Transferosome Based Delivery of Phytoconstituents in Superficial Fungal Infections: A Comprehensive Review

Authors

  • Jaydeep Jagannath Chemate Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra 431001, India. https://orcid.org/0009-0009-6462-2275
  • Pravin Shridhar Wakte Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra 431001, India. https://orcid.org/0000-0002-7506-942X
  • Sachin Shivling Bhusari Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra 431001, India. https://orcid.org/0000-0001-9979-6595

Abstract

Superficial fungal infections, such as dermatophytosis, candidiasis, and pityriasis versicolor, are common worldwide and often affect the quality of life. Their incidence is increasing due to factors such as climate change, global travel, and the extensive use of immunosuppressive therapies. Conventional antifungal agents, including azoles and allylamines, face limitations such as drug resistance, poor skin penetration, and adverse effects. Plant-derived phytoconstituents contain several bioactive compounds with promising antifungal activity; however, their topical use is restricted because of their low permeability through the stratum corneum. Transferosomes, highly flexible lipid vesicles, offer an effective strategy for enhancing the skin delivery of phytoconstituents. This review explains the basic principles of transferosomes technology, discusses the antifungal activities of various plant-derived phytoconstituents, and reviews preparation methods, characterization techniques, and findings from in vitro and in vivo studies. This study aimed to highlight the potential of transferosomes as a novel and efficient approach for delivering phytoconstituents to treat superficial fungal diseases.

Keywords: antifungal, drug delivery, fungal infections, phytoconstituents, topical treatment, transferosomes

Keywords:

antifungal, drug delivery, fungal infections, phytoconstituents, topical treatment, transferosomes

DOI

https://doi.org/10.22270/jddt.v16i1.7506

Author Biographies

Jaydeep Jagannath Chemate , Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra 431001, India.

Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra 431001, India.

Pravin Shridhar Wakte , Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra 431001, India.

Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra 431001, India.

Sachin Shivling Bhusari , Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra 431001, India.

Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, Maharashtra 431001, India.

References

1. Vollset SE, Goren E, Yuan CW, Cao J, Smith AE, Hsiao T, Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study. The Lancet. 2020;396:1285-306. https://doi.org/10.1016/S0140-6736(20)30677-2 PMid:32679112

2. Sousa F, Ferreira D, Reis S, Costa P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Vol. 13, Pharmaceuticals. MDPI AG; 2020. p. 1-30. https://doi.org/10.3390/ph13090248 PMid:32942693 PMCid:PMC7558771

3. Marquez L, Quave CL. Prevalence and therapeutic challenges of fungal drug resistance: role for plants in drug discovery. Vol. 9, Antibiotics. MDPI AG; 2020. https://doi.org/10.3390/antibiotics9040150 PMid:32244276 PMCid:PMC7235788

4. Vitiello A, Ferrara F, Boccellino M, Ponzo A, Cimmino C, Comberiati E,. Antifungal Drug Resistance: An Emergent Health Threat. Vol. 11, Biomedicines. MDPI; 2023. https://doi.org/10.3390/biomedicines11041063 PMid:37189681 PMCid:PMC10135621

5. Benitez LL, Carver PL. Adverse Effects Associated with Long-Term Administration of Azole Antifungal Agents. Vol. 79, Drugs. Springer International Publishing; 2019. p. 833-53. https://doi.org/10.1007/s40265-019-01127-8 PMid:31093949

6. Yadav R, Pradhan M, Yadav K, Mahalvar A, Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. Vol. 74, Journal of Drug Delivery Science and Technology. Editions de Sante; 2022. https://doi.org/10.1016/j.jddst.2022.103430 PMid:35582019 PMCid:PMC9101776

7. Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Vol. 83, Journal of Natural Products. American Chemical Society; 2020. p. 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285 PMid:32162523

8. Argüelles JC, Sánchez-Fresneda R, Argüelles A, Solano F. Natural Substances as Valuable Alternative for Improving Conventional Antifungal Chemotherapy: Lights and Shadows. Vol. 10, Journal of Fungi. Multidisciplinary Digital Publishing Institute (MDPI); 2024. https://doi.org/10.3390/jof10050334 PMid:38786689 PMCid:PMC11122340

9. Zhong H, Han L, Lu RY, Wang Y. Antifungal and Immunomodulatory Ingredients from Traditional Chinese Medicine. Vol. 12, Antibiotics. MDPI; 2023. https://doi.org/10.3390/antibiotics12010048 PMid:36671249 PMCid:PMC9855100

