The role of Artificial Intelligence in drug discovery

Authors

  • Samiksha B. Rotake Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India
  • Pooja R. Hatwar Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India https://orcid.org/0000-0002-5424-3425
  • Ravindra L. Bakal Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India https://orcid.org/0000-0002-4964-4654
  • Shruti I. Meshram Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Abstract

The integration of artificial intelligence (AI) in drug discovery has revolutionized the field, offering unprecedented opportunities for accelerating the development of novel therapeutics. AI's adaptability and predictive capabilities have been successfully applied across various stages of the drug discovery process, including target identification, compound screening, and lead optimization. By leveraging machine learning algorithms and big data, researchers can expedite the discovery of promising compounds, reduce human workload, and improve the quality of life. This review provides a comprehensive overview of AI's role in drug discovery, highlighting its applications, advantages, and challenges. The current state of AI in drug discovery, its potential to transform the field, and the limitations that need to be addressed. Furthermore, explore the future directions of AI in drug discovery, including the need for high-quality data, standardization, and regulatory acceptance.

Keywords: Artificial intelligence, Drug discovery, Machine learning, Target identification

Keywords:

Artificial intelligence, Drug discovery, Machine learning, Target identification

DOI

https://doi.org/10.22270/jddt.v15i7.7251

Author Biographies

Samiksha B. Rotake, Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Pooja R. Hatwar , Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Ravindra L. Bakal , Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Shruti I. Meshram, Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

References

1. Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nat Mach Intell. 2020; 2(11):573–584. DOI: http://dx.doi.org/10.1038/s42256-020-00236-4

2. Karger E, Kureljusic M. Using artificial intelligence for drug discovery: A bibliometric study and future research agenda. Pharmaceuticals. 2022; 15(12):1492. DOI: http://dx.doi.org/10.3390/ph15121492

3. Gupta R, Srivastava D, Sahu M, et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021; 25:1315–1360. DOI: http://dx.doi.org/10.1007/s11030-021-10217-3

4. Mbatha SZ, et al. Artificial intelligence–enhanced drug discovery and the achievement of next-generation human-centered health system. In: Dlamini Z, editor. Society 5.0 and next generation healthcare, Cham: Springer; 2023. DOI: http://dx.doi.org/10.1007/978-3-031-36461-7_7

5. Vidhya KS, Sultana A, M N, et al., Artificial intelligence’s impact on drug discovery and development from bench to bedside. Cureus. 2023; 15(10):e47486. DOI: http://dx.doi.org/10.7759/cureus.47486

6. Hasselgren C, Oprea TI. Artificial intelligence for drug discovery: are we there yet? Annu Rev Pharmacol Toxicol. 2024; 64. DOI: http://dx.doi.org/10.1146/annurev-pharmtox-040323-040828

7. Mathew A, Alex H. From code to cure: the role of AI in accelerating drug discovery. Advances and Challenges in Science and Technology, 2023; 2:94–102. DOI: http://dx.doi.org/10.9734/bpi/acst/v2/19866D

8. Sharma V, Singh A, Chauhan S, et al. Role of artificial intelligence in drug discovery and target identification in cancer. Curr Drug Deliv. 2023; 20(10). DOI: http://dx.doi.org/10.2174/1567201821666230905090621

9. Sahayasheela VJ, Lankadasari MB, Dan VM, Dastager SG, Pandian GN. Artificial intelligence in microbial natural product drug discovery: current and emerging role. Nat Prod Rep. 2022; 39(12):2215–2230.

10. Ponzoni I, Páez Prosper JA, Campillo NE. Explainable artificial intelligence: a taxonomy and guidelines for its application to drug discovery. WIREs Comput Mol Sci. 2023; 13(6):e1681. DOI: http://dx.doi.org/10.1002/wcms.1681

11. Habeeba S. Use of artificial intelligence in drug discovery and its application in drug development Asian J Res Chem. 2023; 16(1). DOI: http://dx.doi.org/10.52711/0974-4150.2023.00014

12. Mahjoub MA, Sheikholislam Z. Artificial intelligence in drug discovery and delivery: advancements and applications. J Basic Res Eng Sci. 2023; 4(7):1140–1142. DOI: http://dx.doi.org/10.37871/jbres1778

