Microneedles in Transdermal Drug Delivery: A Comprehensive Review

Authors

  • Snehal Gandhat Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.
  • Sharvari Ugale Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.
  • Sonal Kumavat Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.
  • Kaveri Gadge Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.
  • Nikita Dandawate Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.
  • Vaishnavi Bhor Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

Abstract

Transdermal drug delivery systems (TDDS) present a non-invasive and patient-compliant alternative to conventional routes of administration by facilitating drug transport across the skin barrier. Upon topical application to intact skin, the drug permeates the stratum corneum, diffuses through the underlying epidermal and dermal layers, and subsequently reaches systemic circulation via capillary networks. This approach enables controlled and sustained drug release, enhances bioavailability, and circumvents the limitations associated with oral and parenteral delivery, including first-pass metabolism and injection-associated discomfort. The human skin, comprising the epidermis, dermis, and hypodermis, poses a formidable barrier, particularly at the stratum corneum, necessitating the use of advanced penetration enhancement techniques. Among these, microneedle-based technologies have emerged as a promising strategy, offering transient and minimally invasive disruption of the skin barrier. Fabricated from biocompatible materials such as silicon, metals, polymers, ceramics, or sugars, microneedles exist in various designs-including solid, coated, dissolvable, and hydrogel-forming types-each tailored for specific drug release profiles. These systems hold potential not only for therapeutic drug delivery but also for diagnostics and cosmetic applications. Regulatory oversight by agencies like the FDA classifies microneedle-based systems as combination products, requiring comprehensive evaluation including sterility, stability, safety, and performance testing. The development of harmonized regulatory frameworks could further facilitate their clinical translation and market integration.

Keywords: Transdermal drug delivery systems (TDDS), Microelectronics and microelectromechanical systems (MEMS), White adipose tissue (WAT), Microneedle technology, Polymers

Keywords:

Transdermal drug delivery systems (TDDS), Microelectronics and microelectromechanical systems (MEMS), White adipose tissue (WAT), Microneedle technology, Polymers

DOI

https://doi.org/10.22270/jddt.v15i6.7184

Author Biographies

Snehal Gandhat, Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

Sharvari Ugale, Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

Sonal Kumavat, Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

Kaveri Gadge , Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

Nikita Dandawate, Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

Vaishnavi Bhor, Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

Department of Pharmacy, Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India.

References

1. Alkilani AZ, Nasereddin J, Hamed R, et al. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics. 2022;14(6). https://doi.org/10.3390/pharmaceutics14061152 PMid:35745725 PMCid:PMC9231212

2. Parhi R. Recent advances in microneedle designs and their applications in drug and cosmeceutical delivery. J Drug Deliv Sci Technol. 2022;75. https://doi.org/10.1016/j.jddst.2022.103639

3. Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Release. 2022;351:361-380. https://doi.org/10.1016/j.jconrel.2022.09.025 PMid:36169040

4. Babiuk S, Baca-Estrada M, Babiuk LA, Ewen C, Foldvari M. Cutaneous vaccination: The skin as an immunologically active tissue and the challenge of antigen delivery. J Control Release. 2000;66(2-3):199-214. https://doi.org/10.1016/S0168-3659(99)00274-6 PMid:10742580

5. Williams AC. Transdermal Drug Delivery. Int J Pharm. 2003;261(1-2):171. https://doi.org/10.1016/S0378-5173(03)00289-8

6. Gilaberte Y, Prieto-Torres L, Pastushenko I, Juarranz Á. Anatomy and Function of the Skin. Nanosci Dermatology. Published online 2016:1-14. https://doi.org/10.1016/B978-0-12-802926-8.00001-X PMid:26687587

7. Murphrey MB, Zito PM. Histology, Stratum Corneum. StatPearls. Published online 2018. http://www.ncbi.nlm.nih.gov/pubmed/30020671

8. Chen J, Lu WL, Gu W, Lu SS, Chen ZP, Cai BC. Skin permeation behavior of elastic liposomes: Role of formulation ingredients. Expert Opin Drug Deliv. 2013;10(6):845-856. https://doi.org/10.1517/17425247.2013.779252 PMid:23550630