10. Alsheikh HM Al, Sultan I, Kumar V, Rather IA, Al‐sheikh H, Jan AT, Plant‐based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Vol. 9, Antibiotics. MDPI AG; 2020. p. 1-23. https://doi.org/10.3390/antibiotics9080480 PMid:32759771 PMCid:PMC7460449

11. Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. Vol. 8, ACS Omega. American Chemical Society; 2023. p. 19145-67. https://doi.org/10.1021/acsomega.2c08016 PMid:37305231 PMCid:PMC10249123

12. Mishra V, Singh M, Mishra Y, Charbe N, Nayak P, Sudhakar K, Nanoarchitectures in management of fungal diseases: An overview. Vol. 11, Applied Sciences (Switzerland). MDPI AG; 2021. https://doi.org/10.3390/app11157119

13. Rukari T, Pingale P, Upasani C. Vesicular drug delivery systems for the fungal infections' treatment through topical application-a systemic review. J Curr Sci Technol. 2023;13:500-16. https://doi.org/10.59796/jcst.V13N2.2023.1856

14. Chanyachailert P, Leeyaphan C, Bunyaratavej S. Cutaneous Fungal Infections Caused by Dermatophytes and Non-Dermatophytes: An Updated Comprehensive Review of Epidemiology, Clinical Presentations, and Diagnostic Testing. Vol. 9, Journal of Fungi. MDPI; 2023. https://doi.org/10.3390/jof9060669 PMid:37367605 PMCid:PMC10302839

15. Kühbacher A, Burger-Kentischer A, Rupp S. Interaction of candida species with the skin. Vol. 5, Microorganisms. MDPI AG; 2017. https://doi.org/10.3390/microorganisms5020032 PMid:28590443 PMCid:PMC5488103

16. Kovitwanichkanont T, Chong AH. Superficial fungal infections. Vol. 48, Australian journal of general practice. NLM (Medline); 2019. p. 706-11. https://doi.org/10.31128/AJGP-05-19-4930 PMid:31569324

17. Lim SS, Shin K, Mun JH. Dermoscopy for cutaneous fungal infections: A brief review. Vol. 5, Health Science Reports. John Wiley and Sons Inc; 2022. https://doi.org/10.1002/hsr2.464 PMid:35024456 PMCid:PMC8733849

18. Atie K, Ang RP, Ashin J, Avid D, Uang BH, Tephen S, Dermatologic therapy Subcutaneous fungal infections. Dermatol Ther. 2004;17:523-31. https://doi.org/10.1111/j.1396-0296.2004.04056.x PMid:15571502

19. Guarana M, Nucci M. Acute disseminated candidiasis with skin lesions: a systematic review. Vol. 24, Clinical Microbiology and Infection. Elsevier B.V.; 2018. p. 246-50. https://doi.org/10.1016/j.cmi.2017.08.016 PMid:28847765

20. Rezaie S, Fallahi AA, Korbacheh P, Zaini F, Mirhendi H, Zeraati H, Candida Species in Cutaneous Candidiasis Patients in the Guilan Province in Iran; Identified by PCR-RFLP Method. Vol. 51, Acta Medica Iranica. 2013.

21. Thamkaew G, Sjöholm I, Galindo FG. A review of drying methods for improving the quality of dried herbs. Vol. 61, Critical Reviews in Food Science and Nutrition. Bellwether Publishing, Ltd.; 2021. p. 1763-86. https://doi.org/10.1080/10408398.2020.1765309 PMid:32423234

22. Nurhaslina CR, Andi Bacho S, Mustapa AN. Review on drying methods for herbal plants. Mater Today Proc. 2022;63:S122-39. https://doi.org/10.1016/j.matpr.2022.02.052

23. Bhaskara Rao TSS, Murugan S. Solar drying of medicinal herbs: A review. Vol. 223, Solar Energy. Elsevier Ltd; 2021. p. 415-36. https://doi.org/10.1016/j.solener.2021.05.065

24. Jurčević Šangut I, Pavličević L, Šamec D. Influence of Air Drying, Freeze Drying and Oven Drying on the Biflavone Content in Yellow Ginkgo (Ginkgo biloba L.) Leaves. Applied Sciences (Switzerland). 2024;14. https://doi.org/10.3390/app14062330

25. Gardeli C, Evageliou V, Poulos C, Yanniotis S, Komaitis M. Drying of fennel plants: Oven, freeze drying, effect of freeze-drying time, and use of biopolymers. Drying Technology. 2010;28:542-9. https://doi.org/10.1080/07373931003622321

