“Organs on a Chip”: Revolutionization in personalized treatment
Abstract
“Organs-on-a-chip” (OOAC), involves microfluidics based biomaterial sciences, bio-engineering and cell biology majorly cell isolation and cell culturing aspects. This technology claims to develop 3-dimensional tissues structurally and physiologically in simulation to in vivo providing relevant results in terms of physiological and genetic aspects with virtue of its origin from human systems. In recent times, experts from diversified disciplines have developed and established many OOAC systems with an assertion of being perfect for drug research replacing convectional cell cultures and animal testing due to the technical limitations in the applicability of the same in vivo for systemic complexities and genetic variances. “Organs-on-a-chip” has attracted substantial interest for its wide range of applications in fields of drug research, regenerative medicine and personalized medicine. Successful development and establishments of different OOACs will contribute towards newer avenues in the path of precised personalized medicine.
Keywords: Organs on a chip, personalized medicine, OOAC, 3D cell culture
Keywords:
Organs on a chip, personalized medicine, OOAC, 3D cell cultureDOI
https://doi.org/10.22270/jddt.v11i4.4909References
Polini A, Prodanov L, Bhise NS, Manoharan V, Dokmeci MR, & Khademhosseini. A Organs-on-a-chip: a new tool for drug discovery. Expert Opinion on Drug Discovery. 2014; 9(4):335-352.DOI: 10.1517/17460441.2014.886562. https://doi.org/10.1517/17460441.2014.886562
Harper AR, & Topol EJ. Pharmacogenomics in clinical practice and drug development. Nature Biotechnology. 2012; 30(11): 1117-1124.DOI: 10.1038/nbt.2424. https://doi.org/10.1038/nbt.2424
Hughes J, Rees S, Kalindjian S, & Philpott K. Principles of early drug discovery. British Journal of Pharmacology. 2011; 162(6):1239-1249. DOI: 10.1111/j.1476-5381.2010.01127.x. https://doi.org/10.1111/j.1476-5381.2010.01127.x
Chen L, K Morrow J, T Tran H, S Phatak S, Du-Cuny L, & Zhang S. From Laptop to Benchtop to Bedside: Structure-based Drug Design on Protein Targets. Current Drug Metabolism. 2012; 18(9):1217-1239.DOI: 10.2174/138161212799436386. https://doi.org/10.2174/138161212799436386
Rafael VCG, Glaucius O, & Adriano DA. Modern Drug Discovery Technologies: Opportunities and Zhang B, Korolj A, Lai B F L, & Radisic M. Advances in organ-on-a-chip engineering. Nature Reviews Materials. 2011; 3(8):257-278.DOI: 10.2174/138620711797537067. https://doi.org/10.2174/138620711797537067
Zhang B, Korolj A, Lai BFL, & Radisic M. Advances in organ-on-a-chip engineering. Nature Reviews Materials. 2018b; 3(8):257-278. DOI:10.1038/s41578-018-0034-7 https://doi.org/10.1038/s41578-018-0034-7
Guillouzo A, & Guguen-Guillouzo C. Evolving concepts in liver tissue modeling and implications forin vitrotoxicology. Expert Opinion on Drug Metabolism & Toxicology. 2008; 4(10):1279-1294. DOI: 10.1517/17425255.4.10.1279. https://doi.org/10.1517/17425255.4.10.1279
Beebe DJ, Ingber DE, & den Toonder J. Organs on Chips 2013. Lab on a Chip. 2013; 13(18): 3447. DOI: 10.1039/c3lc90080k. https://doi.org/10.1039/c3lc90080k
Selimović E, Dokmeci MR, & Khademhosseini A. Organs-on-a-chip for drug discovery. Current Opinion in Pharmacology. 2013; 13(5): 829-833. DOI: 10.1016/j.coph.2013.06.005. https://doi.org/10.1016/j.coph.2013.06.005
Langer R, & Vacanti J. Tissue engineering. Science. 1993; 260(5110):920-926. DOI: 10.1126/science.8493529. https://doi.org/10.1126/science.8493529
El-Ali J, Sorger PK, & Jensen KF. Cells on chips. Nature. 2006; 442(7101):403-411. DOI: 10.1038/nature05063. https://doi.org/10.1038/nature05063
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, & Ingber DE. Reconstituting Organ-Level Lung Functions on a Chip. Science. 2010; 328(5986):1662-1668.DOI: 10.1126/science.1188302. https://doi.org/10.1126/science.1188302
