Enhanced in vivo antimalarial activity of artemether by clotrimazole against drug-sensitive and resistant Plasmodium berghei

Authors

  • Franklin C. Kenechukwu Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Mumuni A. Momoh Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Wilfred I. Ugwuoke Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Daniel O. Nnamani Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center 881 Madison Avenue, Memphis, TN 38163 USA
  • Joy I. Nwobodo Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Jude E. Ogbonna Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Ezichim F. Nzekwe Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Linda C. Nweke Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Mary U. Obila Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Tochukwu Odoh Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Bonaventure A. Odo Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Chinekwu S. Nwagwu Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Celestine C. Anikwe Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, United Kingdom
  • Joshua C. Okachi Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Anthony A. Attama Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Abstract

The emergence of resistance parasites to currently approved artemisinin-based combination therapies (ACTs) highlight the need for regimens incorporating repurposed antimalarials. In this study, we investigated the in vivo performance of artemether/clotrimazole combination against chloroquine-sensitive and multidrug-resistant Plasmodium berghei (Pb) in a preclinical mouse model. The antimalarial activity of artemether, clotrimazole and combination of artemether (8 mg/kg) and clotrimazole (2 mg/kg) was investigated using standard protocols for uncomplicated malaria (UM) and severe malaria (SM) in mice infected with chloroquine-sensitive Pb (CPb) and Pb ANKA (PbA), respectively. Hematological parameters (white blood cells, red blood cells, packed cell volume and haemoglobin) and lethality of infected mice in comparison with controls, tested in parallel, were also monitored. The reduction in parasitemia caused by peroral (p.o.) administration of artemether/clotrimazole combotherapy in CPb-infected mice was significantly greater than artemether monotherapy (**p<0.01), clotrimazole monotherapy (****p<0.0001) and marketed chloroquine (*p<0.05) but less than that obtained with therapeutic dosage of marketed ACT (artemether-lumefantrine) (4mg/24mg/kg x 3 days). Similarly, the reduction in parasitaemia in mice infected with PbA by the combination administered intraperitoneally (i.p.) (12.14%) was significantly higher than monotherapies of artemether (**p<0.01) and clotrimazole (****p<0.0001) but less than commercial i.m. artemether (19.17%). Importantly, the combinations administered both p.o. and i.p. ameliorated Pb-induced alterations in hematological parameters of the malariogenic mice similar with conventional antimalarial regimens (controls). Therefore, artemether/clotrimazole combination would be potential therapeutic options for UM and SM. Our ongoing research would seek to investigate the effect of encapsulating artemether/clotrimazole combinatorial regimen in nanocarriers on the antimalarial activity.

Keywords: Plasmodium berghei malaria, Clotrimazole, Drug repurposing, Artemisinin-based combination therapy (ACT), In vivo antimalarial activity, Artemether.

Keywords:

Plasmodium berghei malaria, Clotrimazole, Drug repurposing, Artemisinin-based combination therapy (ACT), In vivo antimalarial activity, Artemether

DOI

https://doi.org/10.22270/jddt.v15i3.7007

Author Biographies

Franklin C. Kenechukwu , Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria 

Mumuni A. Momoh , Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria 

Wilfred I. Ugwuoke , Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria

Daniel O. Nnamani , Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center 881 Madison Avenue, Memphis, TN 38163 USA

Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center 881 Madison Avenue, Memphis, TN 38163 USA

Joy I. Nwobodo , Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria 

Jude E. Ogbonna , Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria 

Ezichim F. Nzekwe , Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria 

Linda C. Nweke , Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria 

Mary U. Obila , Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria 

Tochukwu Odoh , Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria 

Bonaventure A. Odo, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria 

Chinekwu S. Nwagwu , Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria 

Celestine C. Anikwe , Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, United Kingdom

Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, United Kingdom

Joshua C. Okachi , Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria 

Anthony A. Attama , Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria 

References

1. Weiss DJ, et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000-17: a spatial and temporal modelling study. The Lancet. 2019;394(10195): 322-331. https://doi.org/10.1016/S0140-6736(19)31097-9 PMid:31229234