9. Geerligs M. Skin layer mechanics. Ski layer Mech. 2010;1(2010):122.

10. Moakes RJA, Senior JJ, Robinson TE, et al. A suspended layer additive manufacturing approach to the bioprinting of tri-layered skin equivalents. APL Bioeng. 2021;5(4). https://doi.org/10.1063/5.0061361 PMid:34888433 PMCid:PMC8635740

11. Norlén L. Stratum corneum keratin structure, function and formation - A comprehensive review. Int J Cosmet Sci. 2006;28(6):397-425. https://doi.org/10.1111/j.1467-2494.2006.00345.x PMid:18489286

12. Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nat Rev Mater. 2021;6(4):351-370. https://doi.org/10.1038/s41578-020-00269-6 PMid:34950512 PMCid:PMC8691416

13. Castellano JM, Espinosa JM, Perona JS. Modulation of Lipid Transport and Adipose Tissue Deposition by Small Lipophilic Compounds. Front Cell Dev Biol. 2020;8. https://doi.org/10.3389/fcell.2020.555359 PMid:33163484 PMCid:PMC7591460

14. Norris DA. Mechanisms of action of topical therapies and the rationale for combination therapy. J Am Acad Dermatol. 2005;53(1 SUPPL.). https://doi.org/10.1016/j.jaad.2005.04.027 PMid:15968260

15. Waghule T, Singhvi G, Dubey SK, et al. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249-1258. https://doi.org/10.1016/j.biopha.2018.10.078 PMid:30551375

16. Aldawood FK, Andar A, Desai S. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers (Basel). 2021;13(16). https://doi.org/10.3390/polym13162815 PMid:34451353 PMCid:PMC8400269

17. Haq MI, Smith E, John DN, et al. Clinical administration of microneedles: Skin puncture, pain and sensation. Biomed Microdevices. 2009;11(1):35-47. https://doi.org/10.1007/s10544-008-9208-1 PMid:18663579

18. Haj-Ahmad R, Khan H, Arshad MS, et al. Microneedle coating techniques for transdermal drug delivery. Pharmaceutics. 2015;7(4):486-502. https://doi.org/10.3390/pharmaceutics7040486 PMid:26556364 PMCid:PMC4695830

19. Ali M, Yang Y, Abdoh A, Mohammed Y. Topographical characteristics of 3D printed polymeric microneedle surface and its impact on coating formulation attributes. RSC Appl Interfaces. 2024;1(6):1108-1128. https://doi.org/10.1039/D4LF00177J

20. Tang ESK, Chan LW, Heng PWS. Coating of multiparticulates for sustained release. Am J Drug Deliv. 2005;3(1):17-28. https://doi.org/10.2165/00137696-200503010-00003

21. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Encycl Biomed Polym Polym Biomater. Published online 2015. https://doi.org/10.1081/E-EBPP

22. Liu Y, Mao R, Han S, Yu Z, Xu B, Xu T. Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications-A Comprehensive Review. Polymers (Basel). 2024;16(18). https://doi.org/10.3390/polym16182568 PMid:39339032 PMCid:PMC11434959

23. Donnelly RF, McCrudden MTC, Alkilani AZ, et al. Hydrogel-forming microneedles prepared from "super swelling" polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One. 2014;9(10). https://doi.org/10.1371/journal.pone.0111547 PMid:25360806 PMCid:PMC4216095

24. Singh A, Kumar P, Sharma H. Breakthrough Opportunities of Nanotheranostics in Psoriasis: From Pathogenesis to Management Strategy. Infect Disord - Drug Targets. 2024;24. https://doi.org/10.2174/0118715265298802240603120251 PMid:39075964

25. Bhatnagar S, Gadeela PR, Thathireddy P, Venuganti VVK. Microneedle-based drug delivery: materials of construction. J Chem Sci. 2019;131(9). https://doi.org/10.1007/s12039-019-1666-x

26. Sonetha V, Majumdar S, Shah S. Step-wise micro-fabrication techniques of microneedle arrays with applications in transdermal drug delivery - A review. J Drug Deliv Sci Technol. 2022;68. https://doi.org/10.1016/j.jddst.2022.103119

27. Tarbox TN, Watts AB, Cui Z, Williams RO. An update on coating/manufacturing techniques of microneedles. Drug Deliv Transl Res. 2018;8(6):1828-1843. https://doi.org/10.1007/s13346-017-0466-4 PMid:29288358

