Unraveling Nipah Virus: Key Insights on Spread, Symptoms, Management
Abstract
According to the World Health Organization (WHO), a newly identified zoonosis that poses a major risk to both humans and animals is the Nipah Virus (NiV). The infectious agent known as NiV is responsible for devastating illnesses in both people and animals. It was initially found in the Pteropus genus fruit bats and the Pteropodidae family. The most frequently identified route for transmitting NiV is ingesting fresh date palm sap, among other possible mechanisms. Another potential route for NiV to spread from bats to humans through domestic animals. The NiV mostly affects respiratory and neurological tissues, resulting in neurological symptoms and respiratory difficulties in those who are off. The immune system's ability to fight the virus is crucial, and this includes interferon-mediated pathways and innate immunological responses. NiV is regarded as a BSL-4 disease since there is no known cure or vaccine to prevent it only personal care including symptomatic treatment, hydration management, and breathing help, remains the mainstay of care. Three pharmaceutical options for the possible treatment and post-exposure prophylaxis of NiV infection have been studied: ribavirin, favipiravir, and m102.4 monoclonal antibody. This review will give an overview of the virus, explain the circumstances behind its emergence, and speculate on when it might spread to other parts of the world.
Keywords: NiV- Nipah Virus; World Health Organization; pathogenesis, vaccines
Keywords:
NiV- Nipah Virus, World Health Organization, pathogenesis, vaccinesDOI
https://doi.org/10.22270/jddt.v14i12.6883References
1. Mahariba K, Sambasivan R. Nipah virus infection. TNNMC J Med Surg Nurs. 2018;6(2):31-3.
2. Rajput A, Kumar A, Megha K, Thakur A, Kumar M. DrugRepV: a compendium of repurposed drugs and chemicals targeting epidemic and pandemic viruses. Brief Bioinform. 2021;22(2):1076-84. https://doi.org/10.1093/bib/bbaa421 PMid:33480398 PMCid:PMC7929368
3. Ang BSP, Lim TCC, Wang L. Nipah virus infection. J Clin Microbiol. 2018;56(6):10-1128. https://doi.org/10.1128/JCM.01875-17 PMid:29643201 PMCid:PMC5971524
4. Shariff M. Nipah virus infection: A review. Epidemiol Infect. 2019;147:e95. https://doi.org/10.1017/S0950268819000086 PMid:30869046 PMCid:PMC6518547
5. Calisher CH, Childs JE, Field HE, Holmes K V, Schountz T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 2006;19(3):531-45. https://doi.org/10.1128/CMR.00017-06 PMid:16847084 PMCid:PMC1539106
6. Bharathi M, Srinivas TAS, Harini V. Whispers in the Dark: The Ongoing Battle Against Nipah Virus. J Adv Res Rev Virol Microbiol. 2024;1(1):1-9.
7. Doke O, Kale S, Mujawar FB, More P, More T, A report on Nipah Virus. J. Drug Delivery Ther. [Internet]. 2019;9(2):449-452. https://doi.org/10.22270/jddt.v9i2.2378
8. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, et al. Nipah virus: a recently emergent deadly paramyxovirus. Science (80- ). 2000;288(5470):1432-5. https://doi.org/10.1126/science.288.5470.1432 PMid:10827955
9. Mourya DT, Yadav PD, Ullas PT, Bhardwaj SD, Sahay RR, Chadha MS, et al. Emerging/re-emerging viral diseases & new viruses on the Indian horizon. Indian J Med Res. 2019;149(4):447-67. https://doi.org/10.4103/ijmr.IJMR_1239_18 PMid:31411169 PMCid:PMC6676836
10. Dhillon J, Banerjee A. Controlling Nipah virus encephalitis in Bangladesh: Policy options. J Public Health Policy. 2015;36(3):270. https://doi.org/10.1057/jphp.2015.13 PMid:25925087 PMCid:PMC7100436
11. Hughes JM, Wilson ME, Luby SP, Gurley ES, Hossain MJ. Transmission of human infection with Nipah virus. Clin Infect Dis. 2009;49(11):1743-8. https://doi.org/10.1086/647951 PMid:19886791 PMCid:PMC2784122
12. Goh KJ, Tan CT, Chew NK, Tan PSK, Kamarulzaman A, Sarji SA, et al. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med. 2000;342(17):1229-35. https://doi.org/10.1056/NEJM200004273421701 PMid:10781618
13. Soni M, Kumar V, Singh MP, Shabil M, Sah S. Nipah virus resurgence: a call for preparedness across states. Infectious Medicine. Elsevier; 2024. p. 100145. https://doi.org/10.1016/j.imj.2024.100145
14. Tan FH, Sukri A, Idris N, Ong KC, Schee JP, Tan CT, et al. A systematic review on Nipah virus: global molecular epidemiology and medical countermeasures development. Virus Evol. 2024;10(1):veae048. https://doi.org/10.1093/ve/veae048 PMid:39119137 PMCid:PMC11306115
15. Sharma V, Kaushik S, Kumar R, Yadav JP, Kaushik S. Emerging trends of Nipah virus: A review. Rev Med Virol. 2019;29(1):e2010. https://doi.org/10.1002/rmv.2010 PMid:30251294 PMCid:PMC7169151
16. Chua KB. Nipah virus outbreak in Malaysia. J Clin Virol. 2003;26(3):265-75. https://doi.org/10.1016/S1386-6532(02)00268-8 PMid:12637075
