Brain-Eating Amoeba Naegleria fowleri: Global Epidemiology, Diagnosis, Therapeutic Challenges, and Strategies to Combat Primary Amoebic Meningoencephalitis
Abstract
Naegleria fowleri, colloquially known as the “brain-eating amoeba,” is a free-living protozoan that causes the fulminant and often fatal disease primary amoebic meningoencephalitis (PAM). Although considered rare, the global case fatality rate exceeds 95%, making it one of the deadliest human infections. Traditionally associated with warm freshwater environments in tropical and subtropical regions, recent cases from temperate areas suggest climate change and water resource mismanagement are contributing to an expanding epidemiological footprint. Despite advances in molecular biology and phylogenetics, timely diagnosis remains elusive, as early clinical manifestations mimic bacterial or viral meningitis, often leading to misdiagnosis and delayed treatment. Current therapeutic regimens, largely based on amphotericin B, azoles, rifampin, and miltefosine, demonstrate limited success, and no standardized treatment protocol has been universally adopted. This review synthesizes the latest insights into the biology and pathogenicity of N. fowleri, outlines the global epidemiological trends and phylogenetic diversity, and discusses diagnostic challenges and therapeutic interventions. Furthermore, it highlights the pathogen’s emerging public health threat in the context of climate change and globalization, and proposes multi-pronged strategies for prevention, early detection, and therapeutic innovation. Strengthening surveillance systems, integrating genomic tools, and fostering international collaborations are essential to mitigate the devastating burden of PAM and to prepare for the potential global spread of this lethal pathogen.
Keywords: Brain-eating amoeba, emerging infections, global health, Naegleria fowleri, primary amoebic meningoencephalitis.
Keywords:
Brain-eating amoeba, emerging infections, global health, Naegleria fowleri, primary amoebic meningoencephalitisDOI
https://doi.org/10.22270/jddt.v15i10.7418References
1. Nadeem A, Malik IA, Afridi EK, Shariq F. Naegleria fowleri outbreak in Pakistan: unveiling the crisis and path to recovery. Frontiers in Public Health. 2023 Oct 19;11:1266400. https://doi.org/10.3389/fpubh.2023.1266400
2. Moseman EA. Battling brain-eating amoeba: Enigmas surrounding immunity to Naegleria fowleri. PLoS pathogens. 2020 Apr 23;16(4):e1008406.
3. Singhi P. Infectious causes of seizures and epilepsy in the developing world. Developmental Medicine & Child Neurology. 2011 Jul;53(7):600-9. https://doi.org/10.1111/j.1469-8749.2011.03928.x
4. Dhillon PK, Jeemon P, Arora NK, Mathur P, Maskey M, Sukirna RD, Prabhakaran D. Status of epidemiology in the WHO South-East Asia region: burden of disease, determinants of health and epidemiological research, workforce and training capacity. International journal of epidemiology. 2012 Jun 1;41(3):847-60. https://doi.org/10.1093/ije/dyt020
5. Saxena V. Water quality, air pollution, and climate change: investigating the environmental impacts of industrialization and urbanization. Water, Air, & Soil Pollution. 2025 Feb;236(2):73.https://doi.org/10.1007/s11270-024-07702-4
6. De Jonckheere JF. Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infection, Genetics and Evolution. 2011 Oct 1;11(7):1520-8. https://doi.org/10.1016/j.meegid.2011.07.023
7. Doostmohammadi, A., Jooya, H., Ghorbanian, K. et al. Potentials and future perspectives of multi-target drugs in cancer treatment: the next generation anti-cancer agents. Cell Commun Signal 22, 228 (2024). https://doi.org/10.1186/s12964-024-01607-9
8. Martinez AJ, Visvesvara GS. Free‐living, amphizoic and opportunistic amebas. Brain Pathology. 1997 Jan;7(1):583-98.https://doi.org/10.1111/j.1750-3639.1997.tb01076.x