28. He X, Sun J, Zhuang J, Xu H, Liu Y, Wu D. Microneedle System for Transdermal Drug and Vaccine Delivery: Devices, Safety, and Prospects. Dose-Response. 2019;17(4). https://doi.org/10.1177/1559325819878585 PMid:31662709 PMCid:PMC6794664

29. Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater Sci Eng R Reports. 2016;104:1-32. https://doi.org/10.1016/j.mser.2016.03.001

30. Sargioti N, Levingstone TJ, O'Cearbhaill ED, McCarthy HO, Dunne NJ. Metallic Microneedles for Transdermal Drug Delivery: Applications, Fabrication Techniques and the Effect of Geometrical Characteristics. Bioengineering. 2023;10(1). https://doi.org/10.3390/bioengineering10010024 PMid:36671595 PMCid:PMC9855189

31. Sartawi Z, Blackshields C, Faisal W. Dissolving microneedles: Applications and growing therapeutic potential. J Control Release. 2022;348:186-205. https://doi.org/10.1016/j.jconrel.2022.05.045 PMid:35662577

32. Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res. 2006;23(5):1008-1019. https://doi.org/10.1007/s11095-006-0028-9 PMid:16715391

33. Rajput A, Kulkarni M, Deshmukh P, et al. A key role by polymers in microneedle technology: a new era. Drug Dev Ind Pharm. 2021;47(11):1713-1732. https://doi.org/10.1080/03639045.2022.2058531 PMid:35332822

34. Starlin Chellathurai M, Mahmood S, Mohamed Sofian Z, et al. Biodegradable polymeric insulin microneedles-a design and materials perspective review. Drug Deliv. 2024;31(1). https://doi.org/10.1080/10717544.2023.2296350 PMid:38147499 PMCid:PMC10763835

35. Dul M, Alali M, Ameri M, et al. Assessing the risk of a clinically significant infection from a Microneedle Array Patch (MAP) product. J Control Release. 2023;361:236-245. https://doi.org/10.1016/j.jconrel.2023.07.001 PMid:37437849

36. Overview of drug product development. Current Protocols in Pharmacology.

37. Cammarano A, Dello Iacono S, Meglio C, Nicolais L. Advances in Transdermal Drug Delivery Systems: A Bibliometric and Patent Analysis. Pharmaceutics. 2023;15(12). https://doi.org/10.3390/pharmaceutics15122762 PMid:38140102 PMCid:PMC10747220

38. Wu C, Yu Q, Huang C, Li F, Zhang L, Zhu D. Microneedles as Transdermal Drug Delivery System for Enhancing Skin Disease Treatment. Acta Pharm Sin B. Published online 2024. https://doi.org/10.1016/j.apsb.2024.08.013 PMid:39807331 PMCid:PMC11725105

39. Mehrotra S, Kalyan PBG, Nayak PG, Joseph A, Manikkath J. Recent Progress in the Oral Delivery of Therapeutic Peptides and Proteins: Overview of Pharmaceutical Strategies to Overcome Absorption Hurdles. Adv Pharm Bull. 2024;14(1):11-33. https://doi.org/10.34172/apb.2024.009 PMid:38585454 PMCid:PMC10997937

40. Shah SWA, Li X, Yuan H, et al. Innovative transdermal drug delivery systems: Benefits, challenges, and emerging application. BMEMat. Published online 2025. https://doi.org/10.1002/bmm2.70001

41. Wang Y, Yu H, Wang L, et al. Intelligent microneedle patch based on functionalized alginate and chitosan for long-term self-regulated insulin delivery. Carbohydr Polym. 2025;348. https://doi.org/10.1016/j.carbpol.2024.122885 PMid:39567163

42. Oh SY, Hong SY, Jeong YR, et al. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection. ACS Appl Mater Interfaces. 2018;10(16):13729-13740. https://doi.org/10.1021/acsami.8b03342 PMid:29624049

43. Pan R, Chen Y. Latest Advancements on Combating Obesity by Targeting Human Brown/Beige Adipose Tissues. Front Endocrinol (Lausanne). 2022;13. https://doi.org/10.3389/fendo.2022.884944 PMid:35600577 PMCid:PMC9114493

44. Amarnani R, Shende P. Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system. Biomed Microdevices. 2022;24(1). https://doi.org/10.1007/s10544-021-00604-w PMid:34878589 PMCid:PMC8651504