26. Krakowska-Sieprawska A, Kiełbasa A, Rafińska K, Ligor M, Buszewski B. Modern Methods of Pre-Treatment of Plant Material for the Extraction of Bioactive Compounds. Vol. 27, Molecules. MDPI; 2022. https://doi.org/10.3390/molecules27030730 PMid:35163995 PMCid:PMC8840492

27. Abascal K, Ganora L, Yarnell E. The effect of freeze-drying and its implications for botanical medicine: A review. Vol. 19, Phytotherapy Research. 2005. p. 655-60. https://doi.org/10.1002/ptr.1651 PMid:16177965

28. Eng MJA, Ahmed TH. Process engineering-953-drying some medicinal and aromatic plants by microwave. 2018. https://doi.org/10.21608/mjae.2018.95571

29. Hidayat R, Patricia Wulandari. Methods of Extraction: Maceration, Percolation and Decoction. Eureka Herba Indonesia. 2021;2:73-9. https://doi.org/10.37275/ehi.v2i1.15

30. Kumar A, Nirmal P, Kumar M, Jose A, Tomer V, Oz E, Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Vol. 28, Molecules. MDPI; 2023. https://doi.org/10.3390/molecules28020887 PMid:36677944 PMCid:PMC9862941

31. Cacique AP, Barbosa ÉS, de Pinho GP, Silvério FO. Maceration extraction conditions for determining the phenolic compounds and the antioxidant activity of catharanthus roseus (L.) g. don. Ciencia e Agrotecnologia. 2020;44:1-12. https://doi.org/10.1590/1413-7054202044017420

32. Khadabadi S.S. DSL, BBA. experimental pharmacognosy and phytochemistry. Studera Press; 2016. 1-17 p.

33. Wilson J, Simpson T, Spelman K. Total cannabidiol (CBD) concentrations and yields from traditional extraction methods: Percolation vs. maceration. Front Pharmacol. 2022;13. https://doi.org/10.3389/fphar.2022.886993 PMid:36353485 PMCid:PMC9638139

34. Ennaifer M, Bouzaiene T, Chouaibi M, Hamdi M. Pelargonium graveolens Aqueous Decoction: A New Water-Soluble Polysaccharide and Antioxidant-Rich Extract. Biomed Res Int. 2018;2018. https://doi.org/10.1155/2018/2691513 PMid:30539007 PMCid:PMC6260416

35. Saha S, Singh AK, Keshari AK, Raj V, Rai A, Maity S. Modern Extraction Techniques for Drugs and Medicinal Agents. In: Ingredients Extraction by Physicochemical Methods in Food. Elsevier; 2018. p. 65-106. https://doi.org/10.1016/B978-0-12-811521-3.00002-8 PMid:29379266 PMCid:PMC5757199

36. Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Vol. 6, Plants. MDPI AG; 2017. https://doi.org/10.3390/plants6040042 PMid:28937585 PMCid:PMC5750618

37. Destandau E, Michel T, Elfakir C. Microwave-assisted extraction. RSC Green Chemistry. 2013;113-56. https://doi.org/10.1039/9781849737579-00113

38. Akhtar I, Javad S, Yousaf Z, Iqbal S, Jabeen K. Microwave assisted extraction of phytochemicals an efficient and modern approach for botanicals and pharmaceuticals. Vol. 32, Pak. J. Pharm. Sci. 2019.

39. Khalfi A, Garrigós MC, Ramos M, Jiménez A. Optimization of the Microwave-Assisted Extraction Conditions for Phenolic Compounds from Date Seeds. Foods. 2024;13. https://doi.org/10.3390/foods13233771 PMid:39682843 PMCid:PMC11640245

40. Angeles-Macalalad AA, John Magoling BA, De Chavez JC, Angel Flores LH, Intac AB. Optimization of microwave-assisted extraction of phenolic compounds from Eleusine indica using response surface methodology. Vol. 26, Malaysian Journal of Analytical Sciences. 2022.