9. Jahangeer M, Mahmood Z, Munir N, Waraich UE, Tahir IM, Akram M, Ali Shah SM, Zulfqar A, Zainab R. Naegleria fowleri: Sources of infection, pathophysiology, diagnosis, and management; a review. Clinical and Experimental Pharmacology and Physiology. 2020 Feb;47(2):199-212. https://doi.org/10.1111/1440-1681.13192
10. Badar SH, Saleem I, Hussain AZ, Tahir T, Ahsan Z. Understanding Naegleria fowleri: diagnostic challenges, geographic distribution, and emerging threats. Frontiers in Microbiology and Biotechnology. 2023 Dec 15;1:1-5. https://doi.org/10.54219/fmb.01.2023.157
11. Delafont V, Rodier MH, Maisonneuve E, Cateau E. Vermamoebavermiformis: a free-living amoeba of interest. Microbial ecology. 2018 Nov;76(4):991-1001.https://doi.org/10.1007/s00248-018-1199-8
12. Overstreet, R.M. (2013). Waterborne Parasitic Diseases in Ocean. In: Kanki, P., Grimes, D. (eds) Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5719-0_15
13. Shaukat A, Khaliq N, Riaz R, Munsab R, Ashraf T, Raufi N, Shah H. Noninvasive diagnostic biomarkers, genomic profiling, and advanced microscopic imaging in the early detection and characterization of Naegleria fowleri infections leading to primary amebic meningoencephalitis (PAM). Annals of Medicine and Surgery. 2024 Apr 1;86(4):2032-48. DOI: 10.1097/MS9.0000000000001843
14. Mungroo MR, Khan NA, Siddiqui R. Naegleria fowleri: diagnosis, treatment options and pathogenesis. Expert Opinion on Orphan Drugs. 2019 Feb 1;7(2):67-80. https://doi.org/10.1080/21678707.2019.1571904
15. Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. Microbial cell. 2018 Oct 18;5(12):525. doi: 10.15698/mic2018.12.659
16. Marciano-Cabral F, Cabral GA. The immune response to Naegleria fowleri amebae and pathogenesis of infection. FEMS Immunology & Medical Microbiology. 2007 Nov 1;51(2):243-59. https://doi.org/10.1111/j.1574-695X.2007.00332.x
17. Teeling JL, Perry VH. Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience. 2009 Feb 6;158(3):1062-73. https://doi.org/10.1016/j.neuroscience.2008.07.031
18. Jahangeer M, Mahmood Z, Munir N, Waraich UE, Tahir IM, Akram M, Ali Shah SM, Zulfqar A, Zainab R. Naegleria fowleri: Sources of infection, pathophysiology, diagnosis, and management; a review. Clinical and Experimental Pharmacology and Physiology. 2020 Feb;47(2):199-212. https://doi.org/10.1111/1440-1681.13192
19. Panda S, Ding JL. Natural antibodies bridge innate and adaptive immunity. The journal of immunology. 2015 Jan;194(1):13-20. https://doi.org/10.4049/jimmunol.1400844
20. Kraft CE, Angert ER. Competition for vitamin B1 (thiamin) structures numerous ecological interactions. The Quarterly Review of Biology. 2017 Jun 1;92(2):151-68. https://doi.org/10.1086/692168
21. Yeh KB, Parekh FK, Borgert B, Olinger GG, Fair JM. Global health security threats and related risks in Latin America. Global Security: Health, Science and Policy. 2021 Jan 1;6(1):18-25.https://doi.org/10.1080/23779497.2021.1917304
22. Moussa M, De Jonckheere JF, Guerlotté J, Richard V, Bastaraud A, Romana M, Talarmin A. Survey of Naegleria fowleri in geothermal recreational waters of Guadeloupe (French West Indies). PLoS One. 2013 Jan 18;8(1):e54414.https://doi.org/10.1371/journal.pone.0054414
23. Schijven J, de Roda Husman AM. A survey of diving behavior and accidental water ingestion among Dutch occupational and sport divers to assess the risk of infection with waterborne pathogenic microorganisms. Environmental Health Perspectives. 2006 May;114(5):712-7. https://doi.org/10.1289/ehp.852
24. Naqvi AA, Yazdani N, Ahmad R, Zehra F, Ahmad N. Epidemiology of primary amoebic meningoencephalitis-related deaths due to Naegleria fowleri infections from freshwater in Pakistan: An analysis of 8-year dataset. Archives of Pharmacy Practice. 2016;7(4-2016):119-29.
