Synthesis and characterizations of Hg (II) Complex of Macrocyclic complexes compounds Tetradecahydrodibenzo hexaazacyclooctadecine with HgX2 (X= Cl, Br) by Hirshfeld analysis and antimicrobial activity
Abstract
This study examines the synthesis and characterization of a macrocyclic complex molecule having the general formula [M-LX2], where M =Hg (II) with schiff base Tetradecahydrodibenzo hexaazacyclooctadecine ligands. Resulted from the interaction between mercury and the diethyl triamine and benzene- 1, 2 diol in an ethanolic solution. Schiff base and its novel mercury (II) Complexes were studied vibrational in the solid state using spectral, 1H-NMR, IR, UV, and antimicrobial activity approaches. We were able to establish the coordination mode of the metal in complexes by comparing the changes in the ligands' and complexes' FT-IR and UV-Visible spectra.
Keywords: MERCURY (II), Schiff bases, IR, 1H-NMR, PXRD Spectroscopy.
Keywords:
MERCURY (II), Schiff bases, IR, 1H-NMR, PXRD SpectroscopyDOI
https://doi.org/10.22270/jddt.v14i3.6476References
Kolthoff, I. M., Stricks, W., & Morren, L. Amperometric mercurimetric titration of sulfhydryl groups in biologically important substances. Analytical Chemistry, 1954; 26(2): 366-372. https://doi.org/10.1021/ac60086a025
Prudenté, C. K., Sirios, R. S., & Cote, S., Synthesis and application of organomercury haptens for enzyme-linked immunoassay of inorganic and organic mercury. Analytical biochemistry, 2010; 404(2): 179-185. https://doi.org/10.1016/j.ab.2010.05.021
Xiao, D., Yao, W., & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Physical review letters, 2007; 99(23): 236809. https://doi.org/10.1103/PhysRevLett.99.236809
Ashraf, M. A., Maah, M. J., Yusoff, I., Wajid, A., & Mahmood, K. Sand mining effects, causes and concerns: A case study from Bestari Jaya, Selangor, Peninsular Malaysia. Scientific Research and Essays, 2011; 6(6): 1216-1231.
Vigato, P. A., & Tamburini, S. The challenge of cyclic and acyclic Schiff bases and related derivatives. Coordination Chemistry Reviews, 2004; 248(17-20): 1717-2128. https://doi.org/10.1016/j.cct.2003.09.003
Salvat, Antonnacci, Fortunato, Suarez, & Godoy. Screening of some plants from Northern Argentina for their antimicrobial activity, Letters in applied microbiology, 2001; 32(5): 293-297. https://doi.org/10.1046/j.1472-765X.2001.00923.x
Kim, S., Lotz, B., Lindrud, M., Girard, K., Moore, T., Nagarajan, K., & Kiang, S. Control of the particle properties of a drug substance by crystallization engineering and the effect on drug product formulation, Organic process research & development, 2005; 9(6): 894-901. https://doi.org/10.1021/op050091q
J. Yang, M. A. Cohen Stuart and M. Kamperman, Jack of all trades: versatile catechol crosslinking mechanisms, Chem. Soc. Rev., 2014; 43:8271-8298 https://doi.org/10.1039/C4CS00185K PMid:25231624
Saiz-Poseu, J. Mancebo-Aracil, F. Nador, F. Busqué and D. Ruiz-Molina, "The Chemistry behind Catechol-Based Adhesion, Angew. Chem., Int. Ed., 2019; 58: 696-714. https://doi.org/10.1002/anie.201801063 PMid:29573319
4. d'Ischia, M., & Ruiz-Molina, D. Bioinspired catechol-based systems: chemistry and applications, Biomimetics, 2017; 2(4): 25 https://doi.org/10.3390/biomimetics2040025
