New Method of Quality and Quantity Control of the Insulin Glulisine Pharmaceuticals Based on Intrinsic Radiothermal Emission

Authors

  • Aleksandr Andreevich Nazarov Department of Pharmaceutical and Toxicological Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia https://orcid.org/0009-0006-9816-3300
  • Oleg Vladimirovich Ledenev Department of Biology, Lomonosov Moscow State University, Leninskie Gory,119234 Moscow, Russia https://orcid.org/0009-0008-6772-1298
  • Gleb Vladimirovich Petrov Department of Pharmaceutical and Toxicological Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia https://orcid.org/0009-0004-1123-7393
  • Olga Valerievna Levitskaya Department of Pharmaceutical and Toxicological Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia https://orcid.org/0000-0002-7982-535X
  • Anton Vladimirovich Syroeshkin Department of Pharmaceutical and Toxicological Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia https://orcid.org/0000-0003-3279-7520

Abstract

According to the WHO, the prevalence of type I and type II diabetes in the world exceeds 800 million people (14% of the adult population). Insulin pharmaceuticals are therapeutically applied in various configurations with different pharmacokinetic characteristics. There exist highly effective, validated methods for their quality control. However, each method exhibits a number of disadvantages, including long-term sample preparation, significant expense, and the inability to analyze the sample without opening the primary packaging.

Objective:  The aim of current work is to develop a new approach to control the qualitative and quantitative characteristics of a drugs based on insulin glulisine without opening the primary packaging.

Materials and methods:  Insulin glulisine; TES-92 for estimating the intensity of the flux density of its intrinsic radiothermal emission; Zetasizer Nano ZSP for determining the dimensional characteristics of the samples.

Results:  The heating of the samples to 370С effectively activates the emission activity (9.5 ± 0.5 µW/m2). The proposed method enables the differentiation of drugs that possess divergent qualitative characteristics. The effect of stress factors on the emission activity of insulin glulisine has been studied: heating, freezing and UV irradiation reduce the values of the flux density (1.2 ± 0.1; 1.7 ± 0.2; 3.2 ± 0.7 µW/m2). The feasibility of employing the proposed method for the quantitative determination of insulin samples is demonstrated.

Conclusion: Based on the results obtained, the radiothermal emission detection method can be applied to control the qualitative and quantitative characteristics of biologically active drugs without opening the primary packaging.

Keywords: insulin, quality control, quantity control, non-invasive method, intrinsic radiothermal emission, diabetes

Keywords:

insulin, quality control, quantity control, non-invasive method, intrinsic radiothermal emission, diabetes

DOI

https://doi.org/10.22270/jddt.v15i6.7189

Author Biographies

Aleksandr Andreevich Nazarov, Department of Pharmaceutical and Toxicological Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia

Department of Pharmaceutical and Toxicological Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia

Oleg Vladimirovich Ledenev, Department of Biology, Lomonosov Moscow State University, Leninskie Gory,119234 Moscow, Russia

Department of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russia

Gleb Vladimirovich Petrov, Department of Pharmaceutical and Toxicological Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia

Department of Pharmaceutical and Toxicological Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia

Olga Valerievna Levitskaya , Department of Pharmaceutical and Toxicological Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia

Department of Pharmaceutical and Toxicological Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia

Anton Vladimirovich Syroeshkin, Department of Pharmaceutical and Toxicological Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia

Department of Pharmaceutical and Toxicological Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia

References

1. Cawley T. A Singular Case of Diabetes, Consisting Entirely in the Quality of the Urine; with an Inquiry into the Different Theories of That Disease. Lond Med J. 1788;9:286-308. Cited: in: : PMID: 29139716.

