Application of direct electric current to the corneal and conjunctival epithelia regulates the tight junctional assembly for ocular iontophoretic drug delivery
Abstract
Objectives: In this study, we determined how iontophoresis (IP) affects tight junctions (TJs) in isolated rabbit corneas and conjunctiva.
Methods: Direct electric current in the range of 0.5–2.0 and 0.5–10 mA/cm2 were applied to the cornea and conjunctiva, respectively, for 30 min. The localization and expression levels of TJ-associated proteins were assessed before and after the application of the electric currents using immunostaining and western blotting.
Results: In both corneal and conjunctival epithelia, the localization of proteins, such as claudin-1, claudin-4, occludin, and ZO-1, was temporarily altered by anodal and cathodal IP; however, the protein relocalization was slower at higher currents. Additionally, in both anodal and cathodal IP, the expression levels of claudin-1 and occludin in the cornea and conjunctiva remained unchanged after the application of the electric currents compared with those before.
Conclusion: Our results indicated that the application of a direct electric current temporarily regulated TJ assemblies without altering the levels of TJ-associated proteins in both the cornea and conjunctiva. This temporary weakening of the paracellular barrier by the current may be responsible for the enhanced drug transport across the cornea and conjunctiva induced by ocular IP.
Keywords: ocular drug delivery, iontophoresis, electric current, cornea, conjunctiva, tight junction
Keywords:
ocular drug delivery, iontophoresis, electric current, cornea, conjunctiva, tight junctionDOI
https://doi.org/10.22270/jddt.v14i3.6455References
Ahamed I, Patton TF, “Importance Of The Noncorneal Absorption Route In Topical Ophthalmic Drug Delivery” Invest Ophthalmol Vis Sci, 1985; 26(4):584–587.
Maurice DM, Mishima S. Ocular pharmacokinetics. In: Sears ML, editor. Handbook of experimental pharmacology. Berlin: Springer; 1984. p. 19–116.
Kalia YN, Naik A, Garrison J, Guy RH, “Iontophoretic Drug Delivery” Adv Drug Deliv Rev, 2004; 56 (5):619–658. DOI: https://doi.org/10.1016/j.addr.2003.10.026
Eljarrat-Binstock E, Domb AJ, “Iontophoresis: A Non-Invasive Ocular Drug Delivery” J Control Release, 2006; 110(3):479–489. DOI: https://doi.org/10.1016/j.jconrel.2005.09.049
Barza M, Peckman C, Baumf J, “Transscleral Iontophoresis Of Gentamicin In Monkeys” Invest Ophthalmol Vis Sci, 1987; 28:1033–1036. DOI: https://doi.org/10.1001/archopht.1987.01060100120040
Grossman RE, Chu DF, Lee DA, “Regional Ocular Gentamicin Levels After Transcorneal And Transscleral Iontophoresis” Invest Ophthalmol Vis Sci, 1990; 31:909–916.
Frucht-Pery J, Mechoulam H, Siganos CS, Ever-Hadani P, Shapiro M, Domb A, “Iontophoresis-Gentamicin Delivery Into The Rabbit Cornea, Using A Hydrogel Delivery Probe” Exp Eye Res, 2004; 78(3):745–749. DOI: https://doi.org/10.1016/s0014-4835(03)00215-x
Choi TB, Lee DA, “Transscleral And Transcorneal Iontophoresis Of Vancomycin In Rabbit Eyes” J Ocul Pharmacol, 1988; 4(2):153–164. DOI: https://doi.org/10.1089/jop.1988.4.153
Rootman DS, Hobden JA, Jantzen JA, Gonzalez JR, O’callaghan RJ, Hill JM, “Iontophoresis Of Tobramycin For The Treatment Of Experimental Pseudomonas Keratitis In The Rabbit” Arch Ophthalmol, 1988; 106(2):262–265. DOI: https://doi.org/10.1001/archopht.1988.01060130276043
Hobden JA, Rootman DS, O’Callaghan RJ, Hill JM, “Iontophoretic application of tobramycin to uninfected and Pseudomonas aeruginosa-infected rabbit corneas” Antimicrob Agents Chemother, 1988; 32:978–981. DOI: https://doi.org/10.1128/aac.32.7.978
Hayden BC, Jockovich ME, Murray TG, Voigt M, Milne P, Kralinger M, Feuer WJ, Hernandez E, Parel JM, “Pharmacokinetics of systemic versus forcal carboplatin chemotherapy in the rabbit eye: possible implication in the treatment of retinoblastoma” Invest Ophthalmol Vis Sci, 2004; 45(10):3644–3649. DOI: https://doi.org/10.1167/iovs.04-0228
