. These nanofibers exhibited smaller particle sizes, enhanced systemic absorption, and minimized side effects.

ii. Therapeutic Contact Lens:

According to recent research, therapeutic contact lenses' prolonged residence duration and close contact with the cornea can increase medication absorption by more than 50%. They have a ten-fold longer residence period than traditional eye drops. These lenses decrease the necessary dosage, the time between dosages, and systemic absorption. There are several methods for encapsulating the medication in contact lenses, such as soaking, ion ligation, molecular imprinting, and the application of nanoparticles ⁵³. However, several issues, including protein attachment, ion and oxygen

permeability, medication loss during production or storage, light transmittance, and lens swelling, make it difficult to employ them clinically 54 .

G. Benefits of the in-situ gelling method over traditional ocular formulation:

- 1. Extended Residence time
- 2. Enhanced bioavailability.
- 3. Reduced systemic absorption
- 4. Accurate drug delivery
- 5. Improved therapeutic efficacy

H. Disadvantages of in-situ gels:

- 1. Required an appropriate amount of tear fluid.
- 2. The drug present in the solution may degrade.
- 3. Chemical degradation leads to stability issues 55.
- 4. Only a small dose can be administered.
- 5. Low mechanical strength leads to premature dissolution.

I. Types of In-situ gelling systems

1. pH-sensitive in-situ gelling system:

The physiological environment's pH shift causes the solto-gel transition. Pendant acidic or basic groups found in pH-sensitive polymers can either receive or release a proton in response to pH changes. Polyelectrolytes are polymers that contain a lot of ionizable groups. Anionic groups in weakly acidic polymers cause swelling when the pH rises, although edema falls in weakly basic medications. When designing the ophthalmic drops, the buffer is crucial. They have a major impact on clinical response and chemical stability. They also affect the product's safety and comfort. Gelling brought on by a pH shift is one of the possible ophthalmic in situ gels described in the literature ⁵⁶. The polymers that show pHresponsive in-situ gelling are as follows: hydroxypropyl methylcellulose (HPMC), polyacrylic acids, cellulose acetate, etc. These are stable, non-irritating, and offer sustained release of the medication ⁴⁸.

2. Temperature sensitivity in-situ gelling system:

The formulation is liquid at room temperature (20-250 °C), but when it comes into contact with the application site (35-37 °C), the temperature rises and it becomes a gel. There is a volume phase transition in temperature-sensitivity hydrogels at certain higher critical solution temperatures (UCST) or lower critical solution temperatures (LCST) ⁵⁷. The sol-to-gel transformation mechanism is based on the progressive desolvation of the polymer with increasing temperature, which causes the polymeric network to become more entangled and aggregate into micellar. The dehydration of the polyoxypropylene block leads to the production of micelles. After coming into contact, the micelles lose their freedom of motion.

3. Ion active sensitive in situ-gelling system:

The ion active gelling system is a solution initially, and when it comes in contact with the tear fluid of the eye instantly converts into a gel. There is a variety of ion-responsive gelling agents as follows: Gellan gum, sodium alginate undergoes cross-linking with the ions, and so that the gel is formed. Ion ion-activated in-situ gelling system provides extended retention time in the ocular, which increases patient compliance ⁵⁸.

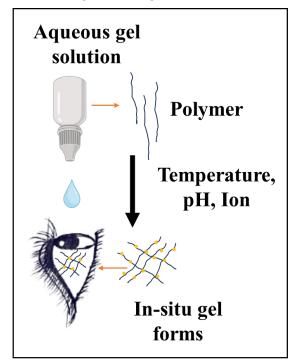


Figure 4: Typical Mechanism of ocular in-situ gel

J. Benefits of the in-situ gelling method containing nanoparticles:

Ocular in-situ nanogels are better than other drug delivery methods for eye diseases. They improve the drug's bioavailability ⁵⁹. The gel's nanoparticles ' size makes it easier for drugs to enter the tissues of the eyes, increasing concentrations of medication at the desired place ⁶⁰. Ocular in-situ nanogels are additionally used to regulate drug release medications gradually, extending the therapeutic concentration at a specific location, in contrast to ocular drops, which may remove medications rapidly ⁶¹. A contrast supply of drugs is required for chronic eye disorders. Ophthalmic in-situ nanogels are easy to use for doctors ⁶². Because they are biocompatible and biodegradable, they do not cause toxicity or unpleasant responses. Ocular in-situ therapy is one potential way to provide medication for eye disorders ⁶³.

K. Types of nanoparticles:

1. Liposomes:

Liposomes provide several benefits, including increased bioavailability, safety, biodegradability, and ease of manufacturing ⁶⁴. One or more concentric lipid bilayers make up these spherical nanocarriers. Liposomes can transport hydrophilic medications in their central core and lipophilic medications in their lipid layer. The formation procedure and composition may be changed to

change their temperature responsiveness, surface charge, sensitivity to ions or pH, and ultimately particle size. Since the corneal epithelium typically has a negative charge, using liposomes that are positively charged can improve absorption and extend retention duration.

2. Niosomes:

Niosomes are nano-ionic surfactants that self-aggregate in two layers, which are nanocarriers. They can contain both hydrophilic and lipophilic medications without inciting an immunological reaction, and they are biodegradable and biocompatibility ⁶⁵. Niosomes can increase and extend the release of drugs. However, it shows drawbacks, including the possibility for hydrolysis, chemical instability, and drug loss or buildup. Cholesterol or its derivatives are frequently added to niosomes to increase their stiffness and stability.

3. Nanoemulsion:

Nanoemulsions might be used as delivery systems for the eyes. Oil-in-water nanoemulsions are composed of a dispersed oil phase stabilised by surfactants in an aqueous medium ⁶⁶. These nanoemulsion interacts with the lipids in tears and act as a reservoir for lipophilic medications. Provides prolonged release ⁶⁷. Because they interact with the corneal surface and improve medication solubility, surfactants are essential. however, employing Nanoemulsions creates a milky solution, and decreased tolerance to eye irritation brought on by elevated amounts of surfactants might result in impaired vision if the size of the particle exceeds 100nm.