Lee, B. P., Birkedal, H., & Lee, H. Catechol and Polyphenol Chemistry for Smart Polymers, Frontiers in Chemistry, 2019; 7: 883. https://doi.org/10.3389/fchem.2019.00883 PMid:31921791 PMCid:PMC6932949
6. Priemel, T., Palia, R., Babych, M., Thibodeaux, C. J., Bourgault, S., & Harrington, M. J. Compartmentalized processing of catechols during mussel byssus fabrication determines the destiny of DOPA, Proceedings of the National Academy of Sciences, 2020; 117(14): 7613-7621 https://doi.org/10.1073/pnas.1919712117 PMid:32209666 PMCid:PMC7149395
Ferretti, A., Prampolini, G., & d'Ischia, M. Noncovalent interactions in catechol/ammonium-rich adhesive motifs: Reassessing the role of cation-π complexes?, Chemical Physics Letters, 2021; 779: 138815. https://doi.org/10.1016/j.cplett.2021.138815
Favre, H. A., & Powell, W. H. Nomenclature of organic chemistry: IUPAC recommendations and preferred names, Royal Society of Chemistry. 2013;
Lander, J. J., & Svirbely, W. J. The Dipole Moments of Catechol, Resorcinol and Hydroquinone1. Journal of the American Chemical Society, 1945; 67(2): 322-324. https://doi.org/10.1021/ja01218a051
Slip, T., & Prevention, F. NIOSH Bibliography of Communication and Research Products 2010.
Soukup, R. W. Chemiegeschichtliche Daten organischer Substanzen.
Zheng, L. T., Ryu, G. M., Kwon, B. M., Lee, W. H., & Suk, K. Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity, European Journal of Pharmacology, 2008; 588(1): 106-113. https://doi.org/10.1016/j.ejphar.2008.04.035
Fiege, H., Voges, H. W., Hamamoto, T., Umemura, S., Iwata, T., Miki, H., & Paulus, W. Phenol derivatives, Ullmann's encyclopedia of industrial chemistry, 2000; https://doi.org/10.1002/14356007.a19_313
Yam, K. C., D'Angelo, I., Kalscheuer, R., Zhu, H., Wang, J. X., Snieckus, V, & Eltis, L. D. Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis, PLoS pathogens, 2009; 5(3): e1000344. https://doi.org/10.1371/journal.ppat.1000344
Saiz‐Poseu, J., Mancebo‐Aracil, J., Nador, F., Busqué, F., & Ruiz‐Molina, D. The chemistry behind catechol‐based adhesion, Angewandte Chemie International Edition, 2019; 58(3): 696-714. https://doi.org/10.1002/anie.201801063
Yang, J., Stuart, M. A. C., & Kamperman, M. Jack of all trades: versatile catechol crosslinking mechanisms, Chemical Society Reviews, 2014; 43(24): 8271-8298. https://doi.org/10.1039/C4CS00185K
Kim, J., Lee, C., & Ryu, J. H., Adhesive catechol-conjugated hyaluronic acid for biomedical applications: A mini review, Applied Sciences, 2020; 11(1): 21. https://doi.org/10.3390/app11010021
Katir, N., Marcotte, N., Michlewska, S., Ionov, M., El Brahmi, N., Bousmina, M., & El Kadib, A.. Dendrimer for templating the growth of porous catechol-coordinated titanium dioxide frameworks: toward hemocompatible nanomaterials, ACS Applied Nano Materials, 2019; 2(5): 2979-2990. https://doi.org/10.1021/acsanm.9b00382
Sedó, J., Saiz‐Poseu, J., Busqué, F., & Ruiz‐Molina, D. Catechol‐based biomimetic functional materials. Advanced Materials, 2013; 25(5): 653-701. https://doi.org/10.1002/adma.201202343
Joshi, S., Kathuria, H., Verma, S., & Valiyaveettil, S. Functional catechol-metal polymers via interfacial polymerization for applications in water purification, ACS applied materials & interfaces, 2020; 12(16): 19044-19053. https://doi.org/10.1021/acsami.0c03133
