Enhanced in vivo antimalarial activity of artemether by clotrimazole against drug-sensitive and resistant Plasmodium berghei
Abstract
The emergence of resistance parasites to currently approved artemisinin-based combination therapies (ACTs) highlight the need for regimens incorporating repurposed antimalarials. In this study, we investigated the in vivo performance of artemether/clotrimazole combination against chloroquine-sensitive and multidrug-resistant Plasmodium berghei (Pb) in a preclinical mouse model. The antimalarial activity of artemether, clotrimazole and combination of artemether (8 mg/kg) and clotrimazole (2 mg/kg) was investigated using standard protocols for uncomplicated malaria (UM) and severe malaria (SM) in mice infected with chloroquine-sensitive Pb (CPb) and Pb ANKA (PbA), respectively. Hematological parameters (white blood cells, red blood cells, packed cell volume and haemoglobin) and lethality of infected mice in comparison with controls, tested in parallel, were also monitored. The reduction in parasitemia caused by peroral (p.o.) administration of artemether/clotrimazole combotherapy in CPb-infected mice was significantly greater than artemether monotherapy (**p<0.01), clotrimazole monotherapy (****p<0.0001) and marketed chloroquine (*p<0.05) but less than that obtained with therapeutic dosage of marketed ACT (artemether-lumefantrine) (4mg/24mg/kg x 3 days). Similarly, the reduction in parasitaemia in mice infected with PbA by the combination administered intraperitoneally (i.p.) (12.14%) was significantly higher than monotherapies of artemether (**p<0.01) and clotrimazole (****p<0.0001) but less than commercial i.m. artemether (19.17%). Importantly, the combinations administered both p.o. and i.p. ameliorated Pb-induced alterations in hematological parameters of the malariogenic mice similar with conventional antimalarial regimens (controls). Therefore, artemether/clotrimazole combination would be potential therapeutic options for UM and SM. Our ongoing research would seek to investigate the effect of encapsulating artemether/clotrimazole combinatorial regimen in nanocarriers on the antimalarial activity.
Keywords: Plasmodium berghei malaria, Clotrimazole, Drug repurposing, Artemisinin-based combination therapy (ACT), In vivo antimalarial activity, Artemether.
Keywords:
Plasmodium berghei malaria, Clotrimazole, Drug repurposing, Artemisinin-based combination therapy (ACT), In vivo antimalarial activity, ArtemetherDOI
https://doi.org/10.22270/jddt.v15i3.7007References
1. Weiss DJ, et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000-17: a spatial and temporal modelling study. The Lancet. 2019;394(10195): 322-331. https://doi.org/10.1016/S0140-6736(19)31097-9 PMid:31229234
2. World Health Organization. World malaria report 2020 - 20 years of global progress & challenges.
3. Arya A, Kojom Foko LP, Chaudhry S, Sharma A, Singh V. Artemisinin-based combination therapy (ACT) and drug resistance molecular markers: A systematic review of clinical studies from two malaria endemic regions - India and sub-Saharan Africa. Int J Parasitol: Drug Drug Res. 2021;15:43-56. https://doi.org/10.1016/j.ijpddr.2020.11.006 PMid:33556786 PMCid:PMC7887327
4. Favuzza P, et al. Dual plasmepsin-targeting antimalarial agents disrupt multiple stages of the malaria parasite life cycle. Cell Host Microb. 2020;27(4):642-658 https://doi.org/10.1016/j.chom.2020.02.005 PMid:32109369 PMCid:PMC7146544
5. Naß J, Efferth T. Development of artemisinin resistance in malaria therapy. Pharm Res. 2019;146. https://doi.org/10.1016/j.phrs.2019.104275 PMid:31100335
6. de Carvalho LP, Kreidenweiss A, Held J. Drug repurposing: A review of old and new antibiotics for the treatment of malaria: Identifying antibiotics with a fast onset of antiplasmodial action. Molecules. 2021;26(8). https://doi.org/10.3390/molecules26082304 PMid:33921170 PMCid:PMC8071546
7. van der Pluijm RW, Amaratunga C, Dhorda M, Dondorp AM. Triple artemisinin-based combination therapies for malaria - A new paradigm? Trends Parasitol. 2021;37(1):15-24. https://doi.org/10.1016/j.pt.2020.09.011 PMid:33060063