4. Nanosuspension:

Lipophilic drugs dispersed in a mixture of media maintained by polymer or surfactants make up colloidal nanocarriers. Its advantages are enhanced solubility and bioavailability, longer residence time, and prolonged drug release ⁶⁸. among the most Eudragit® polymers are often used mucoadhesive agents in nanosuspensions ⁶⁹.

5. Nano micelles:

Nanocarriers are anionic, cationic, or zwitterionic surfactants that make up nanocarriers, which can be spherical, cylindrical, or star-shaped, among other shapes. Both hydrophilic and lipophilic medications can be encapsulated in these carriers ⁷⁰. These carriers have simple preparation methods that lead to better drug penetration, higher bioavailability, decreased toxicity, and increased stability ⁷¹. They are capable of delivering drugs to both the anterior and posterior segments of the eye ⁷².

6. Polymeric nanoparticles:

Based on their shape and technique of synthesis, polymeric nanoparticles may be divided into two types: nanospheres and nanocapsules. Small, solid spheres made of a dense network of polymers are called nanospheres. Their matrix-like structure provides a lot of surface area, enabling medications to get trapped inside the particles or absorbed onto their surface. Nano capsules, on the other hand, are made up of tiny liquid cores encapsulated in a polymeric membrane like nanospheres. Medications can be encapsulated within

the liquid core of the capsule or adsorbed onto its surface. Because of their tiny particle size, these polymeric nanoparticles may reach both eye segments, improving patient compliance, especially when controlling chronic illness. They provide better penetration, extended drug release, and decreased elimination.

7. Solid lipid nanoparticles (SLNs):

Drugs that are lipophilic and hydrophilic are encapsulated in solid lipid nanoparticles, which are made up of a solid lipid matrix. Triglycerides, fatty acids, steroids, and waxes are common lipids employed to make these nanoparticles ^{73, 74}. One of the SLN's main benefits is that they don't need surfactant can stabilize lipid dispersion in place of organic solvents. Furthermore, the production of SLNs is economical, safe, biodegradable, and biocompatible.

8. Nanostructure Lipid Carriers:

Although being a second-generation lipid nanoparticles, which contain around 30% liquid lipids, the final product is solid and does not have a crystalline structure ⁷⁵. The content is higher than with solid lipid nanoparticles because the liquid oil droplets provide the drug with additional space in the lipid matrix. Low toxicity, improved effectiveness, and controlled release are all displayed by these nanoparticles.

9. Nanocrystals:

The main component of the medication is nanocrystals, which are stabilized and encased by a variety of excipients. Small particle size, simple production methods, strong mucoadhesive qualities, and improved bioavailability are some of the characteristics of these nanocrystals ⁷⁶. Nanocrystals are considered potential nanocarriers deserving of immediate further research ⁷⁷.

10.Dendrimers:

Dendrimers are three-dimensional structures of repeating molecular units that surround a central core and are extremely branched, star-shaped, tree-shaped, or tree-shaped ⁷⁸. Because of their many terminal functionalities, they can be used to deliver both hydrophilic and lipophilic medications ⁷⁹. Its benefits include longer residence time, enhanced bioavailability, targeted distribution, extended activity, and antibacterial qualities have all been shown for dendrimers. They can provide drugs to both eye segments.

11.Cubosomes:

Lipids are emulsified in water with a stabilizer from bicontinuous cubic liquid crystalline nanocarriers known as cubosomes ⁸⁰. Because of their vast surface area, they can encapsulate a large number of medications and are stable, easy to produce, biodegradable, and generally safe

12.0laminosomes:

The primary constituents of the olaminosomes are a surfactant, oleic acid, and Oleylamine. A common option for manufacturing ocular nanocarriers is oleic acid, a naturally occurring unsaturated fatty acid that is safe and biodegradable. Oleic acid is the source of Oleylamine, an

unsaturated fatty amine that is widely utilized as a surfactant or co-stabilizer. It includes tiny particles, high drug entrapment capabilities, improved corneal penetration, and general safety and efficiency.

size, sufficient zeta potential, favourable safety profiles, greater corneal penetration, higher activity, and high drug entrapment capabilities ⁸¹. Abdelbary and associates create terconazole-infused edge activators,

13.Bilosomes:

Bilayered nanocarriers called bilosomes are made up of bile salts. They feature a tiny particle

span 60, and cholesterol to create bilosomes. Superior drug entrapment, higher activity, and better permeability we all displayed by the final formulation ⁸².

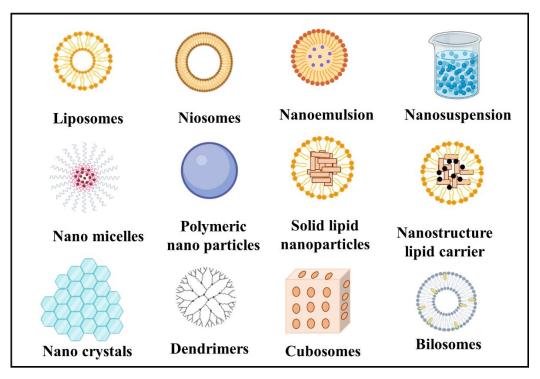


Figure 5: Various types of Nanoparticles

Table 1: Characterization of nanoparticles loaded in-situ gelling system:

