Pharmacology of Vitamin C in the Treatment of Cancer: A Comprehensive Review
Abstract
Vitamin C (ascorbate) has re-emerged as a promising adjunct in oncology due to a clearer understanding of its distinct pharmacology when administered intravenously versus orally. Oral dosing is constrained by saturable intestinal absorption and tight renal regulation, limiting plasma concentrations to low micromolar levels. In contrast, intravenous (IV) administration achieves pharmacologic millimolar plasma concentrations, enabling mechanisms not accessible through dietary or supplemental intake. At these higher levels, ascorbate functions as a pro-drug to generate hydrogen peroxide (H₂O₂) in the extracellular space, selectively inducing oxidative stress and cytotoxicity in cancer cells, which often possess impaired antioxidant defences. Additional proposed mechanisms include modulation of redox signalling, enhancement of sensitivity to chemotherapy and radiotherapy, and regulation of epigenetic enzymes such as TET and HIF hydroxylases. Preclinical studies consistently demonstrate dose-dependent tumour cell killing and synergy with conventional therapies, while early-phase clinical trials report good tolerability, improved quality of life, and signals of therapeutic benefit in malignancies such as pancreatic, ovarian, and glioblastoma. However, definitive efficacy data remain limited due to small sample sizes and heterogeneous protocols. Safety concerns include haemolytic risk in G6PD deficiency and oxalate nephropathy in predisposed patients, underscoring the need for appropriate screening. Overall, current evidence supports the biological plausibility and safety of pharmacologic ascorbate as an adjunct to standard cancer therapy, but well-powered randomized trials and validated biomarkers are required before widespread clinical implementation.
Keywords: Vitamin C, Ascorbate, Intravenous Vitamin C, Cancer Therapy, Oxidative stress, Hydrogen Peroxide, Pharmacokinetics, Chemo-radiation Sensitization, Adjunctive oncology
Keywords:
Vitamin C, Ascorbate, Intravenous Vitamin C, Cancer Therapy, Oxidative stress, Hydrogen Peroxide, Pharmacokinetics, Chemo-radiation Sensitization, Adjunctive oncologyDOI
https://doi.org/10.22270/jddt.v16i1.7531References
1. Blaszczak W, Barczak W, Masternak J, Kopczyński P, Zhitkovich A, Rubiś B. Vitamin C as a Modulator of the Response to Cancer Therapy. Molecules. 2019;24(15):2784. https://doi.org/10.3390/molecules24030453 PMid:30695991 PMCid:PMC6384696
2. Böttger F, Vallés-Martí A, Cahn L, Jimenez CR. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. J Exp Clin Cancer Res. 2021;40(1):343. https://doi.org/10.1186/s13046-021-02134-y PMid:34717701 PMCid:PMC8557029
3. Carr AC, Lykkesfeldt J. From Lime Juice to Linus Pauling: The Evolution of Vitamin C Science. Antioxidants (Basel). 2021;10(6):842.
4. Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. https://doi.org/10.3390/nu9111211 PMid:29099763 PMCid:PMC5707683
5. Carr AC, Vissers MCM, Cook JS. The Effect of Intravenous Vitamin C on Cancer- and Chemotherapy-Related Fatigue and Quality of Life. Front Oncol. 2014;4:283. https://doi.org/10.3389/fonc.2014.00283 PMid:25360419 PMCid:PMC4199254
6. Chen X, Comish PB, Tang D, Kang R. Ascorbate induces ferroptosis in triple-negative breast cancer cells by GPX4 degradation. Cell Death Differ. 2024;31(8):1172-86.
7. Das AB, Smith-Díaz CC, Vissers MCM. Vitamin C regulates HIF hydroxylases in cancer metabolism. Nat Commun. 2023;14:7959.
8. Davis CD, Uthus EO, Finley JW. Diet, epigenetics, and cancer. Eur J Clin Nutr. 2022;76(12):1649-59.
9. Drouin G, Godin JR, Pagé B. Why Humans Lost the Ability to Synthesize Vitamin C: A Genomic Perspective. Genome Biol Evol. 2021;13(9):263.
10. Ferraro PM, Curhan GC, Gambaro G, Taylor EN. Genetic variants affecting vitamin C transporter activity and human health. Nutrients. 2020;12(8):2418.
11. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31-46. https://doi.org/10.1158/2159-8290.CD-21-1059 PMid:35022204
12. Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med. 2020;159:293-302.
13. Hemilä H, Chalker E. Vitamin C and Immune Function: An Updated Review. Front Immunol. 2021;12:800168. https://doi.org/10.3389/fimmu.2021.659001 PMid:33868305 PMCid:PMC8047412
14. Johnson AR, Lee CM, Stenerson KM. High-dose ascorbate as a radiosensitizer in glioblastoma: Preclinical efficacy and mechanisms. Neurooncol Adv. 2024 ;6(1):050.
15. Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369,64-99 https://doi.org/10.1126/science.abb9601 PMid:32345712 PMCid:PMC7509949
16. Lopes J, Bourgeois C, Flament H, Macari C, Cantero AG, Cagnard N, et al. Ascorbic acid attenuates immunosuppression by inhibiting myeloid-derived suppressor cells in a murine model of pancreatic cancer. Cancer Immunol Res. 2022;10(2):120-34.
17. Lykkesfeldt J, Tveden-Nyborg P. The Pharmacokinetics of Vitamin C. Nutrients. 2019;11(10):2412. https://doi.org/10.3390/nu11102412 PMid:31601028 PMCid:PMC6835439
18. Magrì A, Germano G, Lorenzato A, Lamba S, Chila R, Montone M, et al. High-dose vitamin C enhances cancer immunotherapy. Sci Transl Med. 2020 ;12(532):8707. https://doi.org/10.1126/scitranslmed.aay8707 PMid:32102933
19. Martinez S, Garcia-Silva S, Benito M. Vitamin C triggers autophagic cell death in colorectal cancer via AMPK pathway activation. Cancers (Basel). 2022;14(4):914.
20. Michels AJ, Hagen TM, Frei B. Vitamin C pharmacokinetics and renal excretion. Am J Clin Nutr. 2022;116(4):1034-42.
21. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods. 2024;21(3):371-80.
22. Mussa A, Mohd Idris RA, Ahmed N, Ahmad S, Murtadha AH, Tengku Din TA, et al. High-dose vitamin C for cancer therapy. Pharmaceuticals (Basel). 2022;15(6):711. https://doi.org/10.3390/ph15060711 PMid:35745630 PMCid:PMC9231292
23. Padayatty SJ, Levine M. The Discovery of Vitamin C and Its Role in Preventing Scurvy: A Historical Perspective. Nutrients. 2020;12(8):2412.
24. Polireddy K, Dong R, Reed G, Yu J, Chen P, Williamson S, et al. High Dose Parenteral Ascorbate Inhibited Pancreatic Cancer Growth and Metastasis: Mechanisms and a Phase I/IIa study. Sci Rep. 2021;11(1):20945.
25. Pullar JM, Carr AC, Vissers MCM. The Roles of Vitamin C in Skin Health. Nutrients. 2017;9(8):866. https://doi.org/10.3390/nu9080866 PMid:28805671 PMCid:PMC5579659
26. Rodriguez A, Mendez L, Pennington SR, Garcia-Perez J. Epigenetic reprogramming by ascorbate diminishes ovarian cancer stem cell phenotype and chemoresistance. Clin Epigenetics. 2023;15(1):57.
27. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222-6. https://doi.org/10.1038/nature23003 PMid:28678784
28. Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, et al. O2⋅- and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate. Cancer Cell. 2017;32(2):268-86. https://doi.org/10.1016/j.ccell.2017.07.008 PMid:28810149
29. Smith J, Brown K, Wilson WR. Pharmacological ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer. PLoS One. 2023;18(10):0289330.
30. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. https://doi.org/10.1038/s41408-021-00459-7 PMid:33824268 PMCid:PMC8024391
31. Cao X, Yi Y, Ji M, Liu Y, Wang D, Zhu H. The dual role of vitamin C in cancer: from antioxidant prevention to prooxidant therapeutic applications. Front Med (Lausanne). 2025;12:1653217. https://doi.org/10.3389/fmed.2025.1633447 PMid:40950984 PMCid:PMC12426187
32. Lykkesfeldt J, Tveden-Nyborg P. The pharmacokinetics of vitamin C. Nutrients. 2019;11(10):2412. https://doi.org/10.3390/nu11102412 PMid:31601028 PMCid:PMC6835439
33. Pro- and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological Concentrations. Nutrients. 2019;11(5):1101.
34. Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: Prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A. 1976;73(10):3685-9. https://doi.org/10.1073/pnas.73.10.3685 PMid:1068480 PMCid:PMC431183
35. Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci U S A. 2005 20;102(38):13604-9. https://doi.org/10.1073/pnas.0506390102 PMid:16157892 PMCid:PMC1224653
36. Du J, Cullen JJ, Buettner GR. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta. 2012;1826(2):443-57. https://doi.org/10.1016/j.bbcan.2012.06.003 PMid:22728050 PMCid:PMC3608474
37. Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, et al. O2⋅- and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell. 201714;32(2):268-268.5. https://doi.org/10.1016/j.ccell.2017.07.008 PMid:28810149
38. Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015 11;350(6266):1391-6. https://doi.org/10.1126/science.aaa5004 PMid:26541605 PMCid:PMC4778961
39. Mastrangelo D, Pelosi E, Castelli G. Vitamin C and cancer: a review of the current evidence. Front Physiol. 2018 20;9:1594.