25. Gibbons CL, Mangen MJ, Plass D, Havelaar AH, Brooke RJ, Kramarz P, Peterson KL, Stuurman AL, Cassini A, Fèvre EM, Kretzschmar ME. Measuring underreporting and under-ascertainment in infectious disease datasets: a comparison of methods. BMC public health. 2014 Feb 11;14(1):147. https://doi.org/10.1186/1471-2458-14-147
26. Nichols GL, Gillingham EL, Macintyre HL, Vardoulakis S, Hajat S, Sarran CE, Amankwaah D, Phalkey R. Coronavirus seasonality, respiratory infections and weather. BMC Infectious Diseases. 2021 Oct 26;21(1):1101. https://doi.org/10.1186/s12879-021-06785-2
27. Bozinovic F, Portner HO. Physiological ecology meets climate change. Ecology and evolution. 2015 Mar;5(5):1025-30. https://doi.org/10.1002/ece3.1403
28. Mayol E, Arrieta JM, Jiménez MA, Martínez-Asensio A, Garcias-Bonet N, Dachs J, González-Gaya B, Royer SJ, Benítez-Barrios VM, Fraile-Nuez E, Duarte CM. Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nature communications. 2017 Aug 4;8(1):201. https://doi.org/10.1038/s41467-017-00110-9
29. Massoud MA, Tarhini A, Nasr JA. Decentralized approaches to wastewater treatment and management: applicability in developing countries. Journal of environmental management. 2009 Jan 1;90(1):652-9. https://doi.org/10.1016/j.jenvman.2008.07.001
30. Dawoud MA, Al Hassan WA. Groundwater Management and Treatment: A Resilient Source for Environmental Protection. InSustainable Remediation for Pollution and Climate Resilience 2025 May 29 (pp. 661-693). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-96-5674-5_24
31. Baral B, Mamale K, Gairola S, Chauhan C, Dey A, Kaundal RK. Infectious diseases and its global epidemiology. InNanostructured Drug Delivery Systems in Infectious Disease Treatment 2024 Jan 1 (pp. 1-24). Academic Press. https://doi.org/10.1016/B978-0-443-13337-4.00017-3
32. Meyerhoff J, Klefoth T, Arlinghaus R. The value artificial lake ecosystems provide to recreational anglers: Implications for management of biodiversity and outdoor recreation. Journal of Environmental Management. 2019 Dec 15;252:109580. https://doi.org/10.1016/j.jenvman.2019.109580
33. Nii-Trebi NI. Emerging and neglected infectious diseases: insights, advances, and challenges. BioMed research international. 2017;2017(1):5245021.https://doi.org/10.1155/2017/5245021
34. Nii-Trebi NI. Emerging and neglected infectious diseases: insights, advances, and challenges. BioMed research international. 2017;2017(1):5245021. https://doi.org/10.1155/2017/5245021
35. Aykur M, Dagci H. Evaluation of molecular characterization and phylogeny for quantification of Acanthamoeba and Naegleria fowleri in various water sources, Turkey. PloS one. 2021 Aug 26;16(8):e0256659. https://doi.org/10.1371/journal.pone.0256659
36. Andrew RL, Rieseberg LH. Divergence is focused on few genomic regions early in speciation: incipient speciation of sunflower ecotypes. Evolution. 2013 Sep 1;67(9):2468-82. https://doi.org/10.1111/evo.12106
37. Liechti N, Schürch N, Bruggmann R, Wittwer M. The genome of Naegleria lovaniensis, the basis for a comparative approach to unravel pathogenicity factors of the human pathogenic amoeba N. fowleri. BMC genomics. 2018 Sep 5;19(1):654.https://doi.org/10.1186/s12864-018-4994-1