Zhang, W., Wang, R., Sun, Z., Zhu, X., Zhao, Q., Zhang, T., & Lee, B. P. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications, Chemical Society Reviews, 2020; 49(2): 433-464. https://doi.org/10.1039/C9CS00285E
Razaviamri, S., Wang, K., Liu, B., & Lee, B. P. Catechol-based antimicrobial polymers, Molecules, 2021; 26(3): 559. https://doi.org/10.3390/molecules26030559 PMid:33494541 PMCid:PMC7865322
Maier, G. P., Bernt, C. M., & Butler, A. Catechol oxidation: considerations in the design of wet adhesive materials, Biomaterials science, 2018; 6(2): 332-339. https://doi.org/10.1039/C7BM00884H PMid:29265138
Pinnataip, R., & Lee, B. P. Oxidation chemistry of catechol utilized in designing stimuli-responsive adhesives and antipathogenic biomaterials, ACS omega, 2021; 6(8): 5113-5118. https://doi.org/10.1021/acsomega.1c00006 PMid:33681552 PMCid:PMC7931183
Ito, S., Sugumaran, M., & Wakamatsu, K. Chemical reactivities of ortho-quinones produced in living organisms: Fate of quinonoid products formed by tyrosinase and phenoloxidase action on phenols and catechols, International Journal of Molecular Sciences, 2020; 21(17): 6080. https://doi.org/10.3390/ijms21176080 PMid:32846902 PMCid:PMC7504153
Nolan, E. M., & Lippard, S. J. Tools and tactics for the optical detection of mercuric ion. Chemical reviews, 2008; 108(9): 3443-3480. https://doi.org/10.1021/cr068000q PMid:18652512
Giri, D., Bankura, A., & Patra, S. K. Poly (benzodithieno-imidazole-alt-carbazole) based π-conjugated copolymers: Highly selective and sensitive turn-off fluorescent probes for Hg2+, Polymer, 2018; 158: 338-353. https://doi.org/10.1016/j.polymer.2018.10.069
Liu, Y., Lv, X., Zhao, Y., Chen, M., Liu, J., Wang, P., & Guo, W. A naphthalimide-rhodamine ratiometric fluorescent probe for Hg2+ based on fluorescence resonance energy transfer, Dyes and pigments, 2012; 92(3): 909-915. https://doi.org/10.1016/j.dyepig.2011.07.020
Gong, Y. J., Zhang, X. B., Chen, Z., Yuan, Y., Jin, Z., Mei, L., ... & Yu, R. Q. An efficient rhodamine thiospirolactam-based fluorescent probe for detection of Hg 2+ in aqueous samples, Analyst, 2012; 137(4): 932-938. https://doi.org/10.1039/C2AN15935J PMid:22179782
Srivastava, P., Ali, R., Razi, S. S., Shahid, M., Patnaik, S., & Misra, A. A simple blue fluorescent probe to detect Hg2+ in semiaqueous environment by intramolecular charge transfer mechanism, Tetrahedron Letters, 2013; 54(28): 3688-3693. https://doi.org/10.1016/j.tetlet.2013.05.014
Zou, Q., & Tian, H. Chemodosimeters for mercury (II) and methylmercury (I) based on 2, 1, 3-benzothiadiazole, Sensors and Actuators B: Chemical, 2010; 149(1): 20-27. https://doi.org/10.1016/j.snb.2010.06.040
Lavis, L. D., & Raines, R. T. Bright ideas for chemical biology, ACS chemical biology, 2008; 3(3): 142-155. https://doi.org/10.1021/cb700248m PMid:18355003 PMCid:PMC2802578
Shen, Y., Zhang, Y., Zhang, X., Zhang, C., Zhang, L., Jin, J., ... & Yao, S. A new turn-on fluorescent sensor based on NBD for highly selective detection of Hg 2+ in aqueous media and imaging in live cells, Analytical Methods, 2014; 6(13): 4797-4802. https://doi.org/10.1039/c4ay00729h