Parameter	Description	Procedure
рH	pH impacts drug stability, permeation,	Ideal pH range: 4-8 (enhances permeation, avoids
Measurement	and ocular comfort. Formulations	irritation). Measured using a digital pH meter. Ocular
	with very low (<4) or high (>10) pH	formulation pH typically falls between 3.50 and 8.50 83.
	can irritate the eye.	
Visual	Influenced by particle size, oil type,	Nano formulations may appear transparent,
Appearance	and surfactant. Important for product	translucent, or turbid. % Transmittance measured
	appeal and user compliance.	using UV spectroscopy to assess clarity 84.
Gelling Ability	Indicates the ability of sol to	A drop of formulation is added to 2 mL of simulated
	transform into gel in a lachrymal fluid.	tear fluid. Gelation is visually observed ⁵⁸ .
Osmolarity	Important for ocular comfort.	Normal tear osmolarity: 231–446 mOsm/kg. Values
	Osmolarity imbalances can cause	<100 or >640 mOsm/kg may cause discomfort. Takes
	irritation or damage.	into account vapor pressure, freezing/boiling point,
		and osmotic pressure 85.
Rheological	Determines viscosity and flow	Measured using a Brookfield viscometer.
Studies	behaviour before and after gelation,	Before gelation: 5–1000 mPa·s
	critical for in-situ gels.	After gelation: 50–50000 mPa·s
		At Temperature: 25°C (before), 37±0.05°C (after) ⁸⁶

ISSN: 2250-1177 [187] CODEN (USA): JDDTAO

Bhaskar et al.			
In Vitro Drug	Simulates drug release into the eye to	Conducted using a Franz diffusion cell with dialysis	
Release	evaluate performance.	membrane (0.22 µm pore). Receptor: Simulated tear	
		fluid Donor: Formulation Assembly kept at 37±0.5°C on	
		magnetic stirrer. Sample analyzed by UV	
		spectrophotometer ⁸⁷ .	
Texture Analysis	Determines gel's mechanical	Done using Texture Analyzer to assess cohesion,	
	properties, indicating patient	stiffness, and consistency. High adhesiveness indicates	
	acceptability.	better contact with the eye surface ⁸⁸ .	
Isotonicity	Ensures osmotic balance with tears to	Formulations are mixed with drops of blood and	
Testing	prevent irritation or cell damage.	observed under a 45x microscope. Compared with	
		commercial ophthalmic products for isotonic behaviour	
		89	
Compatibility &	Detects drug-polymer interactions	FTIR (Fourier Transform Infrared Spectroscopy): for	
Melting Point	and thermal properties.	interaction via the KBr pellet method. DSC (Differential	
Studies		Scanning Calorimetry): for phase transition/thermal	
		shifts. TGA (Thermogravimetric Analysis): for water	
		content determination ⁹⁰ .	
Stability Studies	Checks shelf-life, formulation	Short-term accelerated stability (ICH guidelines)	
	robustness under storage.	Storage: 40±2°C, 75±5% RH	
		Parameters: drug release, drug content, viscosity,	
		clarity, pH, gelling capacity, tested weekly ⁹¹ .	
Size and	Determines nanoparticle size and	Conducted through Dynamic Light Scattering (DLS)	
Uniformity	distribution uniformity.	using instruments like Zetasizer. Particle size (PS) and	
Analysis		Polydispersity Index (PDI) were measured. PDI = 0	
		(uniform), PDI = 1 (non-uniform) ⁹² .	
Zeta Potential	Indicates physical stability and ability	Measured through electrophoretic mobility. ZP: ±20 mV	
(ZP)	to interact with the ocular surface.	is considered to be ideal and leads to stability ⁹³ .	
Drug	Determines how well the drug is	% Entrapment Efficiency (%EE): Drug entrapped	
Distribution	incorporated and retained in the	relative to total drug used.	
	system.	% Drug Loading (%DL): Drug mass relative to system	
		mass. Affected by the drug's hydrophobicity, MW, and	
		carrier material properties ⁹⁴ .	
Ocular	Evaluates the irritation potential of	Uses Hen's Egg Chorioallantois Membrane (HET-CAM)	
Biocompatibility	the formulation.	assay. Fertilized eggs were incubated at 37±0.5°C,	
(Hen's Egg Test)		67±5% RH for 10 days. Observed for hemorrhage,	
		clotting, hyperemia. Confirms ocular safety ⁹⁵ .	

Table 2: Ocular in-situ Gels approved for market

Product name	Polymers used	Types of in-situ gel systems	Company name
Akten	Hydroxypropyl methyl cellulose	Temperature active ⁹⁶	Akorn Operating Company
Azasite	Poloxamer407	Temperature active 97	InSite Vision
Pilocarpine-HS	Poloxamer407	pH active ⁹⁷	

Table 3: Patents of Ocular in-situ gels

Patent no.	Patent Title	Gelling agents
US 2011/0082 128 A1	Ocular medication delivery system using in-situ gel	Deacetylated gellan gum 98
US 2002/0 114 778 A1	Reversible gelling technique	Propylene oxide, ethylene oxide with Hydroxy propyl methyl cellulose ¹²⁰ .
WO 2 011 018 800 A3	In-situ gel for ocular delivery	A blend of Thermoreversible natural polysaccharide polymer ^{99, 100} .
US 6 703 039 B2	Reversible gelling technique	Propylene oxide and ethylene oxide with hydroxy propyl methyl cellulose US 6 703 039 B2 101

ISSN: 2250-1177 [188] CODEN (USA): JDDTAO

Table 4: Reported nanoparticles loaded in-situ gelling system

APIs	Polymer	Type of stimuli	Major Findings
Curcumin	Kolliphor 188 and 407	Thermo-active nanostructured lipid carriers	Noticeably improved preocular retention time. 97
Dorzolamide	Pluronic 407	Thermo-active nanoemulsion	Non-irritating and extremely therapeutically effective. ¹⁰²
Ketorolac	Poloxamer@F-127 and hydroxypropyl methylcellulose	Thermo-active nanoemulsion	Enhanced drug release, ocular bioavailability, and no irritation ¹⁰³
Loteprednol	Pluronic-407and 188	Ion-Active nanoemulsion	Increase residence time,2,54 times bioavailability. 104
Timolol	Gelerite	Ion-Active Liposomes	Low intraocular pressure and more effective. 105