38. Serrano-Luna J, Piña-Vázquez C, Reyes-López M, Ortiz-Estrada G, de la Garza M. Proteases from Entamoeba spp. and pathogenic free‐living amoebae as virulence factors. Journal of tropical medicine. 2013;2013(1):890603. https://doi.org/10.1155/2013/890603
39. Stahl LM, Olson JB. Environmental abiotic and biotic factors affecting the distribution and abundance of Naegleria fowleri. FEMS Microbiology Ecology. 2021 Jan;97(1):fiaa238. https://doi.org/10.1093/femsec/fiaa238
40. Timsit S, Armand-Lefèvre L, Le Goff J, Salmona M. The clinical and epidemiological impacts of whole genomic sequencing on bacterial and virological agents. Infectious Diseases Now. 2024 Mar 1;54(2):104844.https://doi.org/10.1016/j.idnow.2023.104844
41. Gharpure R, Bliton J, Goodman A, Ali IK, Yoder J, Cope JR. Epidemiology and clinical characteristics of primary amebic meningoencephalitis caused by Naegleria fowleri: a global review. Clinical Infectious Diseases. 2021 Jul 1;73(1):e19-27. https://doi.org/10.1093/cid/ciaa520
42. Geerlings SE. Clinical presentations and epidemiology of urinary tract infections. Microbiology spectrum. 2016 Oct 30;4(5):10-128. https://doi.org/10.1128/microbiolspec.uti-0002-2012
43. Bandara HM, Samaranayake LP. Viral, bacterial, and fungal infections of the oral mucosa: Types, incidence, predisposing factors, diagnostic algorithms, and management. Periodontology 2000. 2019 Jun;80(1):148-76. https://doi.org/10.1111/prd.12273
44. Kattner AA. The best protection is early detection: fostering timely and accurate screening. biomedical journal. 2021 Dec 1;44(6):S155-61.https://doi.org/10.1016/j.bj.2022.01.010
45. Kondziella D, Waldemar G. Clinical history and neuroanatomy:“where is the lesion?”. Neurology at the Bedside. 2023 Nov 15:5-83. https://doi.org/10.1007/978-3-031-43335-1_2
46. Ludlow M, Kortekaas J, Herden C, Hoffmann B, Tappe D, Trebst C, Griffin DE, Brindle HE, Solomon T, Brown AS, van Riel D. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta neuropathologica. 2016 Feb;131(2):159-84.
47. Valdivieso M, Kujawa AM, Jones T, Baker LH. Cancer survivors in the United States: a review of the literature and a call to action. International journal of medical sciences. 2012 Jan 17;9(2):163. doi: 10.7150/ijms.3827
48. Zedde M, Quatrale R, Andreone V, Pezzella FR, Micieli G, Cortelli P, Del Sette M, Pascarella R. Post-infectious central nervous system vasculitides in adults: an underdiagnosed and treatable disease: Part I. Overview. Neurological Sciences. 2025 Feb;46(2):633-50. https://doi.org/10.1007/s10072-024-07935-5
49. Kanungo R, Anupurba S. Association of Viral and Fungal Infections of the CNS During Immunosuppression. InViral and Fungal Infections of the Central Nervous System: A Microbiological Perspective 2023 Dec 15 (pp. 465-482). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6445-1_20
50. Ghanchi NK, Jamil B, Khan E, Ansar Z, Samreen A, Zafar A, Hasan Z. Case series of Naegleria fowleri primary ameobic meningoencephalitis from Karachi, Pakistan. The American Journal of Tropical Medicine and Hygiene. 2017 Sep 5;97(5):1600.doi: 10.4269/ajtmh.17-0110
51. Otto F, Harrer C, Pilz G, Wipfler P, Harrer A. Role and relevance of cerebrospinal fluid cells in diagnostics and research: state-of-the-art and underutilized opportunities. Diagnostics. 2021 Dec 30;12(1):79.