45. Hettinga J, Carlisle R. Vaccination into the dermal compartment: Techniques, challenges, and prospects. Vaccines. 2020;8(3):1-40. https://doi.org/10.3390/vaccines8030534 PMid:32947966 PMCid:PMC7564253

46. Stockman JA. Dissolving polymer microneedle patches for influenza vaccination. Yearb Pediatr. 2012;2012:260-261. https://doi.org/10.1016/j.yped.2010.12.031

47. Groot AM de, Anouk AC, Kuijt N, et al. Nanoporous microneedle arrays effectively induce antibody responses against diphtheria and tetanus toxoid. Front Immunol. 2017;8(DEC). https://doi.org/10.3389/fimmu.2017.01789 PMid:29375544 PMCid:PMC5770646

48. Wohlrab J, Kreft B, Tamke B. Skin tolerability of transdermal patches. Expert Opin Drug Deliv. 2011;8(7):939-948. https://doi.org/10.1517/17425247.2011.574689 PMid:21506903

49. Pritzker RN, Hamilton HK, Dover JS. Comparison of different technologies for noninvasive skin tightening. J Cosmet Dermatol. 2014;13(4):315-323. https://doi.org/10.1111/jocd.12114 PMid:25399624

50. Tian Y, Hu D, Li Y, Yang L. Development of therapeutic vaccines for the treatment of diseases. Mol Biomed. 2022;3(1). https://doi.org/10.1186/s43556-022-00098-9 PMid:36477638 PMCid:PMC9729511

51. Nicze M, Borówka M, Dec A, Niemiec A, Bułdak Ł, Okopień B. The Current and Promising Oral Delivery Methods for Protein- and Peptide-Based Drugs. Int J Mol Sci. 2024;25(2). https://doi.org/10.3390/ijms25020815 PMid:38255888 PMCid:PMC10815890

52. Chen G, Yu J, Gu Z. Glucose-Responsive Microneedle Patches for Diabetes Treatment. J Diabetes Sci Technol. 2019;13(1):41-48. https://doi.org/10.1177/1932296818778607 PMid:29848105 PMCid:PMC6313291

53. Xu N, Xu W, Zhang M, Yu J, Ling G, Zhang P. Microneedle-Based Technology: Toward Minimally Invasive Disease Diagnostics. Adv Mater Technol. 2022;7(9). https://doi.org/10.1002/admt.202101595

54. Rodgers AM, Cordeiro AS, Kissenpfennig A, Donnelly RF. Microneedle arrays for vaccine delivery: the possibilities, challenges and use of nanoparticles as a combinatorial approach for enhanced vaccine immunogenicity. Expert Opin Drug Deliv. 2018;15(9):851-867. https://doi.org/10.1080/17425247.2018.1505860 PMid:30051726

55. Waldmann TA. Monoclonal antibodies in diagnosis and therapy. Science (80- ). 1991;252(5013):1657-1662. https://doi.org/10.1126/science.2047874 PMid:2047874

56. Koenitz L, Crean A, Vucen S. Stress factors affecting protein stability during the fabrication and storage of dissolvable microneedles. RPS Pharm Pharmacol Reports. 2024;3(3). https://doi.org/10.1093/rpsppr/rqae018

57. Nguyen TT, Choi J ah, Kim JS, et al. Skin immunization with third-generation hepatitis B surface antigen using microneedles. Vaccine. 2019;37(40):5954-5961. https://doi.org/10.1016/j.vaccine.2019.08.036 PMid:31466705

Published

2025-06-15
Statistics
Abstract Display: 577
PDF Downloads: 595
PDF Downloads: 91

How to Cite

1.
Gandhat S, Ugale S, Kumavat S, Gadge K, Dandawate N, Bhor V. Microneedles in Transdermal Drug Delivery: A Comprehensive Review. J. Drug Delivery Ther. [Internet]. 2025 Jun. 15 [cited 2025 Oct. 19];15(6):201-9. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7184

How to Cite

1.
Gandhat S, Ugale S, Kumavat S, Gadge K, Dandawate N, Bhor V. Microneedles in Transdermal Drug Delivery: A Comprehensive Review. J. Drug Delivery Ther. [Internet]. 2025 Jun. 15 [cited 2025 Oct. 19];15(6):201-9. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7184