Table 5: Reported multi-stimuli responsive in-situ gels

API	Polymers	Response	Results
Ciprofloxacin	Carbomer	pH and thermo- responsive	Increased effectiveness of treatment and provides 8 hr of prolonged-release 100
Levofloxacin	Algin and chitin	Ions and pH- responsive	Retention time was improved ¹⁰⁶
Nepafenac	Chitosan N-(carboxymethyl) and pluronic	pH and thermo- responsive	Gellation was on 32-33°C ¹⁰⁷
Sparfloxacin	Algin and Chitin	Ion and pH- responsive	Rapid gelation occurs at pH 7.4 and prolonged release for 24 hrs 106
Timolol	Chitin with gellan gum	pH and ion- responsive	Improved corneal penetration and prolonged drug release. ¹⁰⁵

L. Conclusion:

Effective drug delivery to the eyes is the most challenging due to various natural barriers, like tear drainage and limited absorption. Traditional methods like drops and injections have limitations, such as short retention time and potential side effects. To overcome these issues, advanced drug delivery systems like in-situ gels, nanoparticles, and nanocarriers have been developed. These modern approaches improve drug retention, bioavailability, and patient comfort by promising controlled and sustained release. In-situ gels are particularly promising as they transform into a gel upon contact with the eye, extending drug retention and minimizing the need for frequent dosing. With continuous advancements in nanotechnology and smart drug delivery systems, the future of ocular drug

References

- Vyas U, Gehalot N, Jain V, Mahajan S. A Review on in situ gelling system for ophthalmic drug delivery. Current Research in Pharmaceutical Sciences. 2021:98-106. https://doi.org/10.24092/CRPS.2021.110402
- 2. Lynch CR. Development and characterization of a solid lipid nanoparticle-loaded thermosensitive gel for the delivery of timolol to the eye: Department of Ophthalmology, Faculty of Health Sciences, University of the ...; 2022.
- 3. Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming Treatment Challenges in Posterior Segment Diseases with Biodegradable

treatment looks promising, offering efficiency and improved patient care.

Acknowledgements: We thank Dr. Monika Ola Ma'am for her advice and immense insights while writing this review article.

Authors' contributions: Vaishnavi D. Madwe – draft writing, Rohini P. Tikhe – draft writing, Arun A. Pawardraft writing, Shivani M. Khade– draft writing, Sunil D. Shinde– draft writing, Rajveer Bhaskar – Supervision, Monika Ola – Supervision.

Funding source: There is no funding source.

Conflict of interest: The authors reported no conflict of interest. Ethical Approval: Not applicable

Ethical Approval: Not applicable

Nano-Based Drug Delivery Systems. Pharmaceutics. 2023;15(4):1094. https://doi.org/10.3390/pharmaceutics15041094 PMid:37111579 PMCid:PMC10142934

- 4. Bertelli E. Anatomy of the eye and human visual system: Piccin Nuova Libraria spa; 2019.
- Nishida T, Saika S, Morishige N. Cornea and sclera: anatomy and physiology. Cornea. 2017;1:1-22. https://doi.org/10.1097/ICO.00000000001342 PMid:28902015

- Dua HS, Said DG. Ocular Surface Epithelium: Applied Anatomy. Corneal Regeneration: Therapy and Surgery. 2019:175-90. https://doi.org/10.1007/978-3-030-01304-2_12
- Angayarkanni N, Coral K, Bharathi Devi SR, Saijyothi AV. The biochemistry of the eye. Pharmacology of Ocular Therapeutics. 2016:83-157. https://doi.org/10.1007/978-3-319-25498-2_5
- 8. Reh TA. The development of the retina. Ryan's Retina E-Book. 2017:375.
- Reichenbach A, Bringmann A. Glia of the human retina. Glia. 2020;68(4):768-96. https://doi.org/10.1002/glia.23727 PMid:31793693
- Ahmed S, Amin MM, Sayed S. Ocular drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24(2):66. https://doi.org/10.1208/s12249-023-02516-9 PMid:36788150
- Zeno R, Teall AM. Evidence-Based Assessment of the Eyes.
 Evidence-Based Physical Examination: Best Practices for Health and Well-Being Assessment. 2024:367. https://doi.org/10.1891/9780826155320.0015
- 12. Ranganath SH, Thanuja M, Anupama C, Manjunatha T. Systemic drug delivery to the posterior segment of the eye: Overcoming blood-retinal barrier through smart drug design and nanotechnology. Immobilization Strategies: Biomedical, Bioengineering and Environmental Applications. 2021:219-69. https://doi.org/10.1007/978-981-15-7998-1_6
- 13. Diwan P, Jangde R, Khunte S, Bhardwaj H, Suresh PK. Ocular drug delivery system: barrier for drug permeation, method to overcome barrier. Drug Development Life Cycle: IntechOpen; 2022. https://doi.org/10.5772/intechopen.105401
- 14. Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, et al. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. International journal of pharmaceutics. 2021;607:120924. https://doi.org/10.1016/j.ijpharm.2021.120924 PMid:34324989 PMCid:PMC8579814
- 15. Panda P, Mohanty S, Gouda SR, Mohapatra R. Advances in Nanomedicine for Retinal Drug Delivery: Overcoming Barriers and Enhancing Therapeutic Outcomes. Journal of Drug Targeting. 2024(just-accepted):1-49. https://doi.org/10.1080/1061186X.2024.2443144 PMid:39694681
- Khode PD, Dongare PA. In situ gel: A Review of Pharmaceutical and Biological Evaluation and Approaches. Research Journal of Pharmaceutical Dosage Forms and Technology. 2019;11(3):217-26. https://doi.org/10.5958/0975-4377.2019.00037.5
- 17. Mishra D, Gade S, Glover K, Sheshala R, Singh TRR. Vitreous humor: composition, characteristics and implication on intravitreal drug delivery. Current eye research. 2023;48(2):208-18. https://doi.org/10.1080/02713683.2022.2119254 PMid:36036478
- Shalaby WS, Shankar V, Razeghinejad R, Katz LJ. Current and new pharmacotherapeutic approaches for glaucoma. Expert Opinion on Pharmacotherapy. 2020;21(16):2027-40. https://doi.org/10.1080/14656566.2020.1795130 PMid:32717157
- Agrahari V, Agrahari V, Hung W-T, Christenson LK, Mitra AK. Composite nanoformulation therapeutics for long-term ocular delivery of macromolecules. Molecular pharmaceutics. 2016;13(9):2912-22. https://doi.org/10.1021/acs.molpharmaceut.5b00828 PMid:26828415
- García-Caballero C, Prieto-Calvo E, Checa-Casalengua P, García-Martín E, Polo-Llorens V, García-Feijoo J, et al. Six month delivery of GDNF from PLGA/vitamin E biodegradable microspheres after intravitreal injection in rabbits. Eur J Pharm Sci. 2017;103:19-26. https://doi.org/10.1016/j.ejps.2017.02.037 PMid:28259830
- Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, et al. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC advances. 2020;10(46):27835-55.