2. The Lancet. Diabetes: a defining disease of the 21st century. The Lancet. 2023;401:2087. https://doi.org/10.1016/S0140-6736(23)01296-5 PMid:37355279

3. Gillespie KM. Type 1 diabetes: pathogenesis and prevention. Can Med Assoc J. 2006;175:165-170. https://doi.org/10.1503/cmaj.060244 PMid:16847277 PMCid:PMC1489998

4. Henning RJ. Type-2 Diabetes Mellitus and Cardiovascular Disease. Future Cardiol. 2018;14:491-509. https://doi.org/10.2217/fca-2018-0045 PMid:30409037

5. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464:1293-1300. https://doi.org/10.1038/nature08933 PMid:20432533 PMCid:PMC4959889

6. Ilonen J, Lempainen J, Veijola R. The Heterogeneous Pathogenesis of Type 1 Diabetes Mellitus. Nat Rev Endocrinol. 2019;15:635-650. https://doi.org/10.1038/s41574-019-0254-y PMid:31534209

7. Taylor R. Type 2 Diabetes. Diabetes Care. 2013;36:1047-1055. https://doi.org/10.2337/dc12-1805 PMid:23520370 PMCid:PMC3609491

8. Powers AC. Type 1 diabetes mellitus: much progress, many opportunities. Journal of Clinical Investigation. 2021;131. https://doi.org/10.1172/JCI142242 PMid:33759815 PMCid:PMC8262558

9. Rachdaoui N. Insulin: The Friend and the Foe in the Development of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21:1770. https://doi.org/10.3390/ijms21051770 PMid:32150819 PMCid:PMC7084909

10. Lewis GF, Brubaker PL. The discovery of insulin revisited: lessons for the modern era. Journal of Clinical Investigation. 2021;131. https://doi.org/10.1172/JCI142239 PMid:33393501 PMCid:PMC7773348

11. Macleod JJR. Insulin. Physiol Rev. 1924;4:21-68. https://doi.org/10.1152/physrev.1924.4.1.21

12. Sims EK, Carr ALJ, Oram RA, DiMeglio LA, Evans-Molina C. 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nat Med. 2021;27:1154-1164. https://doi.org/10.1038/s41591-021-01418-2 PMid:34267380 PMCid:PMC8802620

13. Busto-Moner L, Feng C-J, Antoszewski A, Tokmakoff A, Dinner AR. Structural Ensemble of the Insulin Monomer. Biochemistry. 2021;60:3125-3136. https://doi.org/10.1021/acs.biochem.1c00583 PMid:34637307 PMCid:PMC8552439

14. Cheng H, Wu H, Guo T, Jin Park H, Li J. Zinc insulin hexamer loaded alginate zinc hydrogel: Preparation, characterization and in vivo hypoglycemic ability. European Journal of Pharmaceutics and Biopharmaceutics. 2022;179:173-181. https://doi.org/10.1016/j.ejpb.2022.08.016 PMid:36087882

15. Liu M, White BF, Praveen P, Li W, Lin F, Wu H, Li R, Delaine C, Forbes BE, Wade JD, et al. Engineering of a Biologically Active Insulin Dimer. J Med Chem. 2021;64:17448-17454. https://doi.org/10.1021/acs.jmedchem.1c01594 PMid:34797669

16. Dunn MF. Zinc-Ligand Interactions Modulate Assembly and Stability of the Insulin Hexamer - A Review. BioMetals. 2005;18:295-303. https://doi.org/10.1007/s10534-005-3685-y PMid:16158220

17. Cox SA. Insulin glulisine: A human insulin analog. Drugs of Today. 2005;41:433. https://doi.org/10.1358/dot.2005.41.7.904726 PMid:16193096

18. Green MR, Sambrook J. Polyacrylamide Gel Electrophoresis. Cold Spring Harb Protoc. 2020;2020:pdb.prot100412. https://doi.org/10.1101/pdb.prot100412 PMid:33262236

19. Josic D, Kovac S. Reversed‐Phase High Performance Liquid Chromatography of Proteins. Curr Protoc Protein Sci. 2010;61. https://doi.org/10.1002/0471140864.ps0807s61 PMid:20814934

20. Liao S, Liu X-L, Manz KE, Pennell KD, Novak J, Santos E, Huang Y. Comprehensive analysis of alkenones by reversed-phase HPLC-MS with unprecedented selectivity, linearity and sensitivity. Talanta. 2023;260:124653. https://doi.org/10.1016/j.talanta.2023.124653 PMid:37178676

21. Petrov G V., Galkina DA, Koldina AM, Grebennikova T V., Eliseeva O V., Chernoryzh YYu, Lebedeva V V., Syroeshkin A V. Controlling the Quality of Nanodrugs According to Their New Property-Radiothermal Emission. Pharmaceutics. 2024;16:180. https://doi.org/10.3390/pharmaceutics16020180 PMid:38399241 PMCid:PMC10891502