Shlomai A, Schwartz RE, Ramanan V, Bhatta A, de Jong YP, et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proceedings of the National Academy of Sciences. 2014; 111(33):12193-12198.DOI: 10.1073/pnas.1412631111. https://doi.org/10.1073/pnas.1412631111
Jackman CP, Carlson AL, & Bursac N. Dynamic culture yields engineered myocardium with near-adult functional output. Biomaterials.2016; 111: 66-79. DOI: 10.1016/j.biomaterials.2016.09.024. https://doi.org/10.1016/j.biomaterials.2016.09.024
Oleaga C, Bernabini C, Smith AS, Srinivasan B, Jackson M, et al. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Scientific Reports. 2016; 6(1). DOI: 10.1038/srep20030. https://doi.org/10.1038/srep20030
Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nature Communications. 2017; 8(1). DOI: 10.1038/ncomms14584. https://doi.org/10.1038/ncomms14584
Vernetti L, Gough A, Baetz N, Blutt S, Broughman JR, et al. Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle. 2017. DOI: 10.1038/srep42296. https://doi.org/10.1038/srep42296
Whitesides GM. The origins and the future of microfluidics. Nature. 2006; 442(7101):368-373.DOI: 10.1038/nature05058 https://doi.org/10.1038/nature05058
Daw R, & Finkelstein J. Lab on a chip. Nature. 2006; 442(7101): 367. DOI: 10.1038/442254b. https://doi.org/10.1038/442254b
Mitchell P. Microfluidics-downsizing large-scale biology. Nature Biotechnology.2001; 19(8):717-721. DOI: 10.1038/90754. https://doi.org/10.1038/90754
Duffy DC, McDonald JC, Schueller OJA, & Whitesides GM. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry. 1998; 70(23):4974-4984.DOI: 10.1021/ac980656z. https://doi.org/10.1021/ac980656z
Xia Y, & Whitesides GM. SOFT LITHOGRAPHY. Annual Review of Materials Science. 1998; 28(1):153-184. DOI: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
Song JW, Gu W, Futai N, Warner KA, Nor JE, & Takayama S. Computer-Controlled Microcirculatory Support System for Endothelial Cell Culture and Shearing. Analytical Chemistry. 2005; 77(13):3993-3999. DOI: 10.1021/ac050131o. https://doi.org/10.1021/ac050131o
Lam MT, Huang YC, Birla RK, & Takayama S. Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs. Biomaterials. 2009; 30(6): 1150-1155. DOI: 10.1016/j.biomaterials.2008.11.014. https://doi.org/10.1016/j.biomaterials.2008.11.014
Jang K, Sato K, Igawa K, Chung UI, & Kitamori T. Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening. Analytical and Bioanalytical Chemistry. 2007; 390(3):825-832. DOI: 10.1007/s00216-007-1752-7. https://doi.org/10.1007/s00216-007-1752-7
Kimura H, Yamamoto T, Sakai H, Sakai Y, & Fujii T. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab on a Chip. 2008; 8(5): 741. DOI: 10.1039/b717091b. https://doi.org/10.1039/b717091b
Jang KJ, & Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip. 2010; 10(1):36-42. DOI: 10.1039/b907515a. https://doi.org/10.1039/B907515A
Galie PA, Nguyen DHT, Choi CK, Cohen DM, Janmey PA, & Chen CS. Fluid shear stress threshold regulates angiogenic sprouting. Proceedings of the National Academy of Sciences. 2014; 111(22): 7968-7973.DOI: 10.1073/pnas.1310842111. https://doi.org/10.1073/pnas.1310842111
Booth R, & Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab on a Chip. 2012. 12(10): 1784. https://doi.org/10.1039/c2lc40094d
Kwon JS, & Oh J. Microfluidic Technology for Cell Manipulation. Applied Sciences.2018; 8(6): 992. DOI:10.3390/app8060992. https://doi.org/10.3390/app8060992
Sosa-Hernández JE, Villalba-Rodríguez AM, Romero-Castillo KD, Aguilar-Aguila-Isaías MA, García-Reyes IE, et al. Organs-on-a-Chip Module: A Review from the Development and Applications Perspective. Micromachines. 2018; 9(10): 536.DOI: 10.3390/mi9100536. https://doi.org/10.3390/mi9100536
Nau H. Species differences in pharmacokinetics and drug teratogenesis. Environmental Health Perspectives.1986; 70: 113-129. DOI: 10.1289/ehp.8670113. https://doi.org/10.1289/ehp.8670113
Lin JH. Species similarities and differences in pharmacokinetics. Drug Metab Disposition.1995b; 23(10): 1008-1021. DOI:10.1.1.842.9148.