- https://doi.org/10.1039/D0RA04971A PMid:35516960 PMCid:PMC9055630
- 22. Shelley H, Annaji M, Grant M, Fasina O, Babu RJ. Sustained release biodegradable microneedles of difluprednate for delivery to posterior eye. Journal of Ocular Pharmacology and Therapeutics. 2022;38(6):449-58. https://doi.org/10.1089/jop.2021.0089 PMid:35167767
- 23. Mitchcell N, Oliver J. Feline Ophthalmology. The manual: Grupo Asís Biomedia SL; 2021.
- 24. Spiess BM. Ophthalmic Pharmacology. Ophthalmic Disease in Veterinary Medicine: CRC Press; 2018. p. 39-75. https://doi.org/10.1201/b20810-2
- 25. Zhou X, Zhou D, Zhang X, Liao L, Wu P, Chen B, et al. Research progress of nano delivery systems for intraocular pressure lowering drugs. Heliyon. 2024. https://doi.org/10.1016/j.heliyon.2024.e32602 PMid:39005914 PMCid:PMC11239466
- Sheppard J, Garg S, Lievens C, Brandano L, Wirostko B, Korenfeld M, et al. Iontophoretic dexamethasone phosphate compared to topical prednisolone acetate 1% for noninfectious anterior segment uveitis. American Journal of Ophthalmology. 2020;211:76-86. https://doi.org/10.1016/j.ajo.2019.10.032 PMid:31726034
- 27. Rajan S, Sathiyanarayanan M, Prashant S, Prashant S, Nataraj P, editors. Prevention of avoidable blindness and improving eye healthcare system in india. 2018 10th International Conference on Communication Systems & Networks (COMSNETS); 2018: IEEE. https://doi.org/10.1109/COMSNETS.2018.8328292
- Marjanovic I. The optic nerve in glaucoma. The Mystery of Glaucoma. 2011. https://doi.org/10.5772/19811
- 29. Umezurike BC, Akhimien MO, Udeala O, Green UG, Okpechi-Agbo U, Ohaeri MU. Primary open angle glaucoma: the pathophysiolgy, mechanisms, future diagnostic and therapeutic directions.

 Ophthalmology Research: An International Journal. 2019;10(3):1-17. https://doi.org/10.9734/or/2019/v10i330106
- Weinreb RN, Leung CK, Crowston JG, Medeiros FA, Friedman DS, Wiggs JL, et al. Primary open-angle glaucoma. Nature reviews Disease primers. 2016;2(1):1-19. https://doi.org/10.1038/nrdp.2016.67 PMid:27654570
- Korva-Gurung I. Neovascular age-related macular degeneration: incidence, prevalence, treatment outcomes and quality of life. 2024.
- Deng Y, Qiao L, Du M, Qu C, Wan L, Li J, et al. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes & diseases. 2022;9(1):62-79. https://doi.org/10.1016/j.gendis.2021.02.009 PMid:35005108 PMCid:PMC8720701
- 33. Hernández-Zimbrón LF, Zamora-Alvarado R, Ochoa-De la Paz L, Velez-Montoya R, Zenteno E, Gulias-Cañizo R, et al. Age-related macular degeneration: new paradigms for treatment and management of AMD. Oxidative medicine and cellular longevity. 2018;2018(1):8374647. https://doi.org/10.1155/2018/8374647 PMid:29484106 PMCid:PMC5816845
- 34. Joseph A. Tissue characteristics in retinal surface disorders: University of Split. School of Medicine. Ophthalmology; 2019.
- 35. Shivaji S. Antimicrobial Resistance of the Diseased Human Eye: Conjunctivitis. Antimicrobial Resistance of the Human Eye: CRC Press. p. 372-417. https://doi.org/10.1201/9781003451105-13
- 36. Azari AA, Arabi A. Conjunctivitis: a systematic review. Journal of ophthalmic & vision research. 2020;15(3):372. https://doi.org/10.18502/jovr.v15i3.7456 PMid:32864068 PMCid:PMC7431717
- 37. Mukherjee P, Bandyopadhyay P. Infectious Diseases of the Eye: Wolters kluwer india Pvt Ltd; 2020.
- 38. Dupuis P, Prokopich CL, Hynes A, Kim H. A contemporary look at allergic conjunctivitis. Allergy, Asthma & Clinical Immunology. 2020;16:1-18. https://doi.org/10.1186/s13223-020-0403-9 PMid:31993069 PMCid:PMC6975089