22. Syroeshkin A V., Petrov G V., Taranov V V., Pleteneva T V., Koldina AM, Gaydashev IA, Kolyabina ES, Galkina DA, Sorokina E V., Uspenskaya E V., et al. Radiothermal Emission of Nanoparticles with a Complex Shape as a Tool for the Quality Control of Pharmaceuticals Containing Biologically Active Nanoparticles. Pharmaceutics. 2023;15:966. https://doi.org/10.3390/pharmaceutics15030966 PMid:36986826 PMCid:PMC10059067

23. Petrov G V, Gaidashev IA, Syroeshkin A V. Physical and Chemical Characteristic of Aqueous Colloidal Infusions of Medicinal Plants Containing Humic Acids. International Journal of Applied Pharmaceutics. 2024;16. https://doi.org/10.22159/ijap.2024v16i1.49339

24. Zhang S, Gao H, Bao G. Physical Principles of Nanoparticle Cellular Endocytosis. ACS Nano. 2015;9:8655-8671. https://doi.org/10.1021/acsnano.5b03184 PMid:26256227 PMCid:PMC5681865

25. Brange J, Langkjœr L. Insulin Structure and Stability. 1993. p. 315-350. https://doi.org/10.1007/978-1-4899-1236-7_11 PMid:8019699

26. Casamayou-Boucau Y, Ryder AG. Quantitative analysis of weakly bound insulin oligomers in solution using polarized multidimensional fluorescence spectroscopy. Anal Chim Acta. 2020;1138:18-29. https://doi.org/10.1016/j.aca.2020.09.007 PMid:33161979

27. Sneideris T, Darguzis D, Botyriute A, Grigaliunas M, Winter R, Smirnovas V. pH-Driven Polymorphism of Insulin Amyloid-Like Fibrils. PLoS One. 2015;10:e0136602. https://doi.org/10.1371/journal.pone.0136602 PMid:26313643 PMCid:PMC4551895

28. Wu TY. Accurate measurement of millimeter-wave attenuation from 75GHz to 110GHz using a dual-channel heterodyne receiver. Measurement. 2012;45:1105-1110. https://doi.org/10.1016/j.measurement.2012.01.030

29. Miller NC, Arias-Purdue A, Arkun E, Brown D, Buckwalter JF, Coffie RL, Corrion A, Denninghoff DJ, Elliott M, Fanning D, et al. A Survey of GaN HEMT Technologies for Millimeter-Wave Low Noise Applications. IEEE Journal of Microwaves. 2023;3:1134-1146. https://doi.org/10.1109/JMW.2023.3313111

30. Sviridov A, Saginov L. Thermal radiation of extended particles with subwavelength transverse dimensions. Applied Physics. 2021;17-25. https://doi.org/10.51368/1996-0948-2021-3-17-25

31. Heinemann L, Braune K, Carter A, Zayani A, Krämer LA. Insulin Storage: A Critical Reappraisal. J Diabetes Sci Technol. 2021;15:147-159. https://doi.org/10.1177/1932296819900258 PMid:31994414 PMCid:PMC7783014

32. Herr JK, Keith S, Klug R, Pettis RJ. Characterizing Normal-use Temperature Conditions of Pumped Insulin. J Diabetes Sci Technol. 2014;8:850-854. https://doi.org/10.1177/1932296814532327 PMid:24876429 PMCid:PMC4764209

33. Golay A, Felber JP. Evolution from obesity to diabetes. Diabete Metab. 1994;20:3-14. Cited: in: PMID: 8056132.

34. Richter B, Bongaerts B, Metzendorf M-I. Thermal stability and storage of human insulin. Cochrane Database of Systematic Reviews. 2023;2023. https://doi.org/10.1002/14651858.CD015385.pub2 PMid:37930742 PMCid:PMC10627263

35. Pryce R. Diabetic ketoacidosis caused by exposure of insulin pump to heat and sunlight. BMJ. 2009;338:a2218-a2218. https://doi.org/10.1136/bmj.a2218 PMid:19124546