13. Mhatre G. Artificial intelligence in drugs discovery and development. Int J Sci Res Eng Manag. 2023; 7(4). DOI: http://dx.doi.org/10.55041/IJSREM18863

14. Nguyen MH, Tran ND, Le NQK. Big data and artificial intelligence in drug discovery for gastric cancer: current applications and future perspectives. Curr Med Chem. 2023; 30(40). DOI: http://dx.doi.org/10.2174/0929867331666230913105829

15. Patel V, Shah M. A comprehensive study on artificial intelligence and machine learning in drug discovery and drug development. Intelligent Medicine. 2021; 2(11). DOI: http://dx.doi.org/10.1016/j.imed.2021.10.001

16. Bijral RK, Singh I, Manhas J, Sharma V. Exploring artificial intelligence in drug discovery: a comprehensive review. Arch Comput Methods Eng. 2021; 29(5):1–17. DOI: http://dx.doi.org/10.1007/s11831-021-09661-z

17. Yadav V, Reang J, Vinita, Tonk RK. Artificial intelligence and machine learning in drug discovery. In: Kumar V, editor. CADD and informatics in drug discovery. Delhi Pharmaceutical Sciences and Research University Delhi; 2023. P. 205–230. DOI: http://dx.doi.org/10.1007/978-981-99-1316-9_9

18. Terranova N, Renard D, Shahin MH, et al. Artificial intelligence for quantitative modeling in drug discovery and development: an Innovation and Quality Consortium perspective on use cases and best practices. Clin Pharmacol Ther. 2023; Early View. DOI: http://dx.doi.org/10.1002/cpt.3053

19. Ashiwaju BI, Orikpete OF, Uzougbo CG. The intersection of artificial intelligence and big data in drug discovery: a review of current trends and future implications. Matrix Sci Pharma. 2023; 7(2):36–42. DOI: http://dx.doi.org/10.4103/mtsp.mtsp_14_23

20. Barsagde N, Baranga T, Shembekar S, Kurani K, Chakraborty I, Soni A. Artificial intelligence for drug discovery. Int Res J Modern Eng Technol Sci. 2023; 5(5):1–6. DOI: http://dx.doi.org/10.56726/IRJMETS38887

21. Hessler G, Baringhaus KH. Artificial intelligence in drug design. Molecules. 2018; 23(10):2520. DOI: http://dx.doi.org/10.3390/molecules23102520

22. Chalasani SH, Syed J, Ramesh M, Patil V, Kumar TMP. Artificial intelligence in the field of pharmacy practice: a literature review. Explor Res Clin Soc Pharm. 2023; 12:100346. DOI: http://dx.doi.org/10.1016/j.rcsop.2023.100346

23. Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci. 2019; 40(8):592–604. DOI: http://dx.doi.org/10.1016/j.tips.2019.06.004

24. Sellwood MA, Ahmed M, Segler MHS, Brown N. Artificial intelligence in drug discovery. Future Med Chem. 2018; 10(17):2025–2028. DOI: http://dx.doi.org/10.4155/fmc-2018-0212

25. Wang H, Fu T, Du Y, et al. Scientific discovery in the age of artificial intelligence. Nature. 2023; 620:47–60. DOI: http://dx.doi.org/10.1038/s41586-023-06221-2

26. Gautam V, Gaurav A, Masand N, et al. Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system. Mol Divers. 2023; 27:959–985. DOI: http://dx.doi.org/10.1007/s11030-022-10489-3

27. Madani BM. The application of artificial intelligence in antibiotic discovery: an overview of current and future perspective. Int J Adv Res. 2023; 11(4):1326–1332. DOI: http://dx.doi.org/10.21474/IJAR01/16794

28. Pakala A, Vora K, Rani BA, Dsouza OD, Balaji SM, BC S. Drug discovery using artificial intelligence. Int J All Res Educ Sci Methods (IJARESM). 2023; 11(2):1452.

29. Annammadevi GS, Pradhan M, Choudhury AK. Artificial intelligence the futuristic technology in the drug discovery process: a review. J Young Pharm. 2023; 15(3):390–396. DOI: http://dx.doi.org/10.5530/jyp.2023.15.54

30. Rao SV, Padma KS, Purna KA, Padmalatha K. Artificial intelligence and telimedicine: an effective digitalization in healthcare and pharmaceutical sectors. Eur Chem Bull. 2023; 12(Special Issue 10):3428–3443. DOI: http://dx.doi.org/10.48047/ecb/2023.12.si10.00392

31. Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019; 37(9):1038–1040. DOI: https://doi.org/10.1038/s41587-019-0224-x.