Nedergaard M. Garbage Truck of the Brain. Science.2013; 340(6140):1529-1530. DOI: 10.1126/science.1240514. https://doi.org/10.1126/science.1240514
van der Helm MW, van der Meer AD, Eijkel JCT, van den Berg A, & Segerink LI. Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers.2016; 4(1):e1142493.DOI: 10.1080/21688370.2016.1142493. https://doi.org/10.1080/21688370.2016.1142493
Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, et al. A Human Disease Model of Drug Toxicity-Induced Pulmonary Edema in a Lung-on-a-Chip Microdevice. Science Translational Medicine. 2012b; 4(159): 159ra147.DOI: 10.1126/scitranslmed.3004249 https://doi.org/10.1126/scitranslmed.3004249
Mammoto T, Mammoto A, Torisawa YS, Tat T, Gibbs A, et al. Mechanochemical Control of Mesenchymal Condensation and Embryonic Tooth Organ Formation. Developmental Cell. 2011; 21(4): 758-769. DOI: 10.1016/j.devcel.2011.07.006. https://doi.org/10.1016/j.devcel.2011.07.006
Nikolic M, Sustersic T, & Filipovic N. In vitro Models and On-Chip Systems: Biomaterial Interaction Studies With Tissues Generated Using Lung Epithelial and Liver Metabolic Cell Lines. Frontiers in Bioengineering and Biotechnology. 2018; 6.DOI: 10.3389/fbioe.2018.00120. https://doi.org/10.3389/fbioe.2018.00120
Zhang C, Zhao Z, Abdul Rahim NA, van Noort D, & Yu H. Towards a human-on-chip: Culturing multiple cell types on a chip with compartmentalized microenvironments. Lab on a Chip. 2009; 9(22): 3185. DOI: 10.1039/b915147h. https://doi.org/10.1039/b915147h
Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, et al. A Human Disease Model of Drug Toxicity-Induced Pulmonary Edema in a Lung-on-a-Chip Microdevice. Science Translational Medicine. 2012; 4(159):159ra147.DOI: 10.1126/scitranslmed.3004249. https://doi.org/10.1126/scitranslmed.3004249
Punde TH, Wu WH, Lien PC, Chang YL, Kuo PH, et al. A biologically inspired lung-on-a-chip device for the study of protein-induced lung inflammation. Integrative Biology. 2014; 7(2): 162-169. DOI: 10.1039/c4ib00239c. https://doi.org/10.1039/c4ib00239c
Yi Y, Park J, Lim J, Lee CJ, & Lee SH. Central Nervous System and its Disease Models on a Chip. Trends in Biotechnology. 2015; 33(12): 762-776.DOI: 10.1016/j.tibtech.2015.09.007. https://doi.org/10.1016/j.tibtech.2015.09.007
Bauer S, Wennberg Huldt C, Kanebratt KP, Durieux I, Gunne D, et al. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model. Scientific Reports. 2017; 7(1). DOI: 10.1038/s41598-017-14815-w. https://doi.org/10.1038/s41598-017-14815-w
Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015. JAMA Oncology. 2017b; 3(4):524. DOI: 10.1001/jamaoncol.2016.5688. https://doi.org/10.1001/jamaoncol.2016.5688
Fan Y, Avci NG, Nguyen DT, Dragomir A, Akay YM, et al. Engineering a High-Throughput 3-D In Vitro Glioblastoma Model. IEEE Journal of Translational Engineering in Health and Medicine. 2015; 3:1-8.DOI: 10.1109/JTEHM.2015.2410277. https://doi.org/10.1109/JTEHM.2015.2410277
Ling K, Huang G, Liu J, Zhang X, Ma Y, et al. Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids. Engineering. 2015; 1(2): 269-274. DOI:10.15302/J-ENG-2015062.https://doi.org/10.15302/J-ENG-2015062
Wagner I, Materne EM, Brincker S, Süßbier U, Frädrich C, et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab on a Chip. 2013c; 13(18):3538. DOI: 10.1039/c3lc50234a. https://doi.org/10.1039/c3lc50234a
Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integrative Biology. 2013; 5(9):1119-1129.DOI: 10.1039/c3ib40049b. https://doi.org/10.1039/c3ib40049b
Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab on a Chip. 2015; 15(12):2688-2699. DOI: 10.1039/c5lc00392j. https://doi.org/10.1039/C5LC00392J