- 39. Nalini M, Raghavulu B, Annapurna A, Avinash P, Chandi V, Swathi N. Correlation of various serum biomarkers with the severity of diabetic retinopathy. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2017;11:S451-S4. https://doi.org/10.1016/j.dsx.2017.03.034 PMid:28420575
- 40. Mansour SE, Browning DJ, Wong K, Flynn Jr HW, Bhavsar AR. The evolving treatment of diabetic retinopathy. Clinical Ophthalmology. 2020:653-78. https://doi.org/10.2147/OPTH.S236637 PMid:32184554 PMCid:PMC7061411
- 41. Global estimates on the number of people blind or visually impaired by glaucoma: A meta-analysis from 2000 to 2020. Eye. 2024:1-11.
- Soliman SE, Racher H, Zhang C, MacDonald H, Gallie BL. Genetics and molecular diagnostics in retinoblastoma-an update. The Asia-Pacific Journal of Ophthalmology. 2017;6(2):197-207.
- 43. Donovan C, Arenas E, Ayyala RS, Margo CE, Espana EM. Fungal keratitis: Mechanisms of infection and management strategies. Survey of ophthalmology. 2022;67(3):758-69. https://doi.org/10.1016/j.survophthal.2021.08.002 PMid:34425126 PMCid:PMC9206537
- 44. Boomiraj H, Mohankumar V, Lalitha P, Devarajan B. Human corneal microRNA expression profile in fungal keratitis. Investigative ophthalmology & visual science. 2015;56(13):7939-46. https://doi.org/10.1167/iovs.15-17619
- 45. Maulvi FA, Shetty KH, Desai DT, Shah DO, Willcox MD. Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. International journal of pharmaceutics. 2021;608:121105. https://doi.org/10.1016/j.ijpharm.2021.121105 PMid:34537269
- 46. Gibson M. Ophthalmic dosage forms. Pharmaceutical preformulation and formulation: CRC Press; 2016. p. 443-67. https://doi.org/10.3109/9781420073188-15 PMCid:PMC5154371
- 47. Rahić O, Tucak A, Omerović N, Sirbubalo M, Hindija L, Hadžiabdić J, et al. Novel drug delivery systems fighting glaucoma: Formulation obstacles and solutions. Pharmaceutics. 2020;13(1):28. https://doi.org/10.3390/pharmaceutics13010028 PMid:33375224 PMCid:PMC7824381
- 48. Gupta B, Mishra V, Gharat S, Momin M, Omri A. Cellulosic polymers for enhancing drug bioavailability in ocular drug delivery systems. Pharmaceuticals. 2021;14(11):1201. https://doi.org/10.3390/ph14111201 PMid:34832983 PMCid:PMC8621906
- 49. Dargude S, Dhake P, Hole A, Pinjari RR, Hingne S. A REVIEW ON CURCUMIN LOADED NANO DRUG DELIVERY SYSTEMS: NANO FORMULATIONS AND RECENT ADVANCES.
- 50. Wang X, Zhang Y, Huang J, Tian C, Xia M, Liu L, et al. A novel phytantriol-based lyotropic liquid crystalline gel for efficient ophthalmic delivery of pilocarpine nitrate. AAPS PharmSciTech. 2019;20:1-14. https://doi.org/10.1208/s12249-018-1248-0 PMid:30603986
- 51. Mariz M, Murta J, Gil M, Ferreira P. An ocular insert with zeroorder extended delivery: release kinetics and mathematical models. European Journal of Pharmaceutics and Biopharmaceutics. 2022;181:79-87. https://doi.org/10.1016/j.ejpb.2022.10.023 PMid:36351492
- 52. Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Advances in colloid and interface science. 2021;288:102342. https://doi.org/10.1016/j.cis.2020.102342 PMid:33444845
- 53. Trujillo-de Santiago G, Sharifi R, Yue K, Sani ES, Kashaf SS, Alvarez MM, et al. Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials. 2019;197:345-67. https://doi.org/10.1016/j.biomaterials.2019.01.011 PMid:30690421 PMCid:PMC6687460
- 54. Chaudhari P, Ghate VM, Lewis SA. Next-generation contact lenses: Towards bioresponsive drug delivery and smart technologies in ocular therapeutics. European Journal of Pharmaceutics and

- Biopharmaceutics. 2021;161:80-99. https://doi.org/10.1016/j.ejpb.2021.02.007 PMid:33607239
- 55. Kempe S, Mäder K. In situ forming implants-an attractive formulation principle for parenteral depot formulations. Journal of controlled release. 2012;161(2):668-79. https://doi.org/10.1016/j.jconrel.2012.04.016 PMid:22543012
- 56. Kushwaha SK, Saxena P, Rai A. Stimuli sensitive hydrogels for ophthalmic drug delivery: A review. International journal of pharmaceutical investigation. 2012;2(2):54. https://doi.org/10.4103/2230-973X.100036 PMid:23119233 PMCid:PMC3482766
- 57. Taylor MJ, Tomlins P, Sahota TS. Thermoresponsive gels. Gels. 2017;3(1):4. https://doi.org/10.3390/gels3010004 PMid:30920501 PMCid:PMC6318636
- 58. Ahmed B, Jaiswal S, Naryal S, Shah RM, Alany RG, Kaur IP. In situ gelling systems for ocular drug delivery. Journal of Controlled Release. 2024;371:67-84. https://doi.org/10.1016/j.jconrel.2024.05.031 PMid:38768662
- 59. Liu R, Sun L, Fang S, Wang S, Chen J, Xiao X, et al. Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: development, characterization, in vitro permeation and in vivo pharmacokinetic studies. Pharmaceutical development and technology. 2016;21(5):576-82. https://doi.org/10.3109/10837450.2015.1026607 PMid:26024239
- Ameeduzzafar, Ali J, Fazil M, Qumbar M, Khan N, Ali A. Colloidal drug delivery system: amplify the ocular delivery. Drug delivery. 2016;23(3):700-16. https://doi.org/10.3109/10717544.2014.923065 PMid:24892625
- 61. Pal P, Sambhakar S, Paliwal S. Revolutionizing Ophthalmic Care: A Review of Ocular Hydrogels from Pathologies to Therapeutic Applications. Current Eye Research. 2024:1-17. https://doi.org/10.1080/02713683.2024.2396385 PMid:39261982
- 62. Pandey M, Choudhury H, binti Abd Aziz A, Bhattamisra SK, Gorain B, Su JST, et al. Potential of Stimuli-Responsive In Situ Gel System for Sustained Ocular Drug Delivery: Recent Progress and Contemporary Research. Polymers. 2021;13(8):1340. https://doi.org/10.3390/polym13081340 PMid:33923900 PMCid:PMC8074213
- 63. Liu H, Jian R, Chen H, Tian X, Sun C, Zhu J, et al. Application of biodegradable and biocompatible nanocomposites in electronics: current status and future directions. Nanomaterials. 2019;9(7):950. https://doi.org/10.3390/nano9070950 PMid:31261962 PMCid:PMC6669760
- 64. Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. Application of nanotechnology in drug delivery. 2014;1:1-50. https://doi.org/10.5772/58459
- 65. Ana Rd, Fonseca J, Karczewski J, Silva AM, Zielińska A, Souto EB. Lipid-based nanoparticulate systems for the ocular delivery of bioactives with anti-inflammatory properties. International Journal of Molecular Sciences. 2022;23(20):12102. https://doi.org/10.3390/ijms232012102 PMid:36292951 PMCid:PMC9603520
- 66. Silva HD, Cerqueira MA, Vicente AA. Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. Journal of Food Engineering. 2015;167:89-98. https://doi.org/10.1016/j.jfoodeng.2015.07.037
- 67. Dukovski BJ, Juretić M, Bračko D, Randjelović D, Savić S, Moral MC, et al. Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment. International Journal of Pharmaceutics. 2020;576:118979. https://doi.org/10.1016/j.ijpharm.2019.118979 PMid:31870964
- 68. Lopes CM, Bettencourt C, Rossi A, Buttini F, Barata P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. International journal of pharmaceutics. 2016;510(1):144-58. https://doi.org/10.1016/j.ijpharm.2016.05.016 PMid:27173823