2. World Health Organization. World malaria report 2020 - 20 years of global progress & challenges.

3. Arya A, Kojom Foko LP, Chaudhry S, Sharma A, Singh V. Artemisinin-based combination therapy (ACT) and drug resistance molecular markers: A systematic review of clinical studies from two malaria endemic regions - India and sub-Saharan Africa. Int J Parasitol: Drug Drug Res. 2021;15:43-56. https://doi.org/10.1016/j.ijpddr.2020.11.006 PMid:33556786 PMCid:PMC7887327

4. Favuzza P, et al. Dual plasmepsin-targeting antimalarial agents disrupt multiple stages of the malaria parasite life cycle. Cell Host Microb. 2020;27(4):642-658 https://doi.org/10.1016/j.chom.2020.02.005 PMid:32109369 PMCid:PMC7146544

5. Naß J, Efferth T. Development of artemisinin resistance in malaria therapy. Pharm Res. 2019;146. https://doi.org/10.1016/j.phrs.2019.104275 PMid:31100335

6. de Carvalho LP, Kreidenweiss A, Held J. Drug repurposing: A review of old and new antibiotics for the treatment of malaria: Identifying antibiotics with a fast onset of antiplasmodial action. Molecules. 2021;26(8). https://doi.org/10.3390/molecules26082304 PMid:33921170 PMCid:PMC8071546

7. van der Pluijm RW, Amaratunga C, Dhorda M, Dondorp AM. Triple artemisinin-based combination therapies for malaria - A new paradigm? Trends Parasitol. 2021;37(1):15-24. https://doi.org/10.1016/j.pt.2020.09.011 PMid:33060063

8. White NJ. Can new treatment developments combat resistance in malaria? Expert Opin Pharmacother. 2016;17(10):1303-1307. https://doi.org/10.1080/14656566.2016.1187134 PMid:27191998

9. van der Pluijm RW, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. The Lancet. 2020;395(10233):1345-1360. https://doi.org/10.1016/S0140-6736(20)30552-3 PMid:32171078

10. Mairet-Khedim M, et al. Clinical and in vitro resistance of Plasmodium falciparum to artesunate-amodiaquine in Cambodia. Clin Inf. Dis. 2021;73(3):406-413. https://doi.org/10.1093/cid/ciaa628 PMid:32459308 PMCid:PMC8326543

11. de Carvalho LP, Kreidenweiss A, Held J. Drug repurposing: A review of old and new antibiotics for the treatment of malaria: Identifying antibiotics with a fast onset of antiplasmodial action. Molecules. 2021;26(8). https://doi.org/10.3390/molecules26082304 PMid:33921170 PMCid:PMC8071546

12. Jorge MM, et al. Safety and efficacy of artesunate-amodiaquine combined with either methylene blue or primaquine in children with falciparum malaria in Burkina Faso: A randomized controlled trial. PLoS One. 2019;14(10). https://doi.org/10.1371/journal.pone.0222993 PMid:31600221 PMCid:PMC6786573

13. Jourdan JP, Bureau R, Rochais C, Dallemagne P. Drug repositioning: a brief overview. J Pharm Pharmacol. 2020;72(9): 1145-1151.. https://doi.org/10.1111/jphp.13273 PMid:32301512 PMCid:PMC7262062

14. Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases. Int J Parasit: Drugs and Drug Resis. 2014;4(2):95-111. https://doi.org/10.1016/j.ijpddr.2014.02.002 PMid:25057459 PMCid:PMC4095053

15. Gaillard T, Madamet M, Tsombeng FF, Dormoi J, Pradines B. Antibiotics in malaria therapy: which antibiotics except tetracyclines and macrolides may be used against malaria? Malaria J. 2016;15(1):1-10. 2016. https://doi.org/10.1186/s12936-016-1613-y PMid:27846898 PMCid:PMC5109779

16. Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol. 2017;33(3):300-305. https://doi.org/10.4103/joacp.JOACP_349_15 PMid:29109626 PMCid:PMC5672523