Phan DTT, Wang X, Craver BM, Sobrino A, Zhao D, et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab on a Chip. 2017; 17(3):511-520. DOI: 10.1039/c6lc01422d. https://doi.org/10.1039/C6LC01422D
Mao AS & Mooney DJ. Regenerative medicine: Current therapies and future directions. Proceedings of the National Academy of Sciences. 2015; 112(47):14452-14459.DOI: 10.1073/pnas.1508520112. https://doi.org/10.1073/pnas.1508520112
Han YL, Wang S, Zhang X, Li Y, Huang G, et al. Engineering physical microenvironment for stem cell based regenerative medicine. Drug Discovery Today. 2014; 19(6):763-773.DOI: 10.1016/j.drudis.2014.01.015. https://doi.org/10.1016/j.drudis.2014.01.015
Park SH, Sim WY, Min BH, Yang S S, Khademhosseini A, & Kaplan DL. Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells under Mechanical Stimulation. PLoS ONE.2012; 7(9):e46689. DOI: 10.1371/journal.pone.0046689. https://doi.org/10.1371/journal.pone.0046689
Tam A, Wadsworth S, Dorscheid D, Man SP, & Sin DD. The airway epithelium: more than just a structural barrier. Therapeutic Advances in Respiratory Disease. 2011; 5(4):255-273. DOI: 10.1177/1753465810396539. https://doi.org/10.1177/1753465810396539
Zhang L, Wang J, Zhao L, Meng Q, & Wang Q. Analysis of chemoresistance in lung cancer with a simple microfluidic device. ELECTROPHORESIS. 2010; 31(22):3763-3770. DOI: 10.1002/elps.201000265. https://doi.org/10.1002/elps.201000265
Zhang Y, Handley D, Kaplan T, Yu H, Bais AS, et al. High Throughput Determination of TGFβ1/SMAD3 Targets in A549 Lung Epithelial Cells. PLoS ONE. 2011; 6(5): e20319.DOI: 10.1371/journal.pone.0020319. https://doi.org/10.1371/journal.pone.0020319
Visone R, Gilardi M, Marsano A, Rasponi M, Bersini S, & Moretti M. Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering. Molecules.2016; 21(9):1128.DOI: 10.3390/molecules21091128. https://doi.org/10.3390/molecules21091128
Grosberg A, Nesmith AP, Goss JA, Brigham MD, McCain ML, & Parker KK. Muscle on a chip: In vitro contractility assays for smooth and striated muscle. Journal of Pharmacological and Toxicological Methods. 2012; 65(3):126-135. DOI: 10.1016/j.vascn.2012.04.001. https://doi.org/10.1016/j.vascn.2012.04.001
Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, & Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials. 2013; 34(23):5813-5820. DOI: 10.1016/j.biomaterials.2013.04.026. https://doi.org/10.1016/j.biomaterials.2013.04.026
Zhang X, Wang T, Wang P, & Hu N. High-Throughput Assessment of Drug Cardiac Safety Using a High-Speed Impedance Detection Technology-Based Heart-on-a-Chip. Micromachines. 2016; 7(7):122.DOI: 10.3390/mi7070122. https://doi.org/10.3390/mi7070122
Marsano A, Conficconi C, Lemme M, Occhetta P, Gaudiello E, et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab on a Chip. 2016; 16(3): 599-610. DOI: 10.1039/c5lc01356a. https://doi.org/10.1039/C5LC01356A
Schneider O, Zeifang L, Fuchs S, Sailer C, & Loskill P. User-Friendly and Parallelized Generation of Human Induced Pluripotent Stem Cell-Derived Microtissues in a Centrifugal Heart-on-a-Chip. Tissue Engineering Part A. 2019; 25(9-10):786-798.DOI: 10.1089/ten.TEA.2019.0002. https://doi.org/10.1089/ten.tea.2019.0002
Watkins PB, Merz M, Avigan MI, Kaplowitz N, Regev A, & Senior JR. The Clinical Liver Safety Assessment Best Practices Workshop: Rationale, Goals, Accomplishments and the Future. Drug Safety. 2014; 37(S1): 1-7.DOI: 10.1007/s40264-014-0181-8. https://doi.org/10.1007/s40264-014-0181-8
Lucena MI, Andrade RJ, Rodrigo L, Salmeron J, Alvarez A, et al. Trovafloxacin-Induced Acute Hepatitis. Clinical Infectious Diseases.2000; 30(2): 400-401.DOI: 10.1086/313680. https://doi.org/10.1086/313680