Behar-Cohen FF, El Aouni A, Gautier S, David G, Davis J, Chapon P, Parel JM, “Transscleral Coulomb-Controlled Iontophoresis Of Methylprednisolone Into The Rabbit Eye: Influence Of Duration Of Treatment, Current Intensity And Drug Concentration On Ocular Tissue And Fluid Levels” Exp Eye Res, 2002; 74(1):51–59. DOI: https://doi.org/10.1006/exer.2001.1098
Eljarrat-Binstock E, Raiskup F, Frucht-Pery J, Domb AJ, “Transcorneal And Transscleral Iontophoresis Of Dexamethasone Phosphate Using Drug Loaded Hydrogel” J Control Release, 2005; 106(3):386–390. DOI: https://doi.org/10.1016/j.jconrel.2005.05.020
Sekijima H, Ehara J, Hanabata Y, Suzuki T, Kimura S, Lee VHL, Morimoto Y, Ueda H, “Characterization Of Ocular Iontophoretic Drug Transport Of Ionic And Non-Ionic Compounds In Isolated Rabbit Cornea And Conjunctiva” Biol Pharm Bull, 2016; 39(6):1–10. DOI: https://doi.org/10.1248/bpb.b15-00932
Nemoto E, Takahashi H, Kobayashi D, Ueda H, Morimoto Y, “Effects Of Poly-L-Arginine On The Permeation Of Hydrophilic Compounds Through Surface Ocular Tissues” Biol Pharm Bull, 2006; 29(1):155–160. DOI: https://doi.org/10.1248/bpb.29.155
Ohtake K, Maeno T, Ueda H, Natsume H, Morimoto Y, “Poly-L-Arginine Predominantly Increases The Paracellular Permeability Of Hydrophilic Macromolecules Across Rabbit Nasal Epithelium In Vitro” Pharm Res, 2003; 20:153–160. DOI: https://doi.org/10.1023/a:1022485816755
Yamaki T, Ohtake K, Ichikawa K, Uchida M, Uchida H, Ohshima S, Juni K, Kobayashi J, Morimoto Y, Natsume H, “Poly-L-Arginine-Induced Internalization Of Tight Junction Proteins Increases The Paracellular Permeability Of The Caco-2 Cell Monolayer To Hydrophilic Macromolecules” Biol Pharm Bull, 2013; 36(36):432–441. DOI: https://doi.org/10.1248/bpb.b12-00878
De Campos AM, Diebold Y, Carvalho EL, Sánchez A, Alonso MJ, “Chitosan Nanoparticles As New Ocular Drug Delivery Systems: In Vitro Stability, In Vivo Fate, And Cellular Toxicity” Pharm Res, 2004; 21:803–810. DOI: https://doi.org/10.1023/b:pham.0000026432.75781.cb
Suzuki Y, Iga K, Yanai S, Matsumoto Y, Kawase M, Fukuda T, Adachi H, Higo N, Ogawa Y, “Iontophoretic Pulsatile Transdermal Delivery Of Human Parathyroid Hormone (1-34)” J Pharm Pharmacol, 2001; 53:1227–1234. DOI: https://doi.org/10.1211/0022357011776676
Furuse M, Sasaki H, Fujimoto K, Tsukita S, “A Single Gene Product, Claudin-1 Or -2, Reconstitutes Tight Junction Strands And Recruits Occludin In Fibroblasts” J Cell Biol, 1998; 143(2):391–401. DOI: https://doi.org/10.1083/jcb.143.2.391
Al-Sadi R, Khatib K, Guo S, Ye D, Youssef M, Ma T, “Occludin Regulates Macromolecule Flux Across The Intestinal Epithelium Tight Junction Barrier” Am J Physiol Gastrointest Liver Physiol, 2011; 300:1054–1064. DOI: https://doi.org/10.1152/ajpgi.00055.2011
Bhat M, Toledo-Velasquez D, Wang L, Malanga CJ, Ma JK, Rojanasakul Y, “Regulation of tight junction permeability by calcium mediators and cell cytoskeleton in rabbit tracheal epithelium” Pharm Res, 1993; 10: 991-997. DOI: https://doi.org/10.1023/a:1018906504944
Tokuda S, Miyazaki H, Nakajima K, Yamada T, Marunaka Y, “Hydrostatic Pressure Regulates Tight Junctions, Actin Cytoskeleton And Transcellular Ion Transport” Biochem Biophys Res Commun, 2009; 390(4):1315–1321. DOI: https://doi.org/10.1016/j.bbrc.2009.10.144
Tokuda S, Miyazaki H, Nakajima K, Yamada T, Marunaka Y, “NaCl Flux Between Apical And Basolateral Side Recruits Claudin-1 To Tight Junction Strands And Regulates Paracellular Transport” Biochem Biophys Res Commun, 2010; 393(13):390–396. DOI: https://doi.org/10.1016/j.bbrc.2010.02.002
Guy RH, Kalia YN, Delgado-Charroa MB, Merino V, López A, Marro D, “Iontophoresis: Electrorepulsion And Electroosmosis” J Control Release, 2000; 64(1–3):129–132. DOI: https://doi.org/10.1016/s0168-3659(99)00132-7
Published
Abstract Display: 318
PDF Downloads: 442
PDF Downloads: 26 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.