8. White NJ. Can new treatment developments combat resistance in malaria? Expert Opin Pharmacother. 2016;17(10):1303-1307. https://doi.org/10.1080/14656566.2016.1187134 PMid:27191998
9. van der Pluijm RW, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. The Lancet. 2020;395(10233):1345-1360. https://doi.org/10.1016/S0140-6736(20)30552-3 PMid:32171078
10. Mairet-Khedim M, et al. Clinical and in vitro resistance of Plasmodium falciparum to artesunate-amodiaquine in Cambodia. Clin Inf. Dis. 2021;73(3):406-413. https://doi.org/10.1093/cid/ciaa628 PMid:32459308 PMCid:PMC8326543
11. de Carvalho LP, Kreidenweiss A, Held J. Drug repurposing: A review of old and new antibiotics for the treatment of malaria: Identifying antibiotics with a fast onset of antiplasmodial action. Molecules. 2021;26(8). https://doi.org/10.3390/molecules26082304 PMid:33921170 PMCid:PMC8071546
12. Jorge MM, et al. Safety and efficacy of artesunate-amodiaquine combined with either methylene blue or primaquine in children with falciparum malaria in Burkina Faso: A randomized controlled trial. PLoS One. 2019;14(10). https://doi.org/10.1371/journal.pone.0222993 PMid:31600221 PMCid:PMC6786573
13. Jourdan JP, Bureau R, Rochais C, Dallemagne P. Drug repositioning: a brief overview. J Pharm Pharmacol. 2020;72(9): 1145-1151.. https://doi.org/10.1111/jphp.13273 PMid:32301512 PMCid:PMC7262062
14. Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases. Int J Parasit: Drugs and Drug Resis. 2014;4(2):95-111. https://doi.org/10.1016/j.ijpddr.2014.02.002 PMid:25057459 PMCid:PMC4095053
15. Gaillard T, Madamet M, Tsombeng FF, Dormoi J, Pradines B. Antibiotics in malaria therapy: which antibiotics except tetracyclines and macrolides may be used against malaria? Malaria J. 2016;15(1):1-10. 2016. https://doi.org/10.1186/s12936-016-1613-y PMid:27846898 PMCid:PMC5109779
16. Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol. 2017;33(3):300-305. https://doi.org/10.4103/joacp.JOACP_349_15 PMid:29109626 PMCid:PMC5672523
17. Talevi A, Bellera CL Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin Drug Discov. 2020;15(4):397-401. https://doi.org/10.1080/17460441.2020.1704729 PMid:31847616
18. Bouyou Akotet MK, et al. Burden of asymptomatic malaria, anemia and relationship with cotrimoxazole use and CD4 cell count among HIV1-infected adults living in Gabon, Central Africa. Pathog Glob Health. 2018;112(2):63-71. https://doi.org/10.1080/20477724.2017.1401760 PMid:29161993 PMCid:PMC6056820
19. Marete IK, et al. Malaria parasitaemia among febrile children infected with human immunodeficiency virus in the context of prophylactic cotrimoxazole as standard of care: a cross-sectional survey in western Kenya. East Afri Med J. 2014.
20. Thera MA, et al. Impact of trimethoprim-sulfamethoxazole prophylaxis on falciparum malaria infection and disease. 2005. Available: https://academic.oup.com/jid/article/192/10/1823/877593 https://doi.org/10.1086/498249 PMid:16235184 PMCid:PMC2740817
21. de Carvalho LP, Kreidenweiss A, Held J. Drug repurposing: A review of old and new antibiotics for the treatment of malaria: Identifying antibiotics with a fast onset of antiplasmodial action. Molecules. 2021;26(8). https://doi.org/10.3390/molecules26082304 PMid:33921170 PMCid:PMC8071546
22. Davis NL, et al. Impact of daily cotrimoxazole on clinical malaria and asymptomatic parasitemias in HIV-exposed, uninfected infants. Clinical Infectious Dis. 2015;61(3):368-374. https://doi.org/10.1093/cid/civ309 PMid:25900173 PMCid:PMC4542924
23. Bhattacharya A, Mishra LC, Bhasin VK. In vitro activity of artemisinin in combination with clotrimazole or heat-treated amphotericin B against Plasmodium falciparum. 2008. https://doi.org/10.4269/ajtmh.2008.78.721 PMid:18458303
24. Borhade V, Pathak S, Sharma S, Patravale V. Clotrimazole nanoemulsion for malaria chemotherapy. Part II: Stability assessment, in vivo pharmacodynamic evaluations and toxicological studies. Int J Pharm. 2012;431(1-2):149-160. https://doi.org/10.1016/j.ijpharm.2011.12.031 PMid:22265913
25. Tiffert T, Ginsburg H, Krugliak M, Elford BC, Lew VL. Potent antimalarial activity of clotrimazole in in vitro cultures of Plasmodium falciparum. Available: www.pnas.org