52. Lee SC, Lueck CJ. Cerebrospinal fluid pressure in adults. Journal of Neuro-ophthalmology. 2014 Sep 1;34(3):278-83. DOI: 10.1097/WNO.0000000000000155
53. Aurongzeb M, Nazir MA, Yasmin R, Kiran A, Fatima R, Ali R, Khan SA, Ul-Haq A, Al-Regaiey K, Abualait T, Kaleem I. Detection and Confirmation of Naegleria fowleri in a Primary Amebic Meningoencephalitis Patient Using a Molecular Approach. Journal of Parasitology Research. 2024;2024(1):5514520. https://doi.org/10.1155/2024/5514520
54. Iwen PC, Hinrichs SH, Rupp ME. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Medical mycology. 2002 Jan 1;40(1):87-109. https://doi.org/10.1080/mmy.40.1.87.109
55. Li ZY, Dang D, Wu H. Next-generation sequencing of cerebrospinal fluid for the diagnosis of unexplained central nervous system infections. Pediatric Neurology. 2021 Feb 1;115:10-20. https://doi.org/10.1016/j.pediatrneurol.2020.10.011
56. Namba T, Hiraki K. PAM (pyridine-2-aldoxime methiodide) therapy for alkylphosphate poisoning. Journal of the American Medical Association. 1958 Apr 12;166(15):1834-9. doi:10.1001/jama.1958.02990150030007
57. Wang M, Jin L, Hang-Mei Leung P, Wang-Ngai Chow F, Zhao X, Chen H, Pan W, Liu H, Li S. Advancements in magnetic nanoparticle-based biosensors for point-of-care testing. Frontiers in bioengineering and biotechnology. 2024 Apr 25;12:1393789. https://doi.org/10.3389/fbioe.2024.1393789
58. Sheff EK, Lucey JR. + Emergency department referral for brain imaging (computed. Primary Care E-Book: Primary Care E-Book. 2019 Nov 4:415.Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000 Nov;217(2):331-45. https://doi.org/10.1148/radiology.217.2.r00nv24331
59. Wang S, Lifson MA, Inci F, Liang LG, Sheng YF, Demirci U. Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings. Expert review of molecular diagnostics. 2016 Apr 2;16(4):449-59.https://doi.org/10.1586/14737159.2016.1142877
60. Chan CP, Mak WC, Cheung KY, Sin KK, Yu CM, Rainer TH, Renneberg R. Evidence-based point-of-care diagnostics: current status and emerging technologies. Annual review of analytical chemistry. 2013 Jun 12;6(1):191-211. https://doi.org/10.1146/annurev-anchem-062012-092641
61. Milanez GD. Ten years of PAM: Cases, Laboratory Protocols and Therapeutic Approaches. Asian Journal of Biological and Life Sciences. 2019 Sep;8(3):97. DOI : 10.5530/ajbls.2019.8.16
62. Jain VK, Jain K, Popli H. Conjugates of amphotericin B to resolve challenges associated with its delivery. Expert Opinion on Drug Delivery. 2024 Feb 1;21(2):187-210. https://doi.org/10.1080/17425247.2024.2308073
63. Alpizar-Sosa EA, Ithnin NR, Wei W, Pountain AW, Weidt SK, Donachie AM, Ritchie R, Dickie EA, Burchmore RJ, Denny PW, Barrett MP. Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Neglected Tropical Diseases. 2022 Sep 28;16(9):e0010779.https://doi.org/10.1371/journal.pntd.0010779
64. Kong Y, Wang Q, Cao F, Zhang X, Fang Z, Shi P, Wang H, Shen Y, Huang Z. BSC2 enhances cell resistance to AmB by inhibiting oxidative damage in Saccharomyces cerevisiae. Free Radical Research. 2020 Apr 2;54(4):231-43.https://doi.org/10.1080/10715762.2020.1751151
65. Rathore S, Datta G, Kaur I, Malhotra P, Mohmmed A. Disruption of cellular homeostasis induces organelle stress and triggers apoptosis like cell-death pathways in malaria parasite. Cell death & disease. 2015 Jul;6(7):e1803-. https://doi.org/10.1038/cddis.2015.142
