Curcumin-Loaded Nanoemulsions: Advances in Formulation Strategies and Anti-Inflammatory Therapeutic Applications
Abstract
Curcumin, the principal bioactive compound of Curcuma longa, has drawn significant attention for its potent anti-inflammatory properties. However, its clinical translation remains limited due to poor solubility in aqueous environments, rapid degradation, and extremely low oral bioavailability. In recent years, nanoemulsion-based delivery systems have emerged as a promising strategy to overcome these barriers. By encapsulating curcumin within nanoscale oil-in-water emulsions, researchers have achieved enhanced solubility, improved physicochemical stability, and more efficient absorption across biological membranes. Preclinical studies demonstrate that curcumin-loaded nanoemulsions exhibit superior anti-inflammatory activity compared to free curcumin, as evidenced by greater suppression of pro-inflammatory cytokines, reduced oxidative stress, and more effective modulation of key signalling pathways in both in vitro and in vivo models. These advances highlight nanoemulsions not only as carriers that protect curcumin from degradation but also as facilitators of targeted and sustained therapeutic action. Future directions should prioritise large-scale clinical evaluations, standardised formulation protocols, and clear regulatory frameworks to ensure safety, reproducibility, and patient accessibility. Overall, curcumin-loaded nanoemulsions represent a compelling avenue for harnessing the therapeutic potential of curcumin, particularly for managing inflammation-driven disorders.
Keywords: Curcumin, Nanoemulsion, Drug delivery, Anti-inflammatory therapy, Bioavailability, Clinical translation
Keywords:
Curcumin, Nanoemulsion, Drug delivery, Anti-inflammatory therapy, Bioavailability, Clinical translationDOI
https://doi.org/10.22270/jddt.v16i1.7507References
1. Soares CLR, Wilairatana P, Silva LR, et al. Biochemical aspects of the inflammatory process: A narrative review. Biomedicine & Pharmacotherapy 2023;168:115764; https://doi.org/10.1016/j.biopha.2023.115764 PMid:37897973
2. Pache M, Kedar H, Kond S, et al. Pharmacological Management of Neurodegenerative Disorders: Current and Future Approaches. Int J Sci R Tech 2025;2(3):405-520;
3. Shukla V, Arora R. The Economic Cost of Rising Non-communicable Diseases in India: A Systematic Literature Review of Methods and Estimates. Appl Health Econ Health Policy 2023;21(5):719-730; https://doi.org/10.1007/s40258-023-00822-8 PMid:37505413
4. Peng Y, Ao M, Dong B, et al. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. DDDT 2021;Volume 15:4503-4525; https://doi.org/10.2147/DDDT.S327378 PMid:34754179 PMCid:PMC8572027
5. Fu Y-S, Chen T-H, Weng L, et al. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomedicine & Pharmacotherapy 2021;141:111888; https://doi.org/10.1016/j.biopha.2021.111888 PMid:34237598
6. Elzoheiry A, Ayad E, Omar N, et al. Anti-liver fibrosis activity of curcumin/chitosan-coated green silver nanoparticles. Sci Rep 2022;12(1):18403; https://doi.org/10.1038/s41598-022-23276-9 PMid:36319750 PMCid:PMC9626641
7. Panknin TM, Howe CL, Hauer M, et al. Curcumin Supplementation and Human Disease: A Scoping Review of Clinical Trials. IJMS 2023;24(5):4476; https://doi.org/10.3390/ijms24054476 PMid:36901908 PMCid:PMC10003109
8. Sohn S-I, Priya A, Balasubramaniam B, et al. Biomedical Applications and Bioavailability of Curcumin-An Updated Overview. Pharmaceutics 2021;13(12):2102; https://doi.org/10.3390/pharmaceutics13122102 PMid:34959384 PMCid:PMC8703330