41. Aquino G, Basilicata MG, Crescenzi C, Vestuto V, Salviati E, Cerrato M,. Optimization of microwave-assisted extraction of antioxidant compounds from spring onion leaves using Box-Behnken design. Sci Rep. 2023;13. https://doi.org/10.1038/s41598-023-42303-x PMid:37691048 PMCid:PMC10493223

42. Muhamad II, Hassan ND, Mamat SNH, Nawi NM, Rashid WA, Tan NA. Extraction Technologies and Solvents of Phytocompounds From Plant Materials : Physicochemical Characterization and Identification of Ingredients and Bioactive Compounds From Plant Extract Using Various Instrumentations. In: Ingredients Extraction by Physicochemical Methods in Food. Elsevier; 2017. p. 523-60. https://doi.org/10.1016/B978-0-12-811521-3.00014-4

43. Karami Z, Emam-Djomeh Z, Mirzaee HA, Khomeiri M, Mahoonak AS, Aydani E. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root. J Food Sci Technol. 2015;52:3242-53. https://doi.org/10.1007/s13197-014-1384-9 PMid:26028705 PMCid:PMC4444855

44. Nayak BK, Pavithera S, Nanda A. Soxhlet extraction of leaf extracts of Andrographis paniculata and its antibacterial efficacy against few pathogenic bacterial strains. Scholars Research Library Der Pharmacia Lettre [Internet]. 2015;7:250-3. Available from: www.scholarsresearchlibrary.com

45. Bakht J, Ali H, Khan MA, Khan A, Saeed M, Shafi M, Antimicrobial activities of different solvents extracted samples of Linum usitatissimum by disc diffusion method. Afr J Biotechnol. 2011;10:19825-35. https://doi.org/10.5897/AJB11.229

46. Khan BM, Bakht J, Shafi M. Screening of leaves extracts from Calamus aromaticus for their antimicrobial activity by disc diffusion assay. Vol. 30, Pak. J. Pharm. Sci. 2017.

47. Asmerom D, Kalay TH, Tafere GG. Antibacterial and Antifungal Activities of the Leaf Exudate of Aloe megalacantha Baker. Int J Microbiol. 2020;2020. https://doi.org/10.1155/2020/8840857 PMid:33061982 PMCid:PMC7545422

48. Nyamath S, Karthikeyan B, Syed Nyamath C. In vitro antibacterial activity of lemongrass (Cymbopogon citratus) leaves extract by agar well method. ~ 1185 ~ Journal of Pharmacognosy and Phytochemistry. 2018;7.

49. Baskaran C, bai VR, Velu S, Kumaran K. The efficacy of Carica papaya leaf extract on some bacterial and a fungal strain by well diffusion method. Asian Pac J Trop Dis. 2012;2. https://doi.org/10.1016/S2222-1808(12)60239-4

50. Osés SM, Pascual-Maté A, de la Fuente D, de Pablo A, Fernández-Muiño MA, Sancho MT. Comparison of methods to determine antibacterial activity of honeys against Staphylococcus aureus. NJAS - Wageningen Journal of Life Sciences. 2016;78:29-33. https://doi.org/10.1016/j.njas.2015.12.005

51. Ahuja C, Kaur H, Sharma R. Antibacterial Activity of Terminalia Chebula Fruit by Agar well Diffusion Method. Journal of Chemistry, Environmental Sciences and its Applications. 2015;1:67-72. https://doi.org/10.15415/jce.2015.12006

52. Magaldi S, Mata-Essayag S, Hartung De Capriles C, Perez C, Colella MT, Olaizola C, Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases. 2004;8:39-45. https://doi.org/10.1016/j.ijid.2003.03.002 PMid:14690779

53. Adeyemi AI, Vincent OI, Olujenyo OM. Phytochemical screening and antifungal activity of Chromolaena odorata extracts against isolate of Phytophthora megakarya using agar-well diffusion method. Asian Journal of Medical and Biological Research. 2018;4:7-13. https://doi.org/10.3329/ajmbr.v4i1.36815

54. Saleem U, Saleem M, Ahmad B, Hussain K, Ahmad M, Bukhari NI, In-vitro antimicrobial susceptibility testing of leaves methanol extract and latex of euphorbia helioscopia using agar well diffusion and broth dilution methods. Vol. 25, J. Anim. Plant Sci.

55. Nasir B, Fatima H. Recent Trends and Methods in Antimicrobial Drug Discovery from Plant Sources [Internet]. Vol. 1, Austin J Microbiol. 2015. Available from: www.austinpublishinggroup.com

56. Friedrich R, Rappold E, Bogdan C, Held J. Comparative analysis of the wako Β-glucan test and the fungitell assay for diagnosis of candidemia and Pneumocystis jirovecii pneumonia. J Clin Microbiol. 2018;56. https://doi.org/10.1128/JCM.00464-18 PMid:29899003 PMCid:PMC6113455