66. Zhou W, Debnath A, Jennings G, Hahn HJ, Vanderloop BH, Chaudhuri M, Nes WD, Podust LM. Enzymatic chokepoints and synergistic drug targets in the sterol biosynthesis pathway of Naegleria fowleri. PLoS pathogens. 2018 Sep 13;14(9):e1007245. https://doi.org/10.1371/journal.ppat.1007245
67. Mukherjee S, Moitra S, Xu W, Hernandez V, Zhang K. Sterol 14-α-demethylase is vital for mitochondrial functions and stress tolerance in Leishmania major. PLoS pathogens. 2020 Aug 20;16(8):e1008810.https://doi.org/10.1371/journal.ppat.1008810
68. Ondarza RN. Drug Effects on Drug Targets: Inhibition of Enzymes by Neuroleptics, Antimycotics, Antibiotics and Other Drugs on Human Pathogen. Frontiers in Anti-infective Drug Discovery: Volume 1. 2010 Aug 18:202-26. https://doi.org/10.2174/97816080515881100101
69. Lee KK, Karr Jr SL, Wong MM, Hoeprich PD. In vitro susceptibilities of Naegleria fowleri strain HB-1 to selected antimicrobial agents, singly and in combination. Antimicrobial Agents and Chemotherapy. 1979 Aug;16(2):217-20.https://doi.org/10.1128/aac.16.2.217
70. Moore EM, Nichol AD, Bernard SA, Bellomo R. Therapeutic hypothermia: benefits, mechanisms and potential clinical applications in neurological, cardiac and kidney injury. Injury. 2011 Sep 1;42(9):843-54. https://doi.org/10.1016/j.injury.2011.03.027
71. Rai A, Comune M, Ferreira L. Nanoparticle-based drug delivery systems: Promising approaches against bacterial infections. InAntibacterial Drug Discovery to Combat MDR: Natural Compounds, Nanotechnology and Novel Synthetic Sources 2019 Nov 10 (pp. 605-633). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-9871-1_27
72. Capewell LG, Harris AM, Yoder JS, Cope JR, Eddy BA, Roy SL, Visvesvara GS, Fox LM, Beach MJ. Diagnosis, clinical course, and treatment of primary amoebic meningoencephalitis in the United States, 1937–2013. Journal of the Pediatric Infectious Diseases Society. 2015 Dec 1;4(4):e68-75. https://doi.org/10.1093/jpids/piu103
73. Meunier AC, Nair R, Zher LY, Lubau NS, Kumar NK, Apparasamy D, Ahmed U, Anwar A, Wu YS, Gopinath SC, Rajendran K. Recent advances in natural and nanoparticle-based therapies for Naegleria fowleri infections. Progress In Microbes & Molecular Biology. 2025 Jun 20;8(1).https://doi.org/10.36877/pmmb.a0000464
74. Patel MM, Patel BM. Crossing the blood–brain barrier: recent advances in drug delivery to the brain. CNS drugs. 2017 Feb;31(2):109-33.https://doi.org/10.1007/s40263-016-0405-9
75. Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal transduction and targeted therapy. 2023 May 25;8(1):217. https://doi.org/10.1038/s41392-023-01481-w
76. Inamdar A, Gurupadayya B, Halagali P, Tippavajhala VK, Khan F, Pathak R, Sharma H. Unraveling neurological drug delivery: polymeric nanocarriers for enhanced blood-brain barrier penetration. Current Drug Targets. 2024 Nov 7. https://doi.org/10.2174/0113894501339455241101065040
77. Bajwa SJ, Mehdiratta L. Preparedness for emergencies and complications: Proactive planning and multidisciplinary approaches. Indian Journal of Anaesthesia. 2020 May 1;64(5):366-8.DOI: 10.4103/ija.IJA_434_20
78. Groenen KH, van der Linden YM, Brouwer T, Dijkstra SP, de Graeff A, Algra PR, Kuijlen JM, Minnema MC, Nijboer C, Poelma DL, Rolf C. The Dutch national guideline on metastases and hematological malignancies localized within the spine; a multidisciplinary collaboration towards timely and proactive management. Cancer Treatment Reviews. 2018 Sep 1;69:29-38. https://doi.org/10.1016/j.ctrv.2018.05.013