Xu, Z. H., Hou, X. F., Xu, W. L., Guo, R., & Xiang, T. C. A highly sensitive and selective fluorescent probe for Hg2+ and its imaging application in living cells. Inorganic Chemistry Communications, 2013; 34: 42-46. https://doi.org/10.1016/j.inoche.2013.05.008
Yan, F., Cao, D., Yang, N., Wang, M., Dai, L., Li, C., & Chen, L. A rhodamine based fluorescent probe for Hg2+ and its application to cellular imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013; 106: 19-24.https://doi.org/10.1016/j.saa.2012.12.079
Clegg, W., and A. J. Scott. "CCDC 1575175: Experimental Crystal Structure Determination." CSD Commun , 2017;
R. Kumar, P. Singh, S. Parsons, & A.K. Tewari, Experimental and Theoretical Study for the Assessment of the Conformational Analysis of Pyrazolone Derivatives: Employing Quantitative Analysis for Intermolecular Interactions, ChemistrySelect 2 2017; 6331-6337. https://doi.org/10.1002/slct.201700764
Garbisch Jr, E. W. Cyclohex-2-ene-1, 4-dione, Journal of the American Chemical Society, 1965; 87(21): 4971-4972. https://doi.org/10.1021/ja00949a063
Bauer, A. W., PERRY, D. M., & KIRBY, W. M. Single-disk antibiotic-sensitivity testing of staphylococci: An analysis of technique and results, AMA archives of internal medicine, 1959; 104(2): 208-216. https://doi.org/10.1001/archinte.1959.00270080034004 PMid:13669774
Bonev, B., Hooper, J., & Parisot, J., Journal of antimicrobial chemotherapy, 2008; 61(6): 1295-1301. https://doi.org/10.1093/jac/dkn090 PMid:18339637
Catalano, A., Sinicropi, M. S., Iacopetta, D., Ceramella, J., Mariconda, A., Rosano, C., & Longo, P., Applied Sciences, 2021; 11(13): 6027. https://doi.org/10.3390/app11136027
Rosu, T., Pahontu, E., Maxim, C., Georgescu, R., Stanica, N., & Gulea, A. Polyhedron, 2011; 30(1): 154-162. https://doi.org/10.1016/j.poly.2010.10.001
Joseyphus, R. S., Shiju, C., Joseph, J., Dhanaraj, C. J., & Arish, D., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014; 133: 149-155. https://doi.org/10.1016/j.saa.2014.05.050 PMid:24934973
Olalekan, T. E., & Shoetan, I. O., The Pacific Journal of Science and Technology, 2015; 16(1); 227-228.
Rosu, T., Pahontu, E., Pasculescu, S., Georgescu, R., Stanica, N., Curaj, A., & Leabu, M., European journal of medicinal chemistry, 2010; 45(4): 1627-1634. https://doi.org/10.1016/j.ejmech.2009.12.015 PMid:20096975
Shiju, C., Arish, D., Bhuvanesh, N., & Kumaresan, S., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015; 145: 213-222. https://doi.org/10.1016/j.saa.2015.02.030 PMid:25782179
Joseyphus, R. S., & Joseph, J. Investigations on biomedical applications of some Schiff base metal (II) complexes.
Gull, P., & Hashmi, A. A. Advanced Chemistry Letters, 2015; 2(1): 36-41. https://doi.org/10.1166/acl.2015.1053
Shiju, C., Arish, D., & Kumaresan, S., Arabian Journal of Chemistry, 2017; 10: S2584-S2591. https://doi.org/10.1016/j.arabjc.2013.09.036
Emara, A. A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010; 77(1): 117-125. https://doi.org/10.1016/j.saa.2010.04.036 PMid:20627808
Joseyphus, R. S., Shiju, C., Joseph, J., Dhanaraj, C. J., & Arish, D., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014; 133: 149-155. https://doi.org/10.1016/j.saa.2014.05.050 PMid:24934973
Published
Abstract Display: 352
PDF Downloads: 423
PDF Downloads: 15 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.