32. Walters WP, Murcko M. Assessing the impact of generative AI on medicinal chemistry. Nat Biotechnol. 2020; 38(2):143–145. DOI: https://doi.org/10.1038/s41587-019-0390-3.

33. Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell, 2020; 180(4):688–702.e13. DOI: https://doi.org/10.1016/j.cell.2020.01.021.

34. Yang X, Zhang J, Song Y, et al. DeepChem: a deep learning framework for drug discovery. J Chem Inf Model. 2017; 57(11):2697–2700. DOI: https://doi.org/10.1021/acs.jcim.7b00503.

35. Gao W, Coley CW. The synthesizability of molecules proposed by generative models. J Chem Inf Model, 2020; 60(12):5714–5723. DOI: https://doi.org/10.1021/acs.jcim.0c00622.

36. Walters WP, Barzilay R. Applications of deep learning in molecule generation and molecular property prediction. Chem Rev. 2020; 120(17): 12685–12727. DOI: https://doi.org/10.1021/acs.chemrev.9b00726.

37. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018; 23(6):1241–1250. DOI: https://doi.org/10.1016/j.drudis.2018.01.039.

38. Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Inform. 2016; 35(1):3–14. DOI: https://doi.org/10.1002/minf.201501008.

39. Zhang Q, Ma X, Wang H, et al. A deep learning framework for compound–protein interaction prediction. Bioinformatics. 2020; 36(9):2829–2837. DOI: https://doi.org/10.1093/bioinformatics/btaa132.

40. Feinberg EN, Sur D, Wu Z, et al. PotentialNet for molecular property prediction. ACS Cent Sci. 2018; 4(11):1520–1530. DOI: https://doi.org/10.1021/acscentsci.8b00507.

41. Li X, Fourches D. Inductive transfer learning for molecular activity prediction: Next-Gen QSAR models with deep neural networks. J Cheminform. 2020; 12(1):62. DOI: https://doi.org/10.1186/s13321-020-00467-6.

42. Ekins S, Puhl AC, Zorn KM, et al. Exploiting machine learning for end-to-end drug discovery and development. Nat Mater. 2019; 18(5):435–441. DOI: https://doi.org/10.1038/s41563-019-0338-z.

43. Gawehn E, Hiss JA, Schneider G. Machine learning in chemoinformatics and drug discovery. Mol Inform. 2016; 35(1):3–14. DOI: https://doi.org/10.1002/minf.201501008.

44. Hu W, Liu B, Gomes J, Zitnik M, Liang P, Leskovec J. Strategies for pre-training graph neural networks. arXiv preprint. 2019; arXiv:1905.12265.

45. Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019; 18(6):463–477. DOI: https://doi.org/10.1038/s41573-019-0024-5.

46. Chenthamarakshan V, Das P, Padhi I, et al. Target-specific and selective drug design using deep generative models. Chem Sci. 2020; 11(10): 2700–2708. DOI: https://doi.org/10.1039/C9SC03754E.

47. Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017; 45(D1):D945–D954. DOI: https://doi.org/10.1093/nar/gkw1074.

48. Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen H. Application of generative autoencoder in de novo molecular design. Mol Inform. 2018; 37(1-2):1700123. DOI: https://doi.org/10.1002/minf.201700123.

49. Jaques N, Gu S, Bahdanau D, et al. Sequence tutor: conservative fine-tuning of sequence generation models with KL-control. arXiv preprint. 2017; arXiv:1611.02796.

50. Kotsias PG, Arús-Pous J, Chen H, et al. Direct steering of de novo molecular generation with descriptor conditional recurrent neural networks. Nat Mach Intell. 2020; 2(5):254–265. DOI: https://doi.org/10.1038/s42256-020-0174-3.

51. Maziarka Ł, Pocha A, Kaczmarczyk J, Rataj K, Danel T, Warchoł M. Mol-CycleGAN: a generative model for molecular optimization. J Cheminform. 2020; 12(1):2. DOI: https://doi.org/10.1186/s13321-019-0395-x.