79. Seymour JR, McLellan SL. Climate change will amplify the impacts of harmful microorganisms in aquatic ecosystems. Nature Microbiology. 2025 Feb 28:1-2. https://doi.org/10.1038/s41564-025-01948-2
80. Alanazi A, Younas S, Ejaz H, Alruwaili M, Alruwaili Y, Mazhari BB, Atif M, Junaid K. Advancing the understanding of Naegleria fowleri: Global epidemiology, phylogenetic analysis, and strategies to combat a deadly pathogen. Journal of Infection and Public Health. 2025 Feb 1:102690. https://doi.org/10.1016/j.jiph.2025.102690
81. Prata N, Ejembi C, Fraser A, Shittu O, Minkler M. Community mobilization to reduce postpartum hemorrhage in home births in northern Nigeria. Social science & medicine. 2012 Apr 1;74(8):1288-96.https://doi.org/10.1016/j.socscimed.2011.11.035
82. Iqbal A, Owais R, Sheikh A, Nashwan AJ. The Naegleria fowleri outbreak in Pakistan: An emerging threat due to climate change. IJS Global Health. 2024 Jan 1;7(1):e0390.DOI: 10.1097/GH9.0000000000000390
83. Tella TA, Festus B, Olaoluwa TD, Oladapo AS. Water and wastewater treatment in developed and developing countries: Present experience and future plans. InSmart Nanomaterials for Environmental Applications 2025 Jan 1 (pp. 351-385). Elsevier. https://doi.org/10.1016/B978-0-443-21794-4.00030-2
84. Zhou C, Wang S, Wang C, Qiang N, Xiu L, Hu Q, Wu W, Zhang X, Han L, Feng X, Zhu Z. Integrated surveillance and early warning system of emerging infectious diseases in China at community level: current status, gaps and perspectives. Science in One Health. 2025 Jan 1;4:100102. https://doi.org/10.1016/j.soh.2024.100102
85. Ekici A, Alkan S, Aydemir S, Gurbuz E, Unlu AH. Trends in Naegleria fowleri global research: A bibliometric analysis study. Acta tropica. 2022 Oct 1;234:106603. https://doi.org/10.1016/j.actatropica.2022.106603
86. Holveck JC, Ehrenberg JP, Ault SK, Rojas R, Vasquez J, Cerqueira MT, Ippolito-Shepherd J, Genovese MA, Periago MR. Prevention, control, and elimination of neglected diseases in the Americas: pathways to integrated, inter-programmatic, inter-sectoral action for health and development. BMC Public Health. 2007 Jan 17;7(1):6.https://doi.org/10.1186/1471-2458-7-6
87. Kaur I, Sandhu AK, Kumar Y. Artificial intelligence techniques for predictive modeling of vector-borne diseases and its pathogens: a systematic review. Archives of Computational Methods in Engineering. 2022 Oct;29(6):3741-71.https://doi.org/10.1007/s11831-022-09724-9
88. Chaves LF, Koenraadt CJ. Climate change and highland malaria: fresh air for a hot debate. The Quarterly review of biology. 2010 Mar;85(1):27-55. https://doi.org/10.1186/s12936-025-05348-z
89. Bloom DE, Cadarette D. Infectious disease threats in the twenty-first century: strengthening the global response. Frontiers in immunology. 2019 Mar 28;10:549. https://doi.org/10.3389/fimmu.2019.00549
90. Ellwanger JH, Veiga AB, Kaminski VD, Valverde-Villegas JM, Freitas AW, Chies JA. Control and prevention of infectious diseases from a One Health perspective. Genetics and Molecular Biology. 2021 Jan 29;44(1 Suppl 1):e20200256. https://doi.org/10.1590/1678-4685-GMB-2020-0256
Published
Abstract Display: 88
PDF Downloads: 44
PDF Downloads: 7 How to Cite
Issue
Section
Copyright (c) 2025 Poonam Sahu, Abhisek Satapathy , Abinash Satapathy , Neha Yadav , Kamaksha Tiwari , Nikita Patel , Shiv Kumar Bhardwaj , Trilochan Satapathy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.