Shlomai A, Schwartz RE, Ramanan V, Bhatta A, de Jong YP, et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proceedings of the National Academy of Sciences.2014; 111(33): 12193-12198.DOI: 10.1073/pnas.1412631111. https://doi.org/10.1073/pnas.1412631111
Khetani SR, & Bhatia SN. Microscale culture of human liver cells for drug development. Nature Biotechnology. 2007; 26(1): 120-126. DOI: 10.1038/nbt1361. https://doi.org/10.1038/nbt1361
Ware BR, Berger DR, & Khetani SR. Prediction of Drug-Induced Liver Injury in Micropatterned Co-cultures Containing iPSC-Derived Human Hepatocytes. Toxicological Sciences. 2015; 145(2): 252-262.DOI: 10.1093/toxsci/kfv048. https://doi.org/10.1093/toxsci/kfv048
Ploss A, Khetani SR, Jones CT, Syder AJ, Trehan K, et al. Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proceedings of the National Academy of Sciences. 2010; 107(7):3141-3145. DOI: 10.1073/pnas.0915130107. https://doi.org/10.1073/pnas.0915130107
Nguyen TV, Ukairo O, Khetani SR, McVay M, Kanchagar C, et al. Establishment of a Hepatocyte-Kupffer Cell Coculture Model for Assessment of Proinflammatory Cytokine Effects on Metabolizing Enzymes and Drug Transporters. Drug Metabolism and Disposition. 2015; 43(5): 774-785.DOI: 10.1124/dmd.114.061317. https://doi.org/10.1124/dmd.114.061317
Tadeo I, Berbegall AP, Escudero LM, Ãlvaro T, & Noguera R. Biotensegrity of the Extracellular Matrix: Physiology, Dynamic Mechanical Balance, and Implications in Oncology and Mechanotherapy. Frontiers in Oncology. 2014; 4. DOI: 10.3389/fonc.2014.00039. https://doi.org/10.3389/fonc.2014.00039
Young EWK. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integrative Biology. 2013; 5(9): 1096. DOI: 10.1039/c3ib40076j. https://doi.org/10.1039/c3ib40076j
Feng X, Du W, Luo Q, & Liu BF. Microfluidic chip: Next-generation platform for systems biology. Analytica Chimica Acta. 2009; 650(1): 83-97. DOI: 10.1016/j.aca.2009.04.051. https://doi.org/10.1016/j.aca.2009.04.051
Wlodkowic D, & Cooper JM. Tumors on chips: oncology meets microfluidics. Current Opinion in Chemical Biology. 2010; 14(5): 556-567.DOI: 10.1016/j.cbpa.2010.08.016. https://doi.org/10.1016/j.cbpa.2010.08.016
Kim C, Bang JH, Kim YE, Lee SH, & Kang JY. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Lab on a Chip. 2012; 12(20): 4135. DOI: 10.1039/c2lc40570a. https://doi.org/10.1039/c2lc40570a
Yang CG, Wu YF, Xu ZR, & Wang JH. A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay. Lab on a Chip. 2011; 11(19): 3305.DOI: 10.1039/c1lc20123a. https://doi.org/10.1039/c1lc20123a
Lee S, & Sung J. Microtechnology-Based Multi-Organ Models. Bioengineering. 2017; 4(4): 46. DOI: 10.3390/bioengineering4020046. https://doi.org/10.3390/bioengineering4020046
Marx U, Walles H, Hoffmann S, Lindner G. Horland R, et al. 'Human-on-a-chip' Developments: A Translational Cutting-edge Alternative to Systemic Safety Assessment and Efficiency Evaluation of Substances in Laboratory Animals and Man? Alternatives to Laboratory Animals. 2012; 40(5): 235-257. DOI: 10.1177/026119291204000504. https://doi.org/10.1177/026119291204000504
Bhang B, Montgomery M, Chamberlain M, Ogawa S, Korolj A, et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Materials. 2016; 15(6):669-678.DOI: 10.1038/nmat4570. https://doi.org/10.1038/nmat4570
Palaninathan V, Kumar V, Maekawa T, Liepmann D, Paulmurugan R, et al. Multi-organ on a chip for personalized precision medicine. MRS Communications.2018; 8(3): 652-667. DOI: 10.1557/mrc.2018.120. https://doi.org/10.1557/mrc.2018.120
Zhao Y, Kankala R, Wang SB, & Chen AZ. Multi-Organs-on-Chips: Towards Long-Term Biