An Overview of Monolithic Column: Types, Parameters and Applications
Abstract
The column is the main component for chromatographic separation. Nowadays, monolithic columns are graining more popularity in the field of separation media for liquid chromatography. The monolith columns possess great potential as compared to the conventional packed column in terms of preparing complex mixtures. These columns provide various properties like higher permeability, high-efficiency fast separations, high flow rate with lower backpressure, fast mass transfer kinetics with a high binding capacity. It is categories into three columns and they are organic monolithic column, inorganic monolithic column and hybrid monolithic column and all three types of monolithic column differ through their porous properties. In this review, the various advantage of the high-efficiency monolithic column with recent advances, the origin of the concept, the various parameter of the monolithic stationary phase and the application of monolithic columns are illustrated. It is better column in comparison of selectivity, reproducibility and performance.
Keywords: Monolithic column, Packed columns, Inorganic and organic monolithic column, Column parameters, Pharmaceutical Applications
Keywords:
Monolithic column, Packed columns, Inorganic and organic monolithic column, Column parameters, Pharmaceutical ApplicationsDOI
https://doi.org/10.22270/jddt.v12i4-S.5521References
Colon LA. Monolithic columns in liquid phase separations. Analytical and Bioanalytical Chemistry. 2013; 405:2093-2094. DOI: https://doi.org/10.1007/s00216-012-6694-z
Kirkland JJ. Superficially porous silica microspheres for the fast high-performance liquid chromatography of macro- molecules. Anal. Chem. 1992; 64:1239-1245. DOI: https://doi.org/10.1021/ac00035a009
Wang X, Barber WE, Carr PW. A practical approach to maximizing peak capacity by using long columns packed with pellicular stationary phases for proteomic research. J Chromatogr A. 2006; 1107:139-151. DOI: https://doi.org/10.1016/j.chroma.2005.12.050
Unger KK. Scientific achievements of Jack Kirkland to the development of HPLC and in particular to HPLC silica packings- a personal perspective. J Chromatogr A. 2004; 1060(1-2):1-7. DOI: https://doi.org/10.1016/j.chroma.2004.07.076
Gritti F, Guiochon G. Performance of columns packed with the new shell Kinetex-C18 particles in gradient elution chromatography. J Chromatogr A. 2010;1217(10):1604-15. DOI: https://doi.org/10.1016/j.chroma.2010.01.008
Jandera P, Hajek T, Stankova M. Monolithic and core-shell columns in comprehensive two-dimensional HPLC: a review. Anal Bioanal Chem. 2015; 407(1):139-151. DOI: https://doi.org/10.1007/s00216-014-8147-3
Fekete S, Kohler I, Rudaz S, Guillarme D. Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal. 2014; 87:105-119. DOI: https://doi.org/10.1016/j.jpba.2013.03.012
Kubin M, Spacek P, Chromecek R. Gel permeation chromatography on porous poly (ethylene glycol methacrylate. Collection of Czech. Chem. Commun. 1967; 32(11):3881-3887. DOI: https://doi.org/10.1135/cccc19673881
Tennikova TB, Bleha M, Svec F, Almazova TV, Belenkii BG. High performance membrane chromatography of proteins, a novel method of protein separation. Journal of chromatography A. 1991; 555(1-2):97-107. DOI: https://doi.org/10.1016/S0021-9673(01)87170-3
Belenkii BG, Podkladenko AM, Kurenbin OI, Mal’tsev VG, Nasledov DG, Trushin SA. Peculiarities of zone migration and band broadening in gradient reversed-phase high-performance liquid chromatography of proteins with respect to membrane chromatography. Journal of Chromatogr. A. 1993; 645(1):1-15. DOI: https://doi.org/10.1016/0021-9673(93)80613-D
Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizuka N. Monolithic LC columns. Anal. Chem. 2001; 73(15):420A- 429A. DOI: https://doi.org/10.1021/ac012495w
Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Octadecylsilylated Porous Silica Rods as Separation Media for Reversed-Phase Liquid Chromatography. Anal. Chem. 1996; 68:3498-3501. DOI: https://doi.org/10.1021/ac960281m
Schlemmer B, Gatschelhofer C, Pieber TR. Poly(cyclooctene)-based monolithic columns for capillary high performance liquid chromatography prepared via ring-opening metathesis polymerization. Journal of Chromatogr. A. 2006; 1132(1-2):124-131. DOI: https://doi.org/10.1016/j.chroma.2006.07.058
Liu K, Aggarwal P, Lawson JS, Tolley HD, Lee ML. Organic monoliths for high-performance reversed-phase liquid chromatography. Journal of Separation Science. 2013; 36(17): 2767–2781. DOI: https://doi.org/10.1002/jssc.201300431
Liu Z, Ou J, Liu Z, Liu J, Lin H, Wang F, Zou H. Separation of intact proteins by using polyhedral oligomeric silsesquioxane based hybrid monolithic capillary columns. Journal Chromatogr. A. 2013; 1317:138-147. DOI: https://doi.org/10.1016/j.chroma.2013.09.004
Nunez O, Nakanishi K, Tanaka N. Preparation of monolithic silica columns for high-performance liquid chromatography. Journal of Chromatogr. A. 2008; 1191(1-2):231–252. DOI: https://doi.org/10.1016/j.chroma.2008.02.029
Nunez O, Gallart-Ayala H, Martins CP, Lucci P. New trends in fast liquid chromatography for food and environmental analysis. Journal of Chromatogr. A. 2012; 1228:298–323. DOI: https://doi.org/10.1016/j.chroma.2011.10.091
Huang X, Zhang S, Schultz GA, Henion J. Surface-alkylated polystyrene monolithic columns for peptide analysis in capillary liquid chromatography electrospray ionization mass spectrometry. Analytical Chemistry. 2002; 74(10):2336-2344. DOI: https://doi.org/10.1021/ac011202w
Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Effect of skeleton size on the performance of octadecylsilylated continous porous silica columns in reversed-phase liquid chromatography. Journal of Chromatogr. A. 1997; 762(1-2):135-146. DOI: https://doi.org/10.1016/s0021-9673(96)00944-2
Tanaka N, Nagayama H, Kobayashi H, Ikegami T, Hosoya K, Ishizuka N, Minakuchi H, Naknishi K, Cabrera K, Lubda D. Monolithic silica columns for HPLC, micro-HPLC, and CEC. Journal of High Resol. Chromatogr. 2000; 23(1):111-116. DOI: https://doi.org/10.1002/(SICI)1521-4168(20000101)23:1%3C111::AID-JHRC111%3E3.0.CO;2-H
Cabrera K, Wieland G, Lubda D, Naknishi K, Soga N, Minakuchi H, Unger K. SilicaROD-A new challenge in fast high-performance liquid chromatography separations. TrAC Trends in Anal. Chem. 1998; 17(1):50-53. DOI: https://doi.org/10.1016/S0165-9936(97)00091-5
Klampfl CW. Review coupling of capillary electrochromatography to mass spectrometry. Journal of Chromatography A. 2004; 1044(1):131-144. DOI: https://doi.org/10.1016/j.chroma.2004.04.072
Jandera P. Advances in the development of organic polymer monolithic columns and their applications in food analysis-a review. Journal of Chromatogr. A. 2013; 1313:37–53. DOI: https://doi.org/10.1016/j.chroma.2013.08.010
Svec F. Preparation and HPLC applications of rigid macroporous organic polymer monoliths. Journal of Separation Science. 2004; 27(10-11):747-766. DOI: https://doi.org/10.1002/jssc.200401721
Oberacher H, Huber CG. Capillary monoliths for the analysis of nucleic acids by high-performance liquid chromatography-electrospray ionization mass spectrometry. TrAC Trends in Analytical Chemistry. 2002; 21(3):166-174. DOI: http://dx.doi.org/10.1016/S0165-9936(02)00304-7