- 69. Fathi-Karkan S, Ramsheh NA, Arkaban H, Narooie-Noori F, Sargazi S, Mirinejad S, et al. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. International Journal of Pharmaceutics. 2024;658:124226. https://doi.org/10.1016/j.ijpharm.2024.124226 PMid:38744414
- 70. Tarannum N, Suhani, Kumar D. Synthesis, characterization and applications of copolymer of β -cyclodextrin: a review. Journal of Polymer Research. 2020;27:1-30. https://doi.org/10.1007/s10965-020-02058-9
- 71. Asyikin binti Abdul Aziz Z, Ahmad A, Hamidah Mohd-Setapar S, Hassan H, Lokhat D, Amjad Kamal M, et al. Recent advances in drug delivery of polymeric nano-micelles. Current drug metabolism. 2017;18(1):16-29. https://doi.org/10.2174/1389200217666160921143616 PMid:27654898
- Nayak K, Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomedicine & pharmacotherapy. 2018;107:1564-82. https://doi.org/10.1016/j.biopha.2018.08.138 PMid:30257375
- 73. Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug delivery. 2010;17(7):467-89. https://doi.org/10.3109/10717544.2010.483257 PMid:20491540
- 74. Kumar S, Randhawa JK. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Materials Science and Engineering: C. 2013;33(4):1842-52. https://doi.org/10.1016/j.msec.2013.01.037 PMid:23498204
- 75. Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. European Journal of Pharmaceutics and Biopharmaceutics. 2018;133:285-308. https://doi.org/10.1016/j.ejpb.2018.10.017 PMid:30463794
- Liu P. Nanocrystal formulation for poorly soluble drugs.
 Dissertationes bioscientiarum molecularium Universitatis Helsingiensis in Viikki. 2013:62.
- 77. Pardhi VP, Verma T, Flora S, Chandasana H, Shukla R. Nanocrystals: an overview of fabrication, characterization and therapeutic applications in drug delivery. Current pharmaceutical design. 2018;24(43):5129-46. https://doi.org/10.2174/1381612825666190215121148 PMid:30767737
- 78. Lu A. Amphiphilic and thermoresponsive block copolymers based on hydroxypropyl methyl cellulose as nano-carrier of hydrophobic drugs: Université Montpellier; 2020.
- 79. Arpicco S, Battaglia L, Brusa P, Cavalli R, Chirio D, Dosio F, et al. Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. Journal of Drug Delivery Science and Technology. 2016;32:298-312. https://doi.org/10.1016/j.jddst.2015.09.004
- 80. Garg G, Saraf S, Saraf S. Cubosomes: an overview. Biological and Pharmaceutical Bulletin. 2007;30(2):350-3. https://doi.org/10.1248/bpb.30.350 PMid:17268078
- 81. Zembala J, Forma A, Zembala R, Januszewski J, Zembala P, Adamowicz D, et al. Technological Advances in a Therapy of Primary Open-Angle Glaucoma: Insights into Current Nanotechnologies. Journal of Clinical Medicine. 2023;12(18):5798. https://doi.org/10.3390/jcm12185798 PMid:37762739 PMCid:PMC10531576
- 82. Abdelbary AA, Abd-Elsalam WH, Al-Mahallawi AM. Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: In vitro characterization, ex vivo permeation and in vivo safety assessment. Int J Pharm. 2016;513(1-2):688-96. https://doi.org/10.1016/j.ijpharm.2016.10.006 PMid:27717916
- 83. Lim LT, Ah-Kee EY, Collins CE. Common eye drops and their implications for pH measurements in the management of chemical eye injuries. Int J Ophthalmol. 2014;7(6):1067-8. https://doi.org/10.4137/OED.S16031 PMid:25002817 PMCid:PMC4076205