9. Pan-On S, Dilokthornsakul P, Tiyaboonchai W. Trends in advanced oral drug delivery systems for curcumin: A systematic review. Journal of Controlled Release 2022;348:335-345; https://doi.org/10.1016/j.jconrel.2022.05.048 PMid:35654170
10. Parvaneh S, Pourmadadi M, Abdouss M, et al. Carboxymethyl cellulose/starch/reduced graphene oxide composite as a pH-sensitive nanocarrier for curcumin drug delivery. International Journal of Biological Macromolecules 2023;241:124566; https://doi.org/10.1016/j.ijbiomac.2023.124566 PMid:37100314
11. D'Acierno F, Michal CA, MacLachlan MJ. Thermal Stability of Cellulose Nanomaterials. Chem Rev 2023;123(11):7295-7325; https://doi.org/10.1021/acs.chemrev.2c00816 PMid:37132652
12. Singh PA, Awasthi R, Pandey RP, et al. Curcumin-loaded nanoemulsion for acute lung injury treatment via nebulization: Formulation, optimization and in vivo studies: Original scientific article. ADMET DMPK 2025;2661; https://doi.org/10.5599/admet.2661 PMid:40314003 PMCid:PMC12043102
13. Marwa A, Iskandarsyah, Jufri M. Nanoemulsion curcumin injection showed significant anti-inflammatory activities on carrageenan-induced paw edema in Sprague-Dawley rats. Heliyon 2023;9(4):e15457; https://doi.org/10.1016/j.heliyon.2023.e15457 PMid:37151685 PMCid:PMC10161698
14. Jakubczyk K, Drużga A, Katarzyna J, et al. Antioxidant Potential of Curcumin-A Meta-Analysis of Randomized Clinical Trials. Antioxidants 2020;9(11):1092; https://doi.org/10.3390/antiox9111092 PMid:33172016 PMCid:PMC7694612
15. Zhai SS, Ruan D, Zhu YW, et al. Protective effect of curcumin on ochratoxin A-induced liver oxidative injury in duck is mediated by modulating lipid metabolism and the intestinal microbiota. Poultry Science 2020;99(2):1124-1134; https://doi.org/10.1016/j.psj.2019.10.041 PMid:32036964 PMCid:PMC7587726
16. Zhu H, Wang X, Wang X, et al. Curcumin attenuates inflammation and cell apoptosis through regulating NF-κB and JAK2/STAT3 signaling pathway against acute kidney injury. Cell Cycle 2020;19(15):1941-1951; https://doi.org/10.1080/15384101.2020.1784599 PMid:32615888 PMCid:PMC7469468
17. Pache MM, Pangavhane RR. Immunotherapy in Autoimmune Diseases: Current Advances and Future Directions. Asian Journal of Pharmaceutical Research 2025;15(02):183-191; https://doi.org/10.52711/2231-5691.2025.00030
18. Rudrapal M, Eltayeb WA, Rakshit G, et al. Dual synergistic inhibition of COX and LOX by potential chemicals from Indian daily spices investigated through detailed computational studies. Sci Rep 2023;13(1):8656; https://doi.org/10.1038/s41598-023-35161-0 PMid:37244921 PMCid:PMC10224994
19. Mollazadeh H, Cicero AFG, Blesso CN, et al. Immune modulation by curcumin: The role of interleukin-10. Critical Reviews in Food Science and Nutrition 2019;59(1):89-101; https://doi.org/10.1080/10408398.2017.1358139 PMid:28799796
20. Kahkhaie KR, Mirhosseini A, Aliabadi A, et al. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacol 2019;27(5):885-900; https://doi.org/10.1007/s10787-019-00607-3 PMid:31140036
21. Yang S, Huang X-L, Chen J, et al. Curcumin protects BEAS 2B cells from PM2.5 induced oxidative stress and inflammation by activating NRF2/antioxidant response element pathways. Int J Mol Med 2021;47(4):45; https://doi.org/10.3892/ijmm.2021.4878 PMid:33655321 PMCid:PMC7895536
22. Jamwal R. Bioavailable curcumin formulations: A review of pharmacokinetic studies in healthy volunteers. Journal of Integrative Medicine 2018;16(6):367-374; https://doi.org/10.1016/j.joim.2018.07.001 PMid:30006023
23. Mushtaq A, Mohd Wani S, Malik AR, et al. Recent insights into Nanoemulsions: Their preparation, properties and applications. Food Chemistry: X 2023;18:100684; https://doi.org/10.1016/j.fochx.2023.100684 PMid:37131847 PMCid:PMC10149285