Samanidou VF, Ioannou AS, Papadoyannis IN. The use of a monolithic column to improve the simultaneous determination of four cephalosporin antibiotics in pharmaceuticals and body fluids by HPLC after solid phase extraction--a comparison with a conventional reversed-phase silica-based column. Journal of Chromatogr. B. 2004; 809(1):175-182. DOI: https://doi.org/10.1016/j.jchromb.2004.06.019
Ohtaka R, Maeda M, Iwagami T, Ueda T, Kimura Y, Imai K, et al. Precision of internal standard method in HPLC analysis. Yakugaku Zasshi Journal of the Pharmaceutical Society of Japan. 2003; 123(5):349-55). DOI: https://doi.org/10.1248/yakushi.123.349
Leinweber FC, Tallarek U. Chromatographic performance of monolithic and particulate stationary phases hydrodynamic and adsorption capacity. Journal of Chromatography A. 2003; 1006(1-2):207-228. DOI: https://doi.org/10.1016/s0021-9673(03)00391-1
Gritti F, Guiochon G. Mass transfer kinetic mechanism in monolithic columns and application to the characterization of new research monolithic samples with different average pore sizes. Journal of Chromatogr. A. 2009; 1216(23):4752–4767. DOI: https://doi.org/10.1016/j.chroma.2009.04.034
Cabooter D, Broeckhoven K, Sterken R, Vanmessen A, Vandendael I, Nakanishi K, Deridder S, Desmet G. Detailed characterization of the kinetic performance of first- and second-generation silica monolithic columns for reversed-phase chromatography separations. Journal of Chromatogr. A. 2014; 1325:72–82. DOI: https://doi.org/10.1016/j.chroma.2013.11.047
Hlushkou D, Hormann K, Holtzel A, Khirevich S, Seidel-Morgenstern A, Tallarek U. Comparison of first- and second-generation analytical silica monoliths by pore-scale simulations of eddy dispersion in the bulk region. Journal of Chromatogr. A. 2013; 1303:28–38. DOI: https://doi.org/10.1016/j.chroma.2013.06.039
Cabrera k. A New generation of silica based monolithic HPLC columns with improved performance. LC GC Magazine-North American Solution for separation scientists. 2012; 30(4):30-35
Sharma G, Tara A, Sharma VD. Advances in monolithic silica columns for high performance liquid chromatography. Journal of Analytical Science and Technology. 2017; 16(8): 3-11. DOI: https://doi.org/10.1186/s40543-017-0125-x
Tennikova TB, Svec F, Belenkii BG. High-Performance Membrane Chromatography: A Novel Method of Protein Separation. Journal of Liq. Chromatogr. 1990; 13(1):63-70. DOI: https://doi.org/10.1080/01483919008051787
Arrua RD, Strumia MC, Alvarez Igarzabal CI. Macroporous Monolithic Polymers: Preparation and Applications. Materials. 2009; 2(4):2429-2466. DOI: https://doi.org/10.3390/ma2042429
Petro M, Svec F, Frechet JM. Molded continuous poly(styrene-co-divinylbenzene) rod as a separation medium for the very fast separation of polymers Comparison of the chromatographic properties of the monolithic rod with columns packed with porous and non-porous beads in high-performance liquid chromatography of polystyrenes. Journal of Chromatogr. A. 1996; 752(1-2):59-66. DOI: https://doi.org/10.1016/s0021-9673(96)00510-9
Legido-Quigley C, Marlin ND, Melin V. Advance in capillary electrochromatography and micro-high performance liquid monolithic columns for separation science. Electrophoresis. 2003; 24(6): 917-944. DOI: https://doi.org/10.1002/elps.200390136
Li Y, Lee ML. Biocompatible polymer monoliths for protein and peptide separation. Journal of Sep. Sci. 2009; 32(20):3369-3378. DOI: https://doi.org/10.1002/jssc.200900478
Hasegawa J, Kanamori K, Nakanishi K, Hanada T, Yamago S. Macromol. Rapid. Commun. 2009; 30(20):986-1036. DOI: https://doi.org/10.1002/marc.200990025
Svec F. Porous Polymer Monoliths: Amazingly wide variety of techniques enabling their preparation. Journal of Chromatography A. 2010; 1217:902-924. DOI: https://doi.org/10.1016/j.chroma.2009.09.073
Colon LA, Li L. Organo-silica hybrid monolithic columns for liquid chromatography. Adv. Chromatogr. 2008; 46:391-421.