26. Tien Huy N, et al. Effect of antifungal azoles on the heme detoxification system of malarial parasite. 2002.
27. Hassett MR, Roepe PD. Origin and spread of evolving artemisinin-resistant Plasmodium falciparum malarial parasites in Southeast Asia. Amer J Trop Med Hyg. 2019;101(6):1204-1211. https://doi.org/10.4269/ajtmh.19-0379 PMid:31642425 PMCid:PMC6896886
28. Zhou J, Li J, Cheong I, Liu NN, Wang H. Evaluation of artemisinin derivative artemether as a fluconazole potentiator through inhibition of Pdr5. Bioorg Med Chem. 2021;44. https://doi.org/10.1016/j.bmc.2021.116293 PMid:34243044
29. Tripathi R, Rizvi A, Pandey SK, Dwivedi H, Saxena JK. Ketoconazole, a cytochrome P450 inhibitor can potentiate the antimalarial action of α/β arteether against MDR Plasmodium yoelii nigeriensis. Acta Tropica. 2013;126:150-155. https://doi.org/10.1016/j.actatropica.2013.01.012 PMid:23391499
30. Esu EB, Effa EE, Opie ON, Meremikwu MM. Artemether for severe malaria. Cochrane Database Syst Rev. 2019; (6). https://doi.org/10.1002/14651858.CD010678.pub3
31. Dharavath R, Nagaraju N, Reddy MR, Ashok D, Sarasija M, Vijjulatha M, Prashanthi G. Microwave-assisted synthesis, biological evaluation and molecular docking studies of new coumarin-based 1, 2, 3-triazoles. RSC Advances. 2020;10(20):11615-11623. https://doi.org/10.1039/D0RA01052A PMid:35496603 PMCid:PMC9050871
32. Trivedi V, Chand P, Srivastrava K, Puri SK, Maulik PK. Enzyme catalysis and regulation: Clotrimazole inhibits hemoperoxidase of Plasmodium falciparum and induces oxidative stress: Proposed antimalarial mechanism of clotrimazole. J Biol Chem. 2005; 280:41129-41136. https://doi.org/10.1074/jbc.M501563200 PMid:15863504
33. Akpa PA, Ugwuoke JA, Attama AA, Ugwu CN, Ezeibe EN, Momoh MA, Echezona AC, Kenechukwu FC. Improved antimalarial activity of caprol-based nanostructured lipid carriers encapsulating artemether-lumefantrine for oral administration. Afri. Health Sci. 2020;20(4):1679-97. https://doi.org/10.4314/ahs.v20i4.20 PMid:34394228 PMCid:PMC8351851
34. Adeyemi OI, Ige OO, Akanmu MA, Ukponmwan OE. In vivo anti-malarial activity of propranolol against Plasmodium berghei ANKA infection in mice. Afr. J. Exper. Microbiol. 2020;21(4):333-339. https://doi.org/10.4314/ajcem.v21i4.10
35. Waknine-Grinberg JH, Even-Chen S, Avichzer J, Turjeman K, Bentura-Marciano A, Haynes RK, Weiss L, Allon N, Ovadia H, Golenser J, Barenholz Y. Glucocorticosteroids in nano-sterically stabilized liposomes are efficacious for elimination of the acute symptoms of experimental cerebral malaria. PloS One. 2013;8, e72722. https://doi.org/10.1371/journal.pone.0072722 PMid:23991146 PMCid:PMC3753236
36. Georgewill UO, Adikwu E. Potential antimalarial activity of artemether-lumefantrine-doxycycline: A study in mice infected with Plasmodium berghei. Adv Pharm J. 2012;6(1):22-28. https://doi.org/10.31024/apj.2021.6.1.4
37. Sharma M, Prasher P. An epigrammatic status of the azole-based antimalarial drugs. RSC Med Chem. 2019;1-28. https://doi.org/10.1039/C9MD00479C PMid:33479627 PMCid:PMC7536834
38. Lefèvre G, Thomsen MS. Clinical pharmacokinetics of artemether and lumefantrine (Riamet®). Clin Drug Investig. 1999;18:467-80. https://doi.org/10.2165/00044011-199918060-00006
39. Bravo Gonza'lez RC, Huwyler J, Boess F, Walter I, Bittner B. In vitro investigation on the impact of the surface-active excipients - cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam. Biopharm Drug Disp. 2004;25:37-49. https://doi.org/10.1002/bdd.383 PMid:14716751
40. Christiansen A, Backensfeld T, Denner K, Weitschies W. Effects of non-ionic surfactants on cytochrome P450-mediated metabolism in vitro. Eur J Pharm Biopharm. 2011;78:166-72. https://doi.org/10.1016/j.ejpb.2010.12.033 PMid:21220010