- 84. Gawin-Mikołajewicz A, Nartowski KP, Dyba AJ, Gołkowska AM, Malec K, Karolewicz Be. Ophthalmic nanoemulsions: From composition to technological processes and quality control. Molecular pharmaceutics. 2021;18(10):3719-40. https://doi.org/10.1021/acs.molpharmaceut.1c00650 PMid:34533317 PMCid:PMC8493553
- 85. Hirata H, Mizerska K, Dallacasagrande V, Rosenblatt MI. Estimating the Osmolarities of Tears During Evaporation Through the "Eyes" of the Corneal Nerves. Invest Ophthalmol Vis Sci. 2017;58(1):168-78. https://doi.org/10.1167/iovs.16-20501 PMid:28114576 PMCid:PMC5256685
- 86. Cassano R, Di Gioia ML, Trombino S. Gel-based materials for ophthalmic drug delivery. Gels. 2021;7(3):130. https://doi.org/10.3390/gels7030130 PMid:34563016 PMCid:PMC8482217
- 87. Patil S, Kadam A, Bandgar S, Patil S. Formulation and evaluation of an in situ gel for ocular drug delivery of anticonjunctival drug. Cellulose Chem Technol. 2015;49(1):35-40.
- 88. Patlolla V, Holbrook W, Gizurarson S, Kristmundsdottir P. Evaluation of in vitro mucoadhesiveness and texture profile analysis of doxycycline in situ hydrogels. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2020;75(1):7-12.
- 89. Askarkar SS, Gupta KR. Design and Evaluation of Ophthalmic Delivery of Bepotastine Besilate From Eye Drop. Pharmaceutical Methods. 2016;7(2). https://doi.org/10.5530/phm.2016.7.16
- Bose A, Majumdar S, Halder A. Development and statistical optimization of timolol maleate encapsulated liposome using 32 full factorial design. Proceedings of the Indian National Science Academy. 2025:1-15. https://doi.org/10.1007/s43538-025-00387-1
- 91. Pavčnik L, Prunk M, Trdan Lušin T, Roškar R. Accelerated Predictive Stability Testing: Accelerating Registration Phase and Application of Reduced Designs for Shelf-Life Determination of Parenteral Drug Product. Pharmaceutics. 2025;17(2):160. https://doi.org/10.3390/pharmaceutics17020160 PMid:40006527 PMCid:PMC11858995
- 92. Slavkova M, Voycheva C, Popova T, Tzankov B, Tzankova D, Spassova I, et al. Ophthalmic In Situ Nanocomposite Gel for Delivery of a Hydrophobic Antioxidant. Gels. 2025;11(2):105. https://doi.org/10.3390/gels11020105 PMid:39996648 PMCid:PMC11854355
- 93. Patel N, Desai A, Vyas B, Shah P, Shubhada M, Milind U, et al. Integration of Synchronizing In Silico, In Vitro, and In Vivo Strategies for the Development of Antipsoriatic Apremilast-loaded Nanostructured Lipid Carrier Embedded in Hydrogel. AAPS PharmSciTech. 2025;26(5):115. https://doi.org/10.1208/s12249-025-03103-w PMid:40281236
- 94. Singh AK, Upadhyay PK, Kumar M. Formulation Development and Permeation Studies of Vancomycin Hydrochloride-Loaded Nanostructured Lipid Carrier Incorporated Thermoresponsive In-Situ Gel: A Box-Behnken Design Implemented Approach for Ocular Delivery in Endophthalmitis. Recent Advances in Drug Delivery and Formulation. 2025.
- 95. Alves dos Santos PN, Braga Andrade Y, Moraes Santana AA, Cordeiro Cardoso J, dos Santos Polidoro A, Loreiro dos Santos A, et al. Characterization of volatile compounds in Eugenia uniflora L. essential oil by GC× GC/TOFMS: exploring its antioxidant potential and in vitro ocular irritation assessment. Journal of Essential Oil Research. 2025;37(1):56-64. https://doi.org/10.1080/10412905.2024.2447713
- Tan EYS. Biofabrication of choroid-retina tissue construct for modelling of age-related macular degeneration disease 2019.
- 97. Soliman KA, Ullah K, Shah A, Jones DS, Singh TR. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discovery Today. 2019;24(8):1575-86. https://doi.org/10.1016/j.drudis.2019.05.036 PMid:31175956
- 98. Iohara D, Okubo M, Anraku M, Uramatsu S, Shimamoto T, Uekama K, et al. Hydrophobically modified polymer/ α -cyclodextrin thermoresponsive hydrogels for use in ocular drug delivery.

- Molecular pharmaceutics. 2017;14(8):2740-8. https://doi.org/10.1021/acs.molpharmaceut.7b00291 PMid:28661690
- 99. Chandavarkar N, Jindal KC, Malayandi R. In-situ gel forming solution for ocular drug delivery. WO2011018800. 2011.
- 100. Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian journal of pharmaceutical sciences. 2019;14(1):1-15. https://doi.org/10.1016/j.ajps.2018.04.008 PMid:32104434 PMCid:PMC7032175
- 101. Li H, Su X, Cheng H, Zhao F. Thermoplastic and Reprocessable Polyureas Synthesized from CO2-Based Oligourea. ACS Applied Polymer Materials. 2025.
- 102. Kesavan K, Mohan P, Gautam N, Sheffield VC. Topical Ocular Delivery of Nanocarriers: A Feasible Choice for Glaucoma Management. Current pharmaceutical design. 2020;26(42):5518-32. https://doi.org/10.2174/1381612826666200916145609 PMid:32938345
- 103. Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent advances in the excipients used for modified ocular drug delivery. Materials.

- Journal of Drug Delivery & Therapeutics. 2025; 15(5):181-193
- 2021;14(15):4290. https://doi.org/10.3390/ma14154290 PMid:34361483 PMCid:PMC8347600
- 104. Das B, Chattopadhyay D, Rana D. The gamut of perspectives, challenges, and recent trends for in situ hydrogels: A smart ophthalmic drug delivery vehicle. Biomaterials Science. 2020;8(17):4665-91. https://doi.org/10.1039/D0BM00532K PMid:32760957
- 105. Ahmed T, Islam MN, Monalisa R, Ehsan F, Huang S-W. Polysaccharides polymers for glaucoma treatment-a review. European Journal of Ophthalmology. 2024;34(2):338-56. https://doi.org/10.1177/11206721231178057 PMid:37231538
- 106. Tsung T-H, Tsai Y-C, Lee H-P, Chen Y-H, Lu D-W. Biodegradable polymer-based drug-delivery systems for ocular diseases. International Journal of Molecular Sciences. 2023;24(16):12976. https://doi.org/10.3390/ijms241612976 PMid:37629157 PMCid:PMC10455181
- 107. Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, et al. Chitosan and its derivatives for ocular delivery formulations: Recent advances and developments. Polymers. 2020;12(7):1519. https://doi.org/10.3390/polym12071519 PMid:32650536 PMCid:PMC7407599