40. Monti DA, Mitchell E, Bazzan AJ, Littman S, Zabrecky G, Yeo CJ, et al. Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. PLoS One. 2012;7(1):29794. https://doi.org/10.1371/journal.pone.0029794 PMid:22272248 PMCid:PMC3260161
41. Hoffer LJ, Levine M, Assouline S, Melnychuk D, Padayatty SJ, Rosadiuk K, et al. Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann Oncol. 2008;19(11):1969-74. https://doi.org/10.1093/annonc/mdn377 PMid:18544557
42. Carr AC, Cook J. Intravenous vitamin C for cancer therapy - identifying the current gaps in our knowledge. Front Physiol. 2018 4;9:1182. https://doi.org/10.3389/fphys.2018.01182 PMid:30190680 PMCid:PMC6115501
43. Polireddy K, Dong R, Reed G, Yu J, Chen P, Williamson S, et al. High dose parenteral ascorbate inhibited pancreatic cancer growth and metastasis: mechanisms and a phase I/IIa study. Sci Rep. 20175;7(1):17188. https://doi.org/10.1038/s41598-017-17568-8 PMid:29215048 PMCid:PMC5719364
44. Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 2014 5;6(222):22218. https://doi.org/10.1126/scitranslmed.3007154
45. Stephenson CM, Levin RD, Spector T, Lis CG. Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer. Cancer Chemother Pharmacol. 2013;72(1):139-46. https://doi.org/10.1007/s00280-013-2179-9 Mid:23670640 PMCid:PMC3691494
46. Welsh JL, Wagner BA, van't Erve TJ, Zehr PS, Berg DJ, Halfdanarson TR, et al. Pharmacological ascorbate with gemcitabine for the control of metastatic and node-positive pancreatic cancer (PACMAN): results from a phase I clinical trial. Cancer Chemother Pharmacol. 2013 ;71(3):765-75. https://doi.org/10.1007/s00280-013-2070-8 PMid:23381814 PMCid:PMC3587047
47. Cimmino L, Neel BG, Aifantis I. Vitamin C in Stem Cell Reprogramming and Cancer. Trends Cell Biol. 2018;28(9):698-708. https://doi.org/10.1016/j.tcb.2018.04.001 PMid:29724526 PMCid:PMC6102081
48. Klingelhoeffer C, Kämmerer U, Koospal M, Mühling B, Schneider M, Kapp M, et al. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress. BMC Complement Altern Med. 2012 30;12-61. https://doi.org/10.1186/1472-6882-12-61 PMid:22551313 PMCid:PMC3404974
49. Levine M, Padayatty SJ, Espey MG. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr. 2011;2(2):78-88. https://doi.org/10.3945/an.110.000109 PMid:22332036 PMCid:PMC3065766
50. Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 2016;22(6):463-93. https://doi.org/10.1111/odi.12446 PMid:26808119 PMCid:PMC4959991
51. Campbell EJ, Dachs GU. Current limitations and future opportunities for the clinical use of vitamin C in cancer. J R Soc N Z. 2014;44(4):197-210. https://doi.org/10.3389/fonc.2014.00282
52. Jacobs C, Hutton B, Ng T, Shorr R, Clemons M. Is there a role for oral or intravenous ascorbate (vitamin C) in treating patients with cancer? A systematic review. Oncologist. 2015;20(2):210-23. https://doi.org/10.1634/theoncologist.2014-0381 PMid:25601965 PMCid:PMC4319640
53. Ngo B, Van Riper JM, Cantley LC, Yun J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat Rev Cancer. 2019;19(5):271-82. https://doi.org/10.1038/s41568-019-0135-7 PMid:30967651 PMCid:PMC6526932
54. Buettner GR, Wagner BA. Ascorbate and cancer: the oxidative stress of vitamin C. Nat Rev Cancer. 2020;20(10):567-8.
55. Alexander MS, Wilkes JG, Schroeder SR, Buettner GR, Wagner BA. Pharmacologic Ascorbate as a Means of Sensitizing Cancer Cells to Radio-Chemotherapy While Protecting Normal Tissue. Semin Radiat Oncol. 2020;30(3):237-42.
56. Drisko JA, Serrano OK, Spruce LR, Chen Q, Levine M. Treatment of pancreatic cancer with intravenous vitamin C: a case report. Anticancer Drugs. 2018;29(4):373-9. https://doi.org/10.1097/CAD.0000000000000603 PMid:29438178 PMCid:PMC5882293
Published
Abstract Display: 24
PDF Downloads: 18
PDF Downloads: 3 How to Cite
Issue
Section
Copyright (c) 2026 Kartik Jamwal , Komal , Kapil Kumar Verma

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.