57. Shakir SM, Otiso J, Keller G, Heule H Van, Osborn LJ, Cole N, Multicenter Evaluation of a Gradient Diffusion Method for Antimicrobial Susceptibility Testing of Helicobacter pylori. Microbiol Spectr. 2022;10. https://doi.org/10.1128/spectrum.02111-21 PMid:35254119 PMCid:PMC9045198

58. Charteris WP, Kelly PM, Morelli L, Collins AJK. Gradient Diffusion Antibiotic Susceptibility Testing of Potentially Probiotic Lactobacilli. Vol. 64, Journal of Food Protection. 2001. https://doi.org/10.4315/0362-028X-64.12.2007 PMid:11770631

59. Liang C, Wu R, Han Y, Wan T, Cai Y. Optimizing suitable antibiotics for bacterium control in micropropagation of cherry rootstock using a modified leaf disk diffusion method and E test. Plants. 2019;8. https://doi.org/10.3390/plants8030066 PMid:30884789 PMCid:PMC6473490

60. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Vol. 49, Clinical Infectious Diseases. 2009. p. 1749-55. https://doi.org/10.1086/647952 PMid:19857164

61. Dannaoui E, Espinel-Ingroff A. Antifungal susceptibly testing by concentration gradient strip etest method for fungal isolates: A review. Vol. 5, Journal of Fungi. MDPI AG; 2019. https://doi.org/10.3390/jof5040108 PMid:31766762 PMCid:PMC6958406

62. Bidaud AL, Moreno-Sabater A, Normand AC, Cremer G, Foulet F, Brun S, Evaluation of Gradient Concentration Strips for Detection of Terbinafine Resistance in Trichophyton spp. Antimicrob Agents Chemother. 2023;67. https://doi.org/10.1128/aac.01716-22 PMid:37162356 PMCid:PMC10269145

63. Salam MA, Al-Amin MY, Pawar JS, Akhter N, Lucy IB. Conventional methods and future trends in antimicrobial susceptibility testing. Vol. 30, Saudi Journal of Biological Sciences. Elsevier B.V.; 2023. https://doi.org/10.1016/j.sjbs.2023.103582 PMid:36852413 PMCid:PMC9958398

64. Liu M, Seidel V, Katerere DR, Gray AI. Colorimetric broth microdilution method for the antifungal screening of plant extracts against yeasts. Methods. 2007;42:325-9. https://doi.org/10.1016/j.ymeth.2007.02.013 PMid:17560320

65. Yavuz C, Dereli Kılıç DD, Ayar A, Yıldırım T. Antibacterial Effects of Methanol Extracts of Some Plant Species Belonging to Lamiaceae Family. International Journal of Secondary Metabolite. 2017;429-33. https://doi.org/10.21448/ijsm.376691

66. chalo DM, lukhoba C, fidahussein DS, nguta JM. Antimicrobial activity, toxicity and phytochemical screening of selected medicinal plants of Losho, Narok County, Kenya. Biofarmasi Journal of Natural Product Biochemistry. 2017;15:29-43. https://doi.org/10.13057/biofar/f150106

67. Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163-75. https://doi.org/10.1038/nprot.2007.521 PMid:18274517

68. David V, Andrea AN, Aleksandr K, Lourdes JA, Eugenia P, Nancy C, Validation of a method of broth microdilution for the determination of antibacterial activity of essential oils. BMC Res Notes. 2021;14. https://doi.org/10.1186/s13104-021-05838-8 PMid:34857039 PMCid:PMC8638534

69. Hulankova R. Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro-A Review. Plants. 2024;13:2784. https://doi.org/10.3390/plants13192784 PMid:39409654 PMCid:PMC11478843

70. Strompfová V, Štempelová L, Wolaschka T. Antibacterial activity of plant-derived compounds and cream formulations against canine skin bacteria. Vet Res Commun. 2024;48:1459-70. https://doi.org/10.1007/s11259-024-10324-0 PMid:38321337 PMCid:PMC11147820

71. Bubonja-Šonje M, Knezević S, Abram M. Challenges to antimicrobial susceptibility testing of plant-derived polyphenolic compounds. Vol. 71, Arhiv za Higijenu Rada i Toksikologiju. Sciendo; 2020. p. 300-11. https://doi.org/10.2478/aiht-2020-71-3396 PMid:33410777 PMCid:PMC7968511

72. Ramalivhana J, Samie A, Iweriebor B, Uaboi-Egbenni P, Idiaghe JE, Momba MNB, Antibacterial activity of honey and medicinal plant extracts against Gram negative microorganisms. Afr J Biotechnol. 2014;13:616-25. https://doi.org/10.5897/AJB11.892