52. Winter R, Montanari F, Noé F, Clevert D-A. Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem Sci. 2019; 10(6):1692–1701. DOI: https://doi.org/10.1039/C8SC04175J.

53. Jin W, Barzilay R, Jaakkola T. Hierarchical generation of molecular graphs using structural motifs. ICML. 2020; PMLR 119:4839–4848.

54. Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv. 2018; 4(7):eaap7885. DOI: https://doi.org/10.1126/sciadv.aap7885.

55. Winter R, Montanari F, Noé F, Clevert D-A. Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem Sci. 2019; 10(6):1692–1701. DOI: https://doi.org/10.1039/C8SC04175J.

56. Liu Q, Allamanis M, Brockschmidt M, Gaunt A. Constrained graph variational autoencoders for molecule design. NeurIPS. 2018; 31:7795–7804.

57. Lim J, Ryu S, Kim J, Kim W-Y. Molecular generative model based on conditional variational autoencoder for de novo molecular design. J Cheminform. 2018; 10(1):31. DOI: https://doi.org/10.1186/s13321-018-0286-7.

58. Segler MH, Kogej T, Tyrchan C, Waller MP. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci. 2018; 4(1):120–131. DOI: https://doi.org/10.1021/acscentsci.7b00512.

59. Merk D, Friedrich L, Grisoni F, Schneider G. De Novo Design of Bioactive Small Molecules by Artificial Intelligence. Mol Inform. 2018; 37(1-2):1700153. DOI: https://doi.org/10.1002/minf.201700153.

60. Gupta A, Müller AT, Huisman BJH, Fuchs JAS, Schneider P, Schneider G. Generative recurrent networks for de novo drug design. Mol Inform. 2018; 37(1-2):1700111. DOI: https://doi.org/10.1002/minf.201700111.

61. Zhavoronkov A, Aliper A, Ivanenkov YA, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019; 37(9):1038–1040. DOI: https://doi.org/10.1038/s41587-019-0224-x.

62. Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci. 2018; 4(2):268–276. DOI: https://doi.org/10.1021/acscentsci.7b00572.

63. Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-novo design through deep reinforcement learning. J Cheminform. 2017; 9(1):48. DOI: https://doi.org/10.1186/s13321-017-0235-x.

64. Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv. 2018; 4(7):eaap7885. DOI: https://doi.org/10.1126/sciadv.aap7885.

65. Jin W, Barzilay R, Jaakkola T. Junction tree variational autoencoder for molecular graph generation. ICML. 2018; 80:2323–2332.

66. Segler MH, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018; 555(7698):604–610. DOI: https://doi.org/10.1038/nature25978.

67. Kotsias PG, Arús-Pous J, Chen H et al. Direct steering of de novo molecular generation with descriptor conditional recurrent neural networks. Nat Mach Intell. 2020; 2(5):254–265. DOI: https://doi.org/10.1038/s42256-020-0174-3.

68. Maziarka Ł, Pocha A, Kaczmarczyk J, Rataj K, Danel T, Warchoł M. Mol-CycleGAN: a generative model for molecular optimization. J Cheminform. 2020; 12(1):2. DOI: https://doi.org/10.1186/s13321-019-0395-x.

69. Winter R, Montanari F, Noé F, Clevert D-A. Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem Sci. 2019; 10(6):1692–1701. DOI: https://doi.org/10.1039/C8SC04175J.

70. Li X, Fourches D. Inductive transfer learning for molecular activity prediction: Next-Gen QSAR models with deep neural networks. J Cheminform. 2020; 12(1):62. DOI: https://doi.org/10.1186/s13321-020-00467-6.

71. Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019; 18(6):463–477. DOI: https://doi.org/10.1038/s41573-019-0024-5.

Published

2025-07-15
Statistics
Abstract Display: 514
PDF Downloads: 917
PDF Downloads: 136

How to Cite

1.
Rotake SB, Hatwar PR, Bakal RL, Meshram SI. The role of Artificial Intelligence in drug discovery. J. Drug Delivery Ther. [Internet]. 2025 Jul. 15 [cited 2026 Jan. 30];15(7):102-8. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7251

How to Cite

1.
Rotake SB, Hatwar PR, Bakal RL, Meshram SI. The role of Artificial Intelligence in drug discovery. J. Drug Delivery Ther. [Internet]. 2025 Jul. 15 [cited 2026 Jan. 30];15(7):102-8. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7251