17. Talevi A, Bellera CL Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin Drug Discov. 2020;15(4):397-401. https://doi.org/10.1080/17460441.2020.1704729 PMid:31847616

18. Bouyou Akotet MK, et al. Burden of asymptomatic malaria, anemia and relationship with cotrimoxazole use and CD4 cell count among HIV1-infected adults living in Gabon, Central Africa. Pathog Glob Health. 2018;112(2):63-71. https://doi.org/10.1080/20477724.2017.1401760 PMid:29161993 PMCid:PMC6056820

19. Marete IK, et al. Malaria parasitaemia among febrile children infected with human immunodeficiency virus in the context of prophylactic cotrimoxazole as standard of care: a cross-sectional survey in western Kenya. East Afri Med J. 2014.

20. Thera MA, et al. Impact of trimethoprim-sulfamethoxazole prophylaxis on falciparum malaria infection and disease. 2005. Available: https://academic.oup.com/jid/article/192/10/1823/877593 https://doi.org/10.1086/498249 PMid:16235184 PMCid:PMC2740817

21. de Carvalho LP, Kreidenweiss A, Held J. Drug repurposing: A review of old and new antibiotics for the treatment of malaria: Identifying antibiotics with a fast onset of antiplasmodial action. Molecules. 2021;26(8). https://doi.org/10.3390/molecules26082304 PMid:33921170 PMCid:PMC8071546

22. Davis NL, et al. Impact of daily cotrimoxazole on clinical malaria and asymptomatic parasitemias in HIV-exposed, uninfected infants. Clinical Infectious Dis. 2015;61(3):368-374. https://doi.org/10.1093/cid/civ309 PMid:25900173 PMCid:PMC4542924

23. Bhattacharya A, Mishra LC, Bhasin VK. In vitro activity of artemisinin in combination with clotrimazole or heat-treated amphotericin B against Plasmodium falciparum. 2008. https://doi.org/10.4269/ajtmh.2008.78.721 PMid:18458303

24. Borhade V, Pathak S, Sharma S, Patravale V. Clotrimazole nanoemulsion for malaria chemotherapy. Part II: Stability assessment, in vivo pharmacodynamic evaluations and toxicological studies. Int J Pharm. 2012;431(1-2):149-160. https://doi.org/10.1016/j.ijpharm.2011.12.031 PMid:22265913

25. Tiffert T, Ginsburg H, Krugliak M, Elford BC, Lew VL. Potent antimalarial activity of clotrimazole in in vitro cultures of Plasmodium falciparum. Available: www.pnas.org

26. Tien Huy N, et al. Effect of antifungal azoles on the heme detoxification system of malarial parasite. 2002.

27. Hassett MR, Roepe PD. Origin and spread of evolving artemisinin-resistant Plasmodium falciparum malarial parasites in Southeast Asia. Amer J Trop Med Hyg. 2019;101(6):1204-1211. https://doi.org/10.4269/ajtmh.19-0379 PMid:31642425 PMCid:PMC6896886

28. Zhou J, Li J, Cheong I, Liu NN, Wang H. Evaluation of artemisinin derivative artemether as a fluconazole potentiator through inhibition of Pdr5. Bioorg Med Chem. 2021;44. https://doi.org/10.1016/j.bmc.2021.116293 PMid:34243044

29. Tripathi R, Rizvi A, Pandey SK, Dwivedi H, Saxena JK. Ketoconazole, a cytochrome P450 inhibitor can potentiate the antimalarial action of α/β arteether against MDR Plasmodium yoelii nigeriensis. Acta Tropica. 2013;126:150-155. https://doi.org/10.1016/j.actatropica.2013.01.012 PMid:23391499

30. Esu EB, Effa EE, Opie ON, Meremikwu MM. Artemether for severe malaria. Cochrane Database Syst Rev. 2019; (6). https://doi.org/10.1002/14651858.CD010678.pub3

31. Dharavath R, Nagaraju N, Reddy MR, Ashok D, Sarasija M, Vijjulatha M, Prashanthi G. Microwave-assisted synthesis, biological evaluation and molecular docking studies of new coumarin-based 1, 2, 3-triazoles. RSC Advances. 2020;10(20):11615-11623. https://doi.org/10.1039/D0RA01052A PMid:35496603 PMCid:PMC9050871