73. Zgoda JR, Porter JR. A convenient microdilution method for screening natural products against bacteria and fungi. Pharm Biol. 2001;39:221-5. https://doi.org/10.1076/phbi.39.3.221.5934

74. Golus J, Sawicki R, Widelski J, Ginalska G. The agar microdilution method - a new method for antimicrobial susceptibility testing for essential oils and plant extracts. J Appl Microbiol. 2016;121:1291-9. https://doi.org/10.1111/jam.13253 PMid:27501239

75. Hossain TJ. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur J Microbiol Immunol (Bp). 2024;14:97-115. https://doi.org/10.1556/1886.2024.00035 PMid:38648108 PMCid:PMC11097785

76. Choma I, Jesionek W. TLC-Direct Bioautography as a High Throughput Method for Detection of Antimicrobials in Plants. Chromatography. 2015;2:225-38. https://doi.org/10.3390/chromatography2020225

77. Jesionek W, Móricz ÁM, Alberti Á, Ott PG, Kocsis B, Horváth G, TLC-direct bioautography as a bioassay guided method for investigation of antibacterial compounds in Hypericum perforatum L. J AOAC Int. 2015;98:1013-20. https://doi.org/10.5740/jaoacint.14-233 PMid:26268984

78. Mehrabani M, Kazemi A, Ayatollahi Mousavi SA, Rezaifar M, Alikhah H, Nosky A. Evaluation of antifungal activities of Myrtus communis L. by bioautography method. Jundishapur J Microbiol. 2013;6. https://doi.org/10.5812/jjm.8316

79. Sakunpak A, Sueree L. Thin-layer chromatography-contact bioautography as a tool for bioassay-guided isolation of anti-streptococcus mutans compounds from pinus merkusii heartwood. Journal of Planar Chromatography - Modern TLC. 2018;31:355-9. https://doi.org/10.1556/1006.2018.31.5.2

80. Schmourlo G, Mendonça-Filho RR, Alviano CS, Costa SS. Screening of antifungal agents using ethanol precipitation and bioautography of medicinal and food plants. J Ethnopharmacol. 2005;96:563-8. https://doi.org/10.1016/j.jep.2004.10.007 PMid:15619579

81. Sanchez Armengol E, Harmanci M, Laffleur F. Current strategies to determine antifungal and antimicrobial activity of natural compounds. Vol. 252, Microbiological Research. Elsevier GmbH; 2021. https://doi.org/10.1016/j.micres.2021.126867 PMid:34521051

82. Sowmya, Raveesha KA. Antibacterial activity and time-kill assay of Terminalia catappa L. And Nigella sativa L. And selected human pathogenic bacteria. J Pure Appl Microbiol. 2021;15:285-99. https://doi.org/10.22207/JPAM.15.1.22

83. Ohaegbu CG, Ngene AC, Idu EG, Odo ES. Time-kill kinetics and antibacterial activity of ethanolic extract of Allium sativum. Microbes and Infectious Diseases. 2024;5:384-92.

84. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. Vol. 6, Journal of Pharmaceutical Analysis. Xi'an Jiaotong University; 2016. p. 71-9. https://doi.org/10.1016/j.jpha.2015.11.005 PMid:29403965 PMCid:PMC5762448

85. Techaoei S. Time-kill kinetics and antimicrobial activities of Thai medical plant extracts against fish pathogenic bacteria. J Adv Pharm Technol Res. 2022;13:25-9. https://doi.org/10.4103/japtr.japtr_241_21 PMid:35223437 PMCid:PMC8820347

86. Rani R, Sharma D, Chaturvedi M, Parkash Yadav J. Antibacterial Activity of Twenty Different Endophytic Fungi Isolated from Calotropis procera and Time Kill Assay. Clinical Microbiology. 2017;06. https://doi.org/10.4172/2327-5073.1000280

87. Patel B, Parikh RH. Preparation and formulation of transferosomes containing an antifungal agent for transdermal delivery: Application of Plackett-Burman design to identify significant factors influencing vesicle size. In: Journal of Pharmacy and Bioallied Sciences. 2012. p. 60-1. https://doi.org/10.4103/0975-7406.94140 PMid:23066209 PMCid:PMC3467850

88. Rajan R, Jose S, Biju Mukund V, Vasudevan D. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J Adv Pharm Technol Res. 2011;2:138. https://doi.org/10.4103/2231-4040.85524 PMid:22171309 PMCid:PMC3217704