36. Brateanu A, Russo-Alvarez G, Nielsen C. Starting insulin in patients with type 2 diabetes: An individualized approach. Cleve Clin J Med. 2015;82:513-519. https://doi.org/10.3949/ccjm.82a.14069 PMid:26270430

37. Kamal AD, Dixon AN, Bain SC. Safety and side effects of the insulin analogues. Expert Opin Drug Saf. 2006;5:131-143. https://doi.org/10.1517/14740338.5.1.131 PMid:16370962

38. Moussavi K, Fitter S, Gabrielson SW, Koyfman A, Long B. Management of Hyperkalemia With Insulin and Glucose: Pearls for the Emergency Clinician. J Emerg Med. 2019;57:36-42. https://doi.org/10.1016/j.jemermed.2019.03.043 PMid:31084947

29. Heise T. The future of insulin therapy. Diabetes Res Clin Pract. 2021;175:108820. https://doi.org/10.1016/j.diabres.2021.108820 PMid:33865915

40. Sgorla D, Lechanteur A, Almeida A, Sousa F, Melo E, Bunhak É, Mainardes R, Khalil N, Cavalcanti O, Sarmento B. Development and characterization of lipid-polymeric nanoparticles for oral insulin delivery. Expert Opin Drug Deliv. 2018;15:213-222. https://doi.org/10.1080/17425247.2018.1420050 PMid:29257904

41. Chellathurai MS, Yong CL, Sofian ZM, Sahudin S, Hasim NBM, Mahmood S. Self-assembled chitosan-insulin oral nanoparticles - A critical perspective review. Int J Biol Macromol. 2023;243:125125. doi: 10.1016/j.ijbiomac.2023.125125. Cited: in: : https://doi.org/10.1016/j.ijbiomac.2023.125125 PMid:37263321

42. Liu Y, Wang Y, Yao Y, Zhang J, Liu W, Ji K, Wei X, Wang Y, Liu X, Zhang S, et al. Glucose‐Responsive Charge‐Switchable Lipid Nanoparticles for Insulin Delivery. Angewandte Chemie International Edition. 2023;62. https://doi.org/10.1002/anie.202303097 PMid:36924324

43. Carter AW, Heinemann L, Klonoff DC. Quality Control of Insulins and Biosimilar Insulins. J Diabetes Sci Technol. 2016;10:811-815. https://doi.org/10.1177/1932296816638923 PMid:26989067 PMCid:PMC4928234

44. Takemori A, Takemori N. Sample preparation for structural mass spectrometry via polyacrylamide gel electrophoresis. 2023. p. 187-210. https://doi.org/10.1016/bs.mie.2022.08.051 PMid:36948702

45. de Souza ID, Queiroz MEC. Advances in sample preparation and HPLC-MS/MS methods for determining amyloid-β peptide in biological samples: a review. Anal Bioanal Chem. 2023;415:4003-4021. https://doi.org/10.1007/s00216-023-04631-9 PMid:36877264

46. McDowall RD, Doyle E, Murkitt GS, Picot VS. Sample preparation for the HPLC analysis of drugs in biological fluids. J Pharm Biomed Anal. 1989;7:1087-1096. https://doi.org/10.1016/0731-7085(89)80047-0 PMid:2490115

Published

2025-06-15
Statistics
Abstract Display: 629
PDF Downloads: 561
PDF Downloads: 39

How to Cite

1.
Nazarov AA, Ledenev OV, Petrov GV, Levitskaya OV, Syroeshkin AV. New Method of Quality and Quantity Control of the Insulin Glulisine Pharmaceuticals Based on Intrinsic Radiothermal Emission. J. Drug Delivery Ther. [Internet]. 2025 Jun. 15 [cited 2026 Jan. 30];15(6):116-25. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7189

How to Cite

1.
Nazarov AA, Ledenev OV, Petrov GV, Levitskaya OV, Syroeshkin AV. New Method of Quality and Quantity Control of the Insulin Glulisine Pharmaceuticals Based on Intrinsic Radiothermal Emission. J. Drug Delivery Ther. [Internet]. 2025 Jun. 15 [cited 2026 Jan. 30];15(6):116-25. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7189