41. Attama AA, Kenechukwu FC, Onuigbo EB, Nnamani PO, Obitte NC, Finke JH, Pretor S, Muller-Goymann CC. Solid lipid nanoparticles encapsulating a fluorescent marker (coumarin 6) and anti-malarials - artemether and lumefantrine: evaluation of cellular uptake and anti-malarial activity. Eur J Nanomed. 2016;8:129-138. https://doi.org/10.1515/ejnm-2016-0009
42. Kenechukwu FC, Neto RPC, Dias ML, Ricci-Junior E. Compatibilized biopolymer-based core-shell nanoparticles: A new frontier in malaria combo-therapy. J Pharm Innov. 2022; Early online: 1-27. https://doi.org/10.1007/s12247-022-09664-8
43. Nardos A, Makonnen E. In vivo antiplasmodial activity and toxicological assessment of hydroethanolic crude extract of Ajuga remota. Malaria J. 2017;16:25:1-8. https://doi.org/10.1186/s12936-017-1677-3 PMid:28086782 PMCid:PMC5237349
44. Nnamani PO, Ugwu AA, Ibezim EC, Kenechukwu FC, Akpa PA, Ogbonna JDN, Obitte NC, Odo AN, Windbergs M, Lehr CM, Attama AA. Sustained-release liquisolid compact tablets containing artemether-lumefantrine as alternate-day regimen for malaria treatment to improve patient compliance. Int J Nanomed. 2016;11:6365-6378. https://doi.org/10.2147/IJN.S92755 PMid:27932882 PMCid:PMC5135285
45. Nnamani PO, Kenechukwu FC, Nwagwu SC, Okoye O, Attama AA. Physicochemical characterization of artemether-entrapped solid lipid microparticles prepared from templated-compritol and Capra hircus (goat fat) homolipid. Dhaka Univ J Pharm Sci. 2021;20(1): 67-80. https://doi.org/10.3329/dujps.v20i1.54034
46. Agbo CP, Umeyor CE, Kenechukwu FC, Ogbonna JDN, Chime SA, Charles L, Agubata CO, Ofokansi KC, Attama AA. Formulation design, in vitro characterizations and anti-malarial investigations of artemether and lumefantrine-entrapped solid lipid microparticles. Drug Dev Ind Pharm. 2016;42(10):1708-21. https://doi.org/10.3109/03639045.2016.1171331 PMid:27095388
47. Ogbonna JDN, Nzekwe IT, Kenechukwu FC, Nwobi CS, Amah JI, Attama AA. Development and evaluation of chloroquine phosphate microparticles using solid lipid as a delivery carrier. J Drug Discov Dev Deliv. 2015; 2(1): 1011.
48. Ogbonna JDN, Echezona AC, Nwagwu CS, Agbo CP, Onugwu AL, Kenechukwu FC, Akpa PA, Momoh MA, Attama AA. Formulation, in vitro and in vivo evaluation of sustained released artemether-lumefantrine-loaded microstructured solid lipid microparticles (SLMs). Trop J Nat Prod Res. 2021;5(8):1460-1469. https://doi.org/10.26538/tjnpr/v5i8.23
49. Momoh MA, Kenechukwu FC, Ugwu CE, Adedokun MO, Agboke AA, Agbo CP, Ossai EC, Ofomata AC, Youngson DC, Omeje CE, Amadi BC. Development and evaluation of artemether-loaded microspheres delivery system for oral application in malaria treatment. Trop J Nat Prod Res. 2021; 5(11):2030-2036. https://doi.org/10.26538/tjnpr/v5i11.23
50. Nnamani PO, Kenechukwu FC, Omeje MA, Nwachukwu LO, Anazodo FI, Nwagwu CS, Kola-Mustapha AT, Obitte NC, Attama AA. Development and characterization of sustained-release artemether-loaded solid lipid microparticles based on mixed lipid core and a polar heterolipid. Afri J Pharm Res Dev. 2022;14(1):1-17.
Published
Abstract Display: 451
PDF Downloads: 479
PDF Downloads: 61 How to Cite
Issue
Section
Copyright (c) 2025 Franklin C. Kenechukwu , Mumuni A. Momoh , Wilfred I. Ugwuoke , Daniel O. Nnamani , Joy I. Nwobodo , Jude E. Ogbonna , Ezichim F. Nzekwe , Linda C. Nweke , Mary U. Obila , Tochukwu Odoh , Bonaventure A. Odo, Chinekwu S. Nwagwu , Celestine C. Anikwe , Joshua C. Okachi , Anthony A. Attama

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.