32. Trivedi V, Chand P, Srivastrava K, Puri SK, Maulik PK. Enzyme catalysis and regulation: Clotrimazole inhibits hemoperoxidase of Plasmodium falciparum and induces oxidative stress: Proposed antimalarial mechanism of clotrimazole. J Biol Chem. 2005; 280:41129-41136. https://doi.org/10.1074/jbc.M501563200 PMid:15863504

33. Akpa PA, Ugwuoke JA, Attama AA, Ugwu CN, Ezeibe EN, Momoh MA, Echezona AC, Kenechukwu FC. Improved antimalarial activity of caprol-based nanostructured lipid carriers encapsulating artemether-lumefantrine for oral administration. Afri. Health Sci. 2020;20(4):1679-97. https://doi.org/10.4314/ahs.v20i4.20 PMid:34394228 PMCid:PMC8351851

34. Adeyemi OI, Ige OO, Akanmu MA, Ukponmwan OE. In vivo anti-malarial activity of propranolol against Plasmodium berghei ANKA infection in mice. Afr. J. Exper. Microbiol. 2020;21(4):333-339. https://doi.org/10.4314/ajcem.v21i4.10

35. Waknine-Grinberg JH, Even-Chen S, Avichzer J, Turjeman K, Bentura-Marciano A, Haynes RK, Weiss L, Allon N, Ovadia H, Golenser J, Barenholz Y. Glucocorticosteroids in nano-sterically stabilized liposomes are efficacious for elimination of the acute symptoms of experimental cerebral malaria. PloS One. 2013;8, e72722. https://doi.org/10.1371/journal.pone.0072722 PMid:23991146 PMCid:PMC3753236

36. Georgewill UO, Adikwu E. Potential antimalarial activity of artemether-lumefantrine-doxycycline: A study in mice infected with Plasmodium berghei. Adv Pharm J. 2012;6(1):22-28. https://doi.org/10.31024/apj.2021.6.1.4

37. Sharma M, Prasher P. An epigrammatic status of the azole-based antimalarial drugs. RSC Med Chem. 2019;1-28. https://doi.org/10.1039/C9MD00479C PMid:33479627 PMCid:PMC7536834

38. Lefèvre G, Thomsen MS. Clinical pharmacokinetics of artemether and lumefantrine (Riamet®). Clin Drug Investig. 1999;18:467-80. https://doi.org/10.2165/00044011-199918060-00006

39. Bravo Gonza'lez RC, Huwyler J, Boess F, Walter I, Bittner B. In vitro investigation on the impact of the surface-active excipients - cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam. Biopharm Drug Disp. 2004;25:37-49. https://doi.org/10.1002/bdd.383 PMid:14716751

40. Christiansen A, Backensfeld T, Denner K, Weitschies W. Effects of non-ionic surfactants on cytochrome P450-mediated metabolism in vitro. Eur J Pharm Biopharm. 2011;78:166-72. https://doi.org/10.1016/j.ejpb.2010.12.033 PMid:21220010

41. Attama AA, Kenechukwu FC, Onuigbo EB, Nnamani PO, Obitte NC, Finke JH, Pretor S, Muller-Goymann CC. Solid lipid nanoparticles encapsulating a fluorescent marker (coumarin 6) and anti-malarials - artemether and lumefantrine: evaluation of cellular uptake and anti-malarial activity. Eur J Nanomed. 2016;8:129-138. https://doi.org/10.1515/ejnm-2016-0009

42. Kenechukwu FC, Neto RPC, Dias ML, Ricci-Junior E. Compatibilized biopolymer-based core-shell nanoparticles: A new frontier in malaria combo-therapy. J Pharm Innov. 2022; Early online: 1-27. https://doi.org/10.1007/s12247-022-09664-8

43. Nardos A, Makonnen E. In vivo antiplasmodial activity and toxicological assessment of hydroethanolic crude extract of Ajuga remota. Malaria J. 2017;16:25:1-8. https://doi.org/10.1186/s12936-017-1677-3 PMid:28086782 PMCid:PMC5237349