Novakova L, Solichova D, Solich P. Advantages of ultra-performance liquid chromatography over high-performance liquid chromatography: Comparison of different analytical approaches during analysis of diclofenac gel. Journal of Sep. Sci. 2006; 29(16):2433-2443. DOI: https://doi.org/10.1002/jssc.200600147
Gritti F. Guiochon G. Measurement of the eddy dispersion term in chromatographic columns: III. Application to new prototypes of 4.6 mm I.D. Monolithic columns. Journal of Chromatogr A. 2012; 1225:79-90. DOI: https://doi.org/10.1016/j.chroma.2011.12.055
Hormann K, Mullner T, Bruns S, Holtzel A, Tallarek U. Morphology and separation efficiency of a new generation of analytical silica monoliths. Journal of Chromatography A. 2012; 1222:46–58. DOI: https://doi.org/10.1016/j.chroma.2011.12.008
Sklenarova H, Chocholous P, Koblova P, Zahalka L, Satisky D, Matysova L, Solich P. High-resolution monolithic columns-a new tool for effective and quick separation. Anal Bioanal Chem. 2013; 405(7):2255–2263. DOI: https://doi.org/10.1007/s00216-012-6561-y
Hilder EF, Svec F, Fréchet JM. Development and application of polymeric monolithic stationary phases for capillary electrochromatography. Journal of Chromatography A. 2004; 1044:3-22. DOI: https://doi.org/10.1016/j.chroma.2004.04.057
Chu Y, Poole CF. System maps for retention of neutral organic compounds under isocratic conditions on a reversed-phase monolithic column. J. Chromatogr. A. 2003; 1003(1-2):113-21. DOI: https://doi.org/10.1016/s0021-9673(03)00845-8
Gritti F, Piatkowski W, Guiochon G. Comparison of the adsorption equilibrium of a few low-molecular mass compounds on a monolithic and a packed column in reversed-phase liquid chromatography. J. Chromatogr. A. 2002; 978(1-2):81-107. DOI: https://doi.org/10.1016/s0021-9673(02)01279-7
European Pharmacopoeia, 4th edition (Ph. Eur. 4), Council of Europe, Strasbourg 2001.
Kel M, Guiochon G. Repeatability and reproducibility of retention data and band profiles on six batches of monolithic columns. Journal of Chromatogr. A. 2002; 960(1-2):19-49. DOI: https://doi.org/10.1016/s0021-9673(01)01227-4
Minakuchi H, Ishizuka N, Nakanishi K, Soga N, Tanaka N. Performance of an octadecylsilylated continuous porous silica column in polypeptide separations. Journal of Chromatogr. A. 1998; 828(1-2):83-90. DOI: https://doi.org/10.1016/S0021-9673(98)00605-0
Nakanishi K, Shikata H, Ishizuka N, Koheiya N, Soga N. Tailoring mesopores in monolithic macroporous silica for HPLC. Journal of High Resol. Chromatogr. 2000; 23(1):106-110. DOI: https://doi.org/10.1002/(SICI)1521-4168(20000101)23:1%3C106::AID-JHRC106%3E3.0.CO;2-1
Ishizuka N, Minakuchi H, Nakanishi K, Hirao K, Tanaka N. Chromatographic characterization of macroporous monolithic silica prepared via sol-gel process. Colloids and Surfers A: Physiochem. Eng. Aspects. 2001; 187-188:273-279. DOI: https://doi.org/10.1016/S0927-7757(01)00642-2
Cabooter D, Broeckhovenb K, Sterkena R, Vanmessena A, Vandendael I, Nakanishi K, Deridder S, Desmet G. Detailed characterization of the kinetic performance of first- and second-generation silica monolithic columns for reversed-phase chromatography separations. Journal of Chromatography A. 2014; 1325:72-82. DOI: https://doi.org/10.1016/j.chroma.2013.11.047