24. Wilson RJ, Li Y, Yang G, et al. Nanoemulsions for drug delivery. Particuology 2022;64:85-97; https://doi.org/10.1016/j.partic.2021.05.009
25. Garcia CR, Malik MH, Biswas S, et al. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater Sci 2022;10(3):633-653; https://doi.org/10.1039/D1BM01537K PMid:34994371
26. Dasgupta N, Ranjan S, Gandhi M. Nanoemulsion ingredients and components. Environ Chem Lett 2019;17(2):917-928; https://doi.org/10.1007/s10311-018-00849-7
27. Al-Sakkaf MK, Onaizi SA. Crude oil/water nanoemulsions stabilized by rhamnolipid biosurfactant: Effects of acidity/basicity and salinity on emulsion characteristics, stability, and demulsification. Fuel 2023;344:128052; https://doi.org/10.1016/j.fuel.2023.128052
28. Ozogul Y, Karsli GT, Durmuş M, et al. Recent developments in industrial applications of nanoemulsions. Advances in Colloid and Interface Science 2022;304:102685; https://doi.org/10.1016/j.cis.2022.102685 PMid:35504214
29. Guerrero S, Inostroza-Riquelme M, Contreras-Orellana P, et al. Curcumin-loaded nanoemulsion: a new safe and effective formulation to prevent tumor reincidence and metastasis. Nanoscale 2018;10(47):22612-22622; https://doi.org/10.1039/C8NR06173D PMid:30484463
30. Kang S, Kim M, Kim H, et al. Enhancement of Solubility, Stability, Cellular Uptake, and Bioactivity of Curcumin by Polyvinyl Alcohol. IJMS 2024;25(11):6278; https://doi.org/10.3390/ijms25116278 PMid:38892468 PMCid:PMC11172464
31. Jiang T, Liao W, Charcosset C. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Research International 2020;132:109035; https://doi.org/10.1016/j.foodres.2020.109035 PMid:32331634
32. Guo Q, Bayram I, Zhang W, et al. Fabrication and characterization of curcumin-loaded pea protein isolate-surfactant complexes at neutral pH. Food Hydrocolloids 2021;111:106214; https://doi.org/10.1016/j.foodhyd.2020.106214
33. Lv R, Zhang X, Xing R, et al. Comprehensive understanding on solubility and solvation performance of curcumin (form I) in aqueous co-solvent blends. The Journal of Chemical Thermodynamics 2022;167:106718; https://doi.org/10.1016/j.jct.2021.106718
34. Palla CA, Aguilera-Garrido A, Carrín ME, et al. Preparation of highly stable oleogel-based nanoemulsions for encapsulation and controlled release of curcumin. Food Chemistry 2022;378:132132; https://doi.org/10.1016/j.foodchem.2022.132132 PMid:35045370
35. Ashagrie YN, Tadesse MG, Bachheti RK, et al. Formulation and characterization of Caesalpinia decapetala seed oil nanoemulsion: physicochemical properties, stability, and antibacterial activity. Sci Rep 2025;15(1):14598; https://doi.org/10.1038/s41598-025-87732-y PMid:40287524 PMCid:PMC12033336
36. Sharifi F, Jahangiri M, Nazir I, et al. Zeta potential changing nanoemulsions based on a simple zwitterion. Journal of Colloid and Interface Science 2021;585:126-137; https://doi.org/10.1016/j.jcis.2020.11.054 PMid:33279695
37. Sun Z, Shi J, Wang J, et al. A deep learning-based framework for automatic analysis of the nanoparticle morphology in SEM/TEM images. Nanoscale 2022;14(30):10761-10772; https://doi.org/10.1039/D2NR01029A PMid:35790114
38. Marhamati M, Ranjbar G, Rezaie M. Effects of emulsifiers on the physicochemical stability of Oil-in-water Nanoemulsions: A critical review. Journal of Molecular Liquids 2021;340:117218; https://doi.org/10.1016/j.molliq.2021.117218
39. Bernardette Martínez-Rizo A, Fosado-Rodríguez R, César Torres-Romero J, et al. Models in vivo and in vitro for the study of acute and chronic inflammatory activity: A comprehensive review. International Immunopharmacology 2024;135:112292; https://doi.org/10.1016/j.intimp.2024.112292 PMid:38788446