17. Looi LM, Chua KB. Lessons from the Nipah virus outbreak in Malaysia. Malays J Pathol. 2007;29(2):63-7.
18. Lam SK, Chua KB. Nipah virus encephalitis outbreak in Malaysia. Clin Infect Dis. 2002;34(Supplement_2):S48-51. https://doi.org/10.1086/338818 PMid:11938496
19. Soman Pillai V, Krishna G, Valiya Veettil M. Nipah virus: past outbreaks and future containment. Viruses. 2020;12(4):465. https://doi.org/10.3390/v12040465 PMid:32325930 PMCid:PMC7232522
20. Chua KB, Lam SK, Goh KJ, Hooi PS, Ksiazek TG, Kamarulzaman A, et al. The presence of Nipah virus in respiratory secretions and urine of patients during an outbreak of Nipah virus encephalitis in Malaysia. J Infect. 2001;42(1):40-3. https://doi.org/10.1053/jinf.2000.0782 PMid:11243752
21. Clayton BA, Middleton D, Bergfeld J, Haining J, Arkinstall R, Wang L, et al. Transmission routes for Nipah virus from Malaysia and Bangladesh. Emerg Infect Dis. 2012;18(12):1983. https://doi.org/10.3201/eid1812.120875 PMid:23171621 PMCid:PMC3557903
22. Parashar UD, Sunn LM, Ong F, Mounts AW, Arif MT, Ksiazek TG, et al. Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998-1999 outbreak of severe encephalitis in Malaysia. J Infect Dis. 2000;181(5):1755-9. https://doi.org/10.1086/315457 PMid:10823779
23. Tan KS, Tan CT, Goh KJ. Epidemiological aspects of Nipah virus infection. Neurol J Southeast Asia. 1999;4(1):77-81.
24. Rahman M, Chakraborty A. Nipah virus outbreaks in Bangladesh: a deadly infectious disease. WHO South-East Asia J Public Heal. 2012;1(2):208-12. https://doi.org/10.4103/2224-3151.206933 PMid:28612796
25. Rahman MA, Hossain MJ, Sultana S, Homaira N, Khan SU, Rahman M, et al. Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008. Vector-Borne Zoonotic Dis. 2012;12(1):65-72. https://doi.org/10.1089/vbz.2011.0656 PMid:21923274
26. Stone R. Breaking the chain in Bangladesh. American Association for the Advancement of Science; 2011. https://doi.org/10.1126/science.331.6021.1128 PMid:21385693
27. Epstein JH, Prakash V, Smith CS, Daszak P, McLaughlin AB, Meehan G, et al. Henipavirus infection in fruit bats (Pteropus giganteus), India. Emerg Infect Dis. 2008;14(8):1309. https://doi.org/10.3201/eid1408.071492 PMid:18680665 PMCid:PMC2600370
28. Nazmunnahar, Ahmed I, Roknuzzaman ASM, Islam MR. The recent Nipah virus outbreak in Bangladesh could be a threat for global public health: a brief report. Heal Sci Reports. 2023;6(7):e1423. https://doi.org/10.1002/hsr2.1423 PMid:37448729 PMCid:PMC10336337
29. Kalaimathi RV, Krishnaveni K, Murugan M, Basha AN, Gilles AP, Kandeepan C, Senthilkumar N, Mathialagan B, Ramya S, Ramanathan L, Jayakumararaj R, Loganathan T, Pandiarajan G, Dhakar RC, ADMET informatics of Tetradecanoic acid (Myristic Acid) from ethyl acetate fraction of Moringa oleifera leaves, Journal of Drug Delivery and Therapeutics. 2022;12(4-S):101-111. https://doi.org/10.22270/jddt.v12i4-S.5533
30. Vankadari N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int J Antimicrob Agents. 2020;56(2):105998. https://doi.org/10.1016/j.ijantimicag.2020.105998 PMid:32360231 PMCid:PMC7187825
31. Hsu VP, Hossain MJ, Parashar UD, Ali MM, Ksiazek TG, Kuzmin I, et al. Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis. 2004;10(12):2082. https://doi.org/10.3201/eid1012.040701 PMid:15663842 PMCid:PMC3323384
32. Harit AK, Ichhpujani RL, Gupta S, Gill KS. Nipah/Hendra virus outbreak in Siliguri, West Bengal, India in 2001. Indian J Med Res. 2006;123(4):553.
33. Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, et al. Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis. 2006;12(2):235. https://doi.org/10.3201/eid1202.051247 PMid:16494748 PMCid:PMC3373078
34. Arunkumar G, Chandni R, Mourya DT, Singh SK, Sadanandan R, Sudan P, et al. Outbreak investigation of Nipah virus disease in Kerala, India, 2018. J Infect Dis. 2019;219(12):1867-78. https://doi.org/10.1093/infdis/jiy612 PMid:30364984
35. Shete AM, Radhakrishnan C, Pardeshi PG, Yadav PD, Jain R, Sahay RR, et al. Antibody response in symptomatic & asymptomatic Nipah virus cases from Kerala, India. Indian J Med Res. 2021;154(3):533-5. https://doi.org/10.4103/ijmr.IJMR_4388_20 PMid:35142653 PMCid:PMC9131784
36. Srivastava S, Deb N, Roy P, Jaiswal V, Sah S, Pandey Y, et al. Recent Nipah virus outbreak in India: lessons and imperatives. Vol. 10, Therapeutic Advances in Infectious Disease. SAGE Publications Sage UK: London, England; 2023. p. 20499361231208536. https://doi.org/10.1177/20499361231208535 PMid:37842170 PMCid:PMC10576419
37. Plowright RK, Becker DJ, Crowley DE, Washburne AD, Huang T, Nameer PO, et al. Prioritizing surveillance of Nipah virus in India. PLoS Negl Trop Dis. 2019;13(6):e0007393. https://doi.org/10.1371/journal.pntd.0007393 PMid:31246966 PMCid:PMC6597033
38. Sahay RR, Yadav PD, Gupta N, Shete AM, Radhakrishnan C, Mohan G, et al. Experiential learnings from the Nipah virus outbreaks in Kerala towards containment of infectious public health emergencies in India. Epidemiol Infect. 2020;148:e90. https://doi.org/10.1017/S0950268820000825 PMid:32321607 PMCid:PMC7253795
39. Sadanadan R, Arunkumar G, Laserson KF, Heretik KH, Singh S, Mourya DT, et al. Towards global health security: response to the May 2018 Nipah virus outbreak linked to Pteropus bats in Kerala, India. BMJ Glob Heal. 2018;3(6):e001086. https://doi.org/10.1136/bmjgh-2018-001086 PMid:30483413 PMCid:PMC6231092
40. Thakur V, Thakur P, Ratho RK. Nipah Outbreak: Is it the beginning of another pandemic in the era of COVID-19 and Zika. Brain Behav Immun. 2022;99:25. https://doi.org/10.1016/j.bbi.2021.09.015 PMid:34562598 PMCid:PMC8506197
41. Satapathy P, Khatib MN, Gaidhane S, Zahiruddin QS, Rustagi S, Kukreti N, et al. Re-emergence of Nipah virus outbreak in Kerala, India: a global health concern. Infect Dis (Auckl). 2024;56(6):499-503. https://doi.org/10.1080/23744235.2024.2334853 PMid:38551069
42. Srivastava S, Sharma PK, Gurjar S, Kumar S, Pandey Y, Rustagi S, et al. Nipah virus strikes Kerala: recent cases and implications. Egypt J Intern Med. 2024;36(1):11. https://doi.org/10.1186/s43162-024-00276-x
43. Guarve ADPAK. Nipah virus (NiV): diagnosis, pathophysiology and treatment. Asian J Pharm Pharmacol. 2018;4(6):739-43. https://doi.org/10.31024/ajpp.2018.4.6.3
44. Vigant F, Lee B. Hendra and Nipah infection: pathology, models and potential therapies. Infect Disord Targets (Formerly Curr Drug Targets-Infectious Disord. 2011;11(3):315-36. https://doi.org/10.2174/187152611795768097 PMid:21488828 PMCid:PMC3253017
45. Chakravarty N, Senthilnathan T, Paiola S, Gyani P, Castillo Cario S, Urena E, et al. Neurological pathophysiology of SARS‐CoV‐2 and pandemic potential RNA viruses: a comparative analysis. FEBS Lett. 2021;595(23):2854-71. https://doi.org/10.1002/1873-3468.14227 PMid:34757622 PMCid:PMC8652524
46. Brown B, Gravier T, Fricke I, Al-Sheboul SA, Carp TN, Leow CY, et al. Immunopathogenesis of Nipah virus infection and associated immune responses. Immuno. 2023;3(2):160-81. https://doi.org/10.3390/immuno3020011
47. Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, et al. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies-a comprehensive review. Vet Q. 2019;39(1):26-55. https://doi.org/10.1080/01652176.2019.1580827 PMid:31006350 PMCid:PMC6830995
48. Magdum M, Chowdhury MAT, Khandaker M, Datta R, Rayhan MN, Uddin MS, et al. Nipah Virus Unveiled: A Review Article. Adv Biosci Biotechnol. 2024;15(3):161-73. https://doi.org/10.4236/abb.2024.153011
49. Alla D, Shah DJ, Adityaraj N, Vagdevi M, Alla SSM, Sree K, et al. A systematic review of case reports on mortality, modes of infection, diagnostic tests, and treatments for Nipah virus infection. Medicine (Baltimore). 2024;103(40):e39989. https://doi.org/10.1097/MD.0000000000039989 PMid:39465718 PMCid:PMC11460887
50. Mathieu C, Pohl C, Szecsi J, Trajkovic-Bodennec S, Devergnas S, Raoul H, et al. Nipah virus uses leukocytes for efficient dissemination within a host. J Virol. 2011;85(15):7863-71. https://doi.org/10.1128/JVI.00549-11 PMid:21593145 PMCid:PMC3147937
51. Golden JW, Hammerbeck CD, Mucker EM, Brocato RL. Animal models for the study of rodent‐borne hemorrhagic fever viruses: arenaviruses and hantaviruses. Biomed Res Int. 2015;2015(1):793257. https://doi.org/10.1155/2015/793257 PMid:26266264 PMCid:PMC4523679
52. Lo MK, Rota PA. The emergence of Nipah virus, a highly pathogenic paramyxovirus. J Clin Virol. 2008;43(4):396-400. https://doi.org/10.1016/j.jcv.2008.08.007 PMid:18835214
53. Kallon MK, Mami DM, Mami ET, Romba M, Martain MS. Therapeutic Advancement in Treatment and Prevention of Nipah Viral Infection: A Review. Asian J Res Infect Dis. 2024;15(4):51-65. https://doi.org/10.9734/ajrid/2024/v15i4343
54. Devnath P, Wajed S, Das RC, Kar S, Islam I, Al Masud HMA. The pathogenesis of Nipah virus: A review. Microb Pathog. 2022;170:105693. https://doi.org/10.1016/j.micpath.2022.105693 PMid:35940443
55. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, et al. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol. 2002;161(6):2153-67. https://doi.org/10.1016/S0002-9440(10)64493-8 PMid:12466131
56. Escaffre O, Borisevich V, Rockx B. Pathogenesis of Hendra and Nipah virus infection in humans. J Infect Dev Ctries. 2013;7(4):308-11. https://doi.org/10.3855/jidc.3648 PMid:23592639
57. Broder CC. Henipavirus outbreaks to antivirals: the current status of potential therapeutics. Curr Opin Virol. 2012;2(2):176-87. https://doi.org/10.1016/j.coviro.2012.02.016 PMid:22482714 PMCid:PMC4347837
58. Sidwell RW, Huffman JH, Khare GP L, Allen B, Witkowski JT R, Robins K. Broad-spectrum antiviral activity of virazole: 1-β-D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide. Science (80- ). 1972;177(4050):705-6. https://doi.org/10.1126/science.177.4050.705 PMid:4340949
59. Pager CT, Wurth MA, Dutch RE. Subcellular localization and calcium and pH requirements for proteolytic processing of the Hendra virus fusion protein. J Virol. 2004;78(17):9154-63. https://doi.org/10.1128/JVI.78.17.9154-9163.2004 PMid:15308711 PMCid:PMC506929
60. Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep. 2017;7(1):43395. https://doi.org/10.1038/srep43395 PMid:28262699 PMCid:PMC5338263
61. Lo MK, Feldmann F, Gary JM, Jordan R, Bannister R, Cronin J, et al. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Sci Transl Med. 2019;11(494):eaau9242. https://doi.org/10.1126/scitranslmed.aau9242 PMid:31142680 PMCid:PMC6732787
62. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020;382(24):2327-36. https://doi.org/10.1056/NEJMoa2007016 PMid:32275812 PMCid:PMC7169476
63. Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 2013;100(2):446-54. https://doi.org/10.1016/j.antiviral.2013.09.015 PMid:24084488 PMCid:PMC3880838
64. Dawes BE, Kalveram B, Ikegami T, Juelich T, Smith JK, Zhang L, et al. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. Sci Rep. 2018;8(1):7604. https://doi.org/10.1038/s41598-018-25780-3 PMid:29765101 PMCid:PMC5954062
65. Lo MK, Spengler JR, Krumpe LRH, Welch SR, Chattopadhyay A, Harmon JR, et al. Griffithsin inhibits Nipah virus entry and fusion and can protect Syrian golden hamsters from lethal Nipah virus challenge. J Infect Dis. 2020;221(Supplement_4):S480-92. https://doi.org/10.1093/infdis/jiz630 PMid:32037447 PMCid:PMC7199786
66. Dhadwal A, Rana A, Sharma S, Bhardwaj G. A comprehensive review on nipah virus infection: Classification, epidemiology, treatment and prevention. Res J Pharmacol Pharmacodyn. 2023;15(4):223-30. https://doi.org/10.52711/2321-5836.2023.00039
67. Zhu Z, Dimitrov AS, Bossart KN, Crameri G, Bishop KA, Choudhry V, et al. Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J Virol. 2006;80(2):891-9. https://doi.org/10.1128/JVI.80.2.891-899.2006 PMid:16378991 PMCid:PMC1346873
68. Bossart KN, Geisbert TW, Feldmann H, Zhu Z, Feldmann F, Geisbert JB, et al. A neutralizing human monoclonal antibody protects african green monkeys from hendra virus challenge. Sci Transl Med. 2011;3(105):105ra103-105ra103. https://doi.org/10.1126/scitranslmed.3002901 PMid:22013123 PMCid:PMC3313625
69. Geisbert TW, Mire CE, Geisbert JB, Chan YP, Agans KN, Feldmann F, et al. Therapeutic treatment of Nipah virus infection in nonhuman primates with a neutralizing human monoclonal antibody. Sci Transl Med. 2014;6(242):242ra82-242ra82. https://doi.org/10.1126/scitranslmed.3008929
70. Mire CE, Satterfield BA, Geisbert JB, Agans KN, Borisevich V, Yan L, et al. Pathogenic differences between Nipah virus Bangladesh and Malaysia strains in primates: implications for antibody therapy. Sci Rep. 2016;6(1):30916. https://doi.org/10.1038/srep30916 PMid:27484128 PMCid:PMC4971471
71. Mishra G, Prajapat V, Nayak D. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics. Immunology. 2024;171(2):155-69. https://doi.org/10.1111/imm.13695 PMid:37712243
72. Pallister J, Middleton D, Wang LF, Klein R, Haining J, Robinson R, et al. A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal Hendra virus challenge. Vaccine. 2011;29(34):5623-30. https://doi.org/10.1016/j.vaccine.2011.06.015 PMid:21689706 PMCid:PMC3153950
73. Broder CC, Xu K, Nikolov DB, Zhu Z, Dimitrov DS, Middleton D, et al. A treatment for and vaccine against the deadly Hendra and Nipah viruses. Antiviral Res. 2013;100(1):8-13. https://doi.org/10.1016/j.antiviral.2013.06.012 PMid:23838047 PMCid:PMC4418552
74. Bossart KN, Rockx B, Feldmann F, Brining D, Scott D, LaCasse R, et al. A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Sci Transl Med. 2012;4(146):146ra107-146ra107. https://doi.org/10.1126/scitranslmed.3004241 PMid:22875827 PMCid:PMC3516289
75. Thakur N, Bailey D. Advances in diagnostics, vaccines and therapeutics for Nipah virus. Microbes Infect. 2019;21(7):278-86. https://doi.org/10.1016/j.micinf.2019.02.002 PMid:30817995
76. Weingartl HM. Hendra and Nipah viruses: pathogenesis, animal models and recent breakthroughs in vaccination. Vaccine Dev Ther. 2015;59-74. https://doi.org/10.2147/VDT.S86482
Published



How to Cite
Issue
Section
Copyright (c) 2024 Amit Kumar Kaundal, Inder Kumar , Kavita Pathania , Dr Sakshi, Dr Aayush, Sagar Mehta, Ankit Sharma

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).