44. Nnamani PO, Ugwu AA, Ibezim EC, Kenechukwu FC, Akpa PA, Ogbonna JDN, Obitte NC, Odo AN, Windbergs M, Lehr CM, Attama AA. Sustained-release liquisolid compact tablets containing artemether-lumefantrine as alternate-day regimen for malaria treatment to improve patient compliance. Int J Nanomed. 2016;11:6365-6378. https://doi.org/10.2147/IJN.S92755 PMid:27932882 PMCid:PMC5135285

45. Nnamani PO, Kenechukwu FC, Nwagwu SC, Okoye O, Attama AA. Physicochemical characterization of artemether-entrapped solid lipid microparticles prepared from templated-compritol and Capra hircus (goat fat) homolipid. Dhaka Univ J Pharm Sci. 2021;20(1): 67-80. https://doi.org/10.3329/dujps.v20i1.54034

46. Agbo CP, Umeyor CE, Kenechukwu FC, Ogbonna JDN, Chime SA, Charles L, Agubata CO, Ofokansi KC, Attama AA. Formulation design, in vitro characterizations and anti-malarial investigations of artemether and lumefantrine-entrapped solid lipid microparticles. Drug Dev Ind Pharm. 2016;42(10):1708-21. https://doi.org/10.3109/03639045.2016.1171331 PMid:27095388

47. Ogbonna JDN, Nzekwe IT, Kenechukwu FC, Nwobi CS, Amah JI, Attama AA. Development and evaluation of chloroquine phosphate microparticles using solid lipid as a delivery carrier. J Drug Discov Dev Deliv. 2015; 2(1): 1011.

48. Ogbonna JDN, Echezona AC, Nwagwu CS, Agbo CP, Onugwu AL, Kenechukwu FC, Akpa PA, Momoh MA, Attama AA. Formulation, in vitro and in vivo evaluation of sustained released artemether-lumefantrine-loaded microstructured solid lipid microparticles (SLMs). Trop J Nat Prod Res. 2021;5(8):1460-1469. https://doi.org/10.26538/tjnpr/v5i8.23

49. Momoh MA, Kenechukwu FC, Ugwu CE, Adedokun MO, Agboke AA, Agbo CP, Ossai EC, Ofomata AC, Youngson DC, Omeje CE, Amadi BC. Development and evaluation of artemether-loaded microspheres delivery system for oral application in malaria treatment. Trop J Nat Prod Res. 2021; 5(11):2030-2036. https://doi.org/10.26538/tjnpr/v5i11.23

50. Nnamani PO, Kenechukwu FC, Omeje MA, Nwachukwu LO, Anazodo FI, Nwagwu CS, Kola-Mustapha AT, Obitte NC, Attama AA. Development and characterization of sustained-release artemether-loaded solid lipid microparticles based on mixed lipid core and a polar heterolipid. Afri J Pharm Res Dev. 2022;14(1):1-17.

Published

2025-03-15
Statistics
Abstract Display: 451
PDF Downloads: 479
PDF Downloads: 61

How to Cite

1.
Kenechukwu FC, Momoh MA, Ugwuoke WI, Nnamani DO, Nwobodo JI, Ogbonna JE, et al. Enhanced in vivo antimalarial activity of artemether by clotrimazole against drug-sensitive and resistant Plasmodium berghei. J. Drug Delivery Ther. [Internet]. 2025 Mar. 15 [cited 2026 Jan. 29];15(3):1-14. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7007

How to Cite

1.
Kenechukwu FC, Momoh MA, Ugwuoke WI, Nnamani DO, Nwobodo JI, Ogbonna JE, et al. Enhanced in vivo antimalarial activity of artemether by clotrimazole against drug-sensitive and resistant Plasmodium berghei. J. Drug Delivery Ther. [Internet]. 2025 Mar. 15 [cited 2026 Jan. 29];15(3):1-14. Available from: https://www.jddtonline.info/index.php/jddt/article/view/7007