Dolezalova M, Capova H, Jobanek R. Determination of the purity of phenoxymethylpenicillin by micellar electrokinetic chromatography and reversed phase liquid chromatography on monolithic silica column. Journal of Separation Science. 2003; 26(8):701-708. DOI: https://doi.org/10.1002/jssc.200301441
Dolezalova M, Kunteova B, Jobanek R. Determination of the purity of ampicillin by micellar electrokinetic chromatography and reversed phase liquid chromatography on a monolithic silica column. Journal of Sepn. Sci. 2004; 27(7-8):560-568. DOI: https://doi.org/10.1002/jssc.200301680
Huclova J, Satinsky D, Karlicek R. Coupling of monolithic columns with sequential injection technique. A new separation approach in flow methods. Analytica Chimica Acta. 2003; 494:133-140. DOI: https://doi.org/10.1016/S0003-2670(03)00902-4
Satinsky D, Huclova J, Solich P, Karlicek R. Reversed-phase porous silica rods, an alternative approach to high-performance liquid chromatographic separation using the sequential injection chromatography technique. Journal of Chromatogr. A. 2003; 1015(1-2):39-44. DOI: https://doi.org/10.1016/S0021-9673(03)01239-1
Satinsky D, Solich P, Chocholous P, Karlicek R. Monolithic columns-a new concept of separation in the sequential injection technique. Analytica Chimica Acta 2003; 499(1-2):205-214. DOI: https://doi.org/10.1016/S0003-2670(03)00625-1
Vallano PT, Mazenko RS, Woolf EJ, Matuszewski BK. Monolithic silica liquid chromatography columns for the determination of cycloxygenase II inhibitors in human plasma. Journal of Chromatogr. B. 2002; 779:249-257. DOI: https://doi.org/10.1016/s1570-0232(02)00380-x
Miyazaki S, Takahashi M, Ohira M, Terashima H, Morisato K, Nakanishi K, et al. Monolithic silica rod columns for high-efficiency reversed-phase liquid chromatography. Journal of Chromatogr A. 2011; 1218(15):1988–94. DOI: https://doi.org/10.1016/j.chroma.2010.11.032
Sakai-Kato K, Ota S, Takeuchi T, Kawanishi T. Size separation of colloidally dispersed nanoparticles using a monolithic capillary column. Journal of Chromatogr A. 2010; 1218(32):5520-5526. DOI: https://doi.org/10.1016/j.chroma.2011.06.055
Yang F, Lin Z, He X, Chen L, Zhang Y. Synthesis and application of a macroporous boronate affinity monolithic column using a metal-organic gel as a porogenic template for the specific capture of glycoproteins. Journal of Chromatogr A. 2011; 1218(51):9194-201. DOI: https://doi.org/10.1016/j.chroma.2011.10.049
Moravcova D, Planeta J, Kahle V, Roth M. Zwitterionic silica-based monolithic capillary columns for isocratic and gradient hydrophilic interaction liquid chromatography. Journal of Chromatogr. A. 2012; 1270:178-185. DOI: https://doi.org/10.1016/j.chroma.2012.11.005
Rogeberg M, Wilson SR, Malerod H, Lundanes E, Tanaka N, Greibrokk T. High efficiency, high temperature separations on silica based monolithic columns. J Chromatogr A. 2011; 1218(41):7281-7288. DOI: https://doi.org/10.1016/j.chroma.2011.08.049
Oberacher H, Premstaller A, Huber CG. Characterization of some physical and chromatographic properties of monolithic poly(styrene-co-divinylbenzene) columns. Journal of Chromatogr. A. 2004; 1030(1-2):201-8. DOI: https://doi.org/10.1016/j.chroma.2004.01.009
Yan L, Zhang Q, Zhang J, Zhang L, Li T, Feng Y, et al. Hybrid organic–inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography. Journal of Chromatogr A. 2004;1046(1-2):255-61. DOI: https://doi.org/10.1016/j.chroma.2004.06.024