89. Chen RP, Chavda VP, Patel AB, Chen ZS. Phytochemical Delivery Through Transferosome (Phytosome): An Advanced Transdermal Drug Delivery for Complementary Medicines. Vol. 13, Frontiers in Pharmacology. Frontiers Media S.A.; 2022.https://doi.org/10.3389/fphar.2022.850862 PMid:35281927 PMCid:PMC8904565

90. Dwivedi K, Mandal AK, Afzal O, Altamimi ASA, Sahoo A, Alossaimi MA, Emergence of Nano-Based Formulations for Effective Delivery of Flavonoids against Topical Infectious Disorders. Vol. 9, Gels. Multidisciplinary Digital Publishing Institute (MDPI); 2023. https://doi.org/10.3390/gels9080671 PMid:37623126 PMCid:PMC10453850

91. Guillot AJ, Martínez-Navarrete M, Garrigues TM, Melero A. Skin drug delivery using lipid vesicles: A starting guideline for their development. Vol. 355, Journal of Controlled Release. Elsevier B.V.; 2023. p. 624-54. https://doi.org/10.1016/j.jconrel.2023.02.006 PMid:36775245

92. Atia HA, Shahien MM, Ibrahim S, Ahmed EH, Elariny HA, Abdallah MH. Plant-Based Nanovesicular Gel Formulations Applied to Skin for Ameliorating the Anti-Inflammatory Efficiency. Vol. 10, Gels. Multidisciplinary Digital Publishing Institute (MDPI); 2024. https://doi.org/10.3390/gels10080525 PMid:39195054 PMCid:PMC11353947

93. Matharoo N, Mohd H, Michniak-Kohn B. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. Vol. 16, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. John Wiley and Sons Inc; 2024. https://doi.org/10.1002/wnan.1918 PMid:37527953

94. Ahuja A, Bajpai M. Nanoformulations Insights: A Novel Paradigm for Antifungal Therapies and Future Perspectives. Curr Drug Deliv. 2023;21:1241-72. https://doi.org/10.2174/0115672018270783231002115728 PMid:37859317

95. Verma H, Baboo Prasad S, Singh H. Herbal Drug Delivery System: A Modern Era Prospective. Available online on www.ijcpr.com International Journal of Current Pharmaceutical Review and Research. 2013;4:88-101.

96. Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Vol. 12, Pharmaceutics. MDPI AG; 2020. p. 1-23. https://doi.org/10.3390/pharmaceutics12090855 PMid:32916782 PMCid:PMC7559928

97. Ahmed TA. Preparation of transfersomes encapsulating sildenafil aimed for transdermal drug delivery: Plackett-Burman design and characterization. J Liposome Res. 2015;25:1-10. https://doi.org/10.3109/08982104.2014.950276 PMid:25148294

98. Putri SO, Iswandi I, Kuncahyo I. Optimization and Formulation of Fenofibrate Transfersome Using The Thin Layer Hydration Method. Riset Informasi Kesehatan. 2023;12:277. https://doi.org/10.30644/rik.v12i2.773

99. Chauhan P, Tyagi BK. Herbal novel drug delivery systems and transfersomes. Journal of Drug Delivery and Therapeutics. 2018;8. https://doi.org/10.22270/jddt.v8i3.1772

100. Namrata M, Vijeta B, Alagusundaram M. Transferosomes The Effective Targeted Drug Delivery System Overview. Journal of Pharmaceutical Negative Results ¦. 13:2022.

101. Iqubal R, Mathew V, M. K, V. NNK, Shamsudheen S, D. U. Transferosomes as a Novel Therapeutic Delivery System: A Review. J Pharm Res Int. 2021;241-54. https://doi.org/10.9734/jpri/2021/v33i45B32801

102. Firdos L, Haranath C, Yasaswini S, Sai RN, Satish T. Exploring Transferosomes: A Comprehensive Review of Novel Strategies and Applications in Drug Delivery. Journal of Young Pharmacists. 2024;16:410-5. https://doi.org/10.5530/jyp.2024.16.53

103. Kodi SR, Reddy MS. Transferosomes: A Novel Topical Approach. Journal of Drug Delivery and Therapeutics. 2023;13:126-31. https://doi.org/10.22270/jddt.v13i2.5952

104. Wahi N, Kaur G, Narang JK. Transferosomes - A Lipid Based Vesicular Carrier with Versatile Applications. Int J Pharm Sci Rev Res. 2023;81. https://doi.org/10.47583/ijpsrr.2023.v81i01.030