40. Borrin TR, Georges EL, Moraes ICF, et al. Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: An evaluation of process parameters and physico-chemical stability. Journal of Food Engineering 2016;169:1-9; https://doi.org/10.1016/j.jfoodeng.2015.08.012
41. Vichare R, Kulahci Y, McCallin R, et al. Theranostic nanoemulsions suppress macrophage-mediated acute inflammation in rats. J Nanobiotechnol 2025;23(1):80; https://doi.org/10.1186/s12951-025-03164-w PMid:39905487 PMCid:PMC11792706
42. Laurindo LF, De Carvalho GM, De Oliveira Zanuso B, et al. Curcumin-Based Nanomedicines in the Treatment of Inflammatory and Immunomodulated Diseases: An Evidence-Based Comprehensive Review. Pharmaceutics 2023;15(1):229; https://doi.org/10.3390/pharmaceutics15010229 PMid:36678859 PMCid:PMC9861982
43. Lei F, Zeng F, Yu X, et al. Oral hydrogel nanoemulsion co-delivery system treats inflammatory bowel disease via anti-inflammatory and promoting intestinal mucosa repair. J Nanobiotechnol 2023;21(1):275; https://doi.org/10.1186/s12951-023-02045-4 PMid:37596598 PMCid:PMC10436423
44. Wang Y, Luo J, Li S-Y. Nano-Curcumin Simultaneously Protects the Blood-Brain Barrier and Reduces M1 Microglial Activation During Cerebral Ischemia-Reperfusion Injury. ACS Appl Mater Interfaces 2019;11(4):3763-3770; https://doi.org/10.1021/acsami.8b20594 PMid:30618231
45. Bagheri AM, Ranjbar M, Karami-Mohajeri S, et al. Curcumin Nanoemulgel: Characterization, Optimization, and Evaluation of Photoprotective Efficacy, Anti-Inflammatory Properties, and Antibacterial Activity. J Clust Sci 2024;35(7):2253-2272; https://doi.org/10.1007/s10876-024-02651-8
46. Ghobadi N, Asoodeh A. Co‐administration of curcumin with other phytochemicals improves anticancer activity by regulating multiple molecular targets. Phytotherapy Research 2023;37(4):1688-1702; https://doi.org/10.1002/ptr.7794 PMid:36883534
47. Huang M, Zhai B-T, Fan Y, et al. Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. IJN 2023;Volume 18:4275-4311; https://doi.org/10.2147/IJN.S410688 PMid:37534056 PMCid:PMC10392909
48. Pache M, Bachhav G, Bhamare A, et al. Mapping Drug Responses Through Multi-Omics: A New Era of Bioinformatics in Precision Medicine. Int J Sci R Tech 2025;02(08):319-335;
49. Hake G, Mhaske A, Shukla R, et al. Copper-Induced Neurodegenerative Disorders and Therapeutic Potential of Curcumin-Loaded Nanoemulsion. Toxics 2025;13(2):108; https://doi.org/10.3390/toxics13020108 PMid:39997923 PMCid:PMC11862003
50. Bolat ZB, Islek Z, Demir BN, et al. Curcumin- and Piperine-Loaded Emulsomes as Combinational Treatment Approach Enhance the Anticancer Activity of Curcumin on HCT116 Colorectal Cancer Model. Front Bioeng Biotechnol 2020;8:50; https://doi.org/10.3389/fbioe.2020.00050 PMid:32117930 PMCid:PMC7026030
51. Hoseini B, Jaafari MR, Golabpour A, et al. Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning. International Journal of Pharmaceutics 2023;646:123414; https://doi.org/10.1016/j.ijpharm.2023.123414 PMid:37714314
52. Pache MM, Pangavhane RR, Jagtap MN, et al. The AI-Driven Future of Drug Discovery: Innovations, Applications, and Challenges. Asian J Res Pharm Sci 2025;15(1):61-67; https://doi.org/10.52711/2231-5659.2025.00009
53. Sharifi S, Fathi N, Memar MY, et al. Anti‐microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytotherapy Research 2020;34(8):1926-1946; https://doi.org/10.1002/ptr.6658 PMid:32166813
Published
Abstract Display: 25
PDF Downloads: 13
PDF Downloads: 3 How to Cite
Issue
Section
Copyright (c) 2026 Mukund Mahadev Pache , Rutuja Rajaram Pangavhane , Trupti V. Kadam , Varsha R. Chavan , Avinash B. Darekar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.