Hara T, Makino S, Watanabe Y, Ikegami T, Cabrera K, Smarsly B, Tanaka N. The performance of hybrid monolithic silica capillary columns prepared by changing feed ratios of tetramethoxysilane and methyltrimethoxysilane. Journal of Chromatogr A. 2010; 1217(1):89-98. DOI: https://doi.org/10.1016/j.chroma.2009.11.019
Hara T, Mascotto S, Weidmann C, Smarsly BM. The effect of hydrothermal treatment on column performance for monolithic silica capillary columns. Journal of Chromatogr A. 2011; 1218(23):3624–35. DOI: https://doi.org/10.1016/j.chroma.2011.04.008
Xie S, Svec F, Frechet JM. Rigid porous polyacrylamide-based monolithic columns containing buty methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins. Journal of Chromatogr. A. 1997; 775(1-2):65-72. DOI: https://doi.org/10.1016/s0021-9673(97)00254-9
Xie S, Allington RW, Svec F, Frechet JM. Rapid reversed-phase separation of proteins and peptides using optimized ‘moulded’ monolithic poly(styrene–co-divinylbenzene) columns. Journal of Chromatogr. A. 1999; 865(1-2):169-174. DOI: https://doi.org/10.1016/S0021-9673(99)00981-4
Salih ME, Aqel A, Abdulkhair BY et al. Simultaneous Determination of Paracetamol and Chlorzoxazone in Their Combined Pharmaceutical Formulations by Reversed phase Capillary Liquid Chromatography Using a Polymethacrylate Monolithic Column. Journal of Chromatographic Science. 2018; 56(9): 819-82. DOI: https://doi.org/10.1093/chromsci/bmy058
Wang QC, Svec F, Frechet JMJ. Macroporous polymeric stationary-phase rod as continuous separation medium for Reversed- Phase Chromatography. Anal. Chem. 1993; 65(17):2243-2248. DOI: https://doi.org/10.1021/ac00065a013
Wang QC, Svec F, Frechet JMJ. Reversed-Phase Chromatography of Small Molecules and Peptides on a Continuous rod of Macroporous Poly (Styrene-co-Divinylbenzene). Journal of Chromatogr. A. 1994; 669(1-2):230-235. DOI: https://doi.org/10.1016/0021-9673(94)80352-8
Holdsvendova P, Coufal P, Suchankova J, Tesarova E, Bosakova Z. Methacrylate Monolithic Columns for Capillary Liquid Chromatography Polymerized Using Ammonium Peroxodisulfate as Initiator. Journal of Sep. Sci. 2003; 26(18):1623- 1628. DOI: https://doi.org/10.1002/jssc.200301564
Lee D, Svec F, Frechet JMJ. Photopolymerized Monolithic Capillary Columns for Rapid Micro High-Performance Liquid Chromatographic Separation of Proteins. J. Chromatogr. A. 2004; 1051(1-2):53-60. DOI: https://doi.org/10.1016/j.chroma.2004.04.047
Dolman S, Eeltink S, Vaast A, Pelzing M. Investigation of carryover of peptides in nano-liquid chromatography/mass spectrometry using packed and monolithic capillary columns. J. Chromatogr. B. 2013; 912:56-63. DOI: https://doi.org/10.1016/j.jchromb.2012.11.016
Vonk RJ, Vaast A, Eeltink S, Schoenmakers PJ. Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography. Journal of Chromatogr. A. 2014; 1359:162-169. DOI: https://doi.org/10.1016/j.chroma.2014.07.039
Umemura T, Ueki Y, Tsunoda K, Katakai A, Tamada M, Haraguchi H. Preparation and Characterization of Methacrylate-Based Semi-micro-Monoliths for High-Throughput Bioanalysis. Anal. Bioanal. Chem. 2006; 386(3):566-571. DOI: https://doi.org/10.1007/s00216-006-0425-2
Published
Abstract Display: 953
PDF Downloads: 827
PDF Downloads: 129 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.