105. Kumar PK, Kumar RS. Review on Transferosomes and Transferosomal Gels. J Pharm Res Int. 2021;114-26. https://doi.org/10.9734/jpri/2021/v33i43B32532

106. Riccardi D, Baldino L, Reverchon E. Liposomes, transfersomes and niosomes: production methods and their applications in the vaccinal field. Vol. 22, Journal of Translational Medicine. BioMed Central Ltd; 2024. https://doi.org/10.1186/s12967-024-05160-4 PMid:38594760 PMCid:PMC11003085

107. Barbalho GN, Brugger S, Raab C, Lechner JS, Gratieri T, Keck CM, Development of transferosomes for topical ocular drug delivery of curcumin. European Journal of Pharmaceutics and Biopharmaceutics. 2024;205. https://doi.org/10.1016/j.ejpb.2024.114535 PMid:39427684

108. Ali MFM, Salem HF, Abdelmohsen HF, Attia SK. Preparation and clinical evaluation of nano-transferosomes for treatment of erectile dysfunction. Drug Des Devel Ther. 2015;9:2431-47. https://doi.org/10.2147/DDDT.S81236 PMid:25995616 PMCid:PMC4425234

109. Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG, Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes. Int J Nanomedicine. 2015;10:5837-51. https://doi.org/10.2147/IJN.S86186 PMid:26425085 PMCid:PMC4583114

110. Rajak P, Patra E, Karmakar A, Bhuyan B. Xanthium strumarium L. Extract Loaded Phyto-Niosome Gel: Development and In Vitro Assessment for the Treatment of Tinea corporis. Biointerface Res Appl Chem. 2023;13. https://doi.org/10.33263/BRIAC133.273

111. Fitrya F, Fithri NA, Winda M, Muharni M. Ethanol extract of Parkia speciosa Hassk. loaded transfersome: Characterization and optimization. J Pharm Pharmacogn Res. 2020;8:167-76. https://doi.org/10.56499/jppres19.740_8.3.167

112. Barbalho GN, Brugger S, Raab C, Lechner JS, Gratieri T, Keck CM, Development of transferosomes for topical ocular drug delivery of curcumin. European Journal of Pharmaceutics and Biopharmaceutics. 2024;205. https://doi.org/10.1016/j.ejpb.2024.114535 PMid:39427684

113. Omar MM, Hasan OA, El Sisi AM. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: A promising approach for enhancement of skin permeation. Int J Nanomedicine. 2019;14:1551-62. https://doi.org/10.2147/IJN.S201356 PMid:30880964 PMCid:PMC6396669

114. Malakar J, Sen SO, Nayak AK, Sen KK. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharmaceutical Journal. 2012;20:355-63. https://doi.org/10.1016/j.jsps.2012.02.001 PMid:23960810 PMCid:PMC3744964

115. Nayak D, Tippavajhala VK. A comprehensive review on preparation, evaluation and applications of deformable liposomes. Vol. 20, Iranian Journal of Pharmaceutical Research. Iranian Journal of Pharmaceutical Research, 2021;186-205.

116. Deka T, Das MK, Das S, Das P, Singha LR. Box-behnken design approach to develop nano-vesicular herbal gel for the management of skin cancer in experimental animal model. International Journal of Applied Pharmaceutics. 2022;14:148-66. https://doi.org/10.22159/ijap.2022v14i6.45867

117. Khan MI, Yaqoob S, Madni A, Akhtar MF, Sohail MF, Saleem A, Development and In Vitro / Ex Vivo Evaluation of Lecithin-Based Deformable Transfersomes and Transfersome-Based Gels for Combined Dermal Delivery of Meloxicam and Dexamethasone. Biomed Res Int. 2022;2022. https://doi.org/10.1155/2022/8170318 PMid:36483631 PMCid:PMC9726271

Published

2026-01-15
Statistics
Abstract Display: 33
PDF Downloads: 23
PDF Downloads: 3

How to Cite

1.
Chemate JJ, Wakte PS, Bhusari SS. Transferosome Based Delivery of Phytoconstituents in Superficial Fungal Infections: A Comprehensive Review. J. Drug Delivery Ther. [Internet]. 2026 Jan. 15 [cited 2026 Jan. 19];16(1):159-70. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7506

How to Cite

1.
Chemate JJ, Wakte PS, Bhusari SS. Transferosome Based Delivery of Phytoconstituents in Superficial Fungal Infections: A Comprehensive Review. J. Drug Delivery Ther. [Internet]. 2026 Jan. 15 [cited 2026 Jan. 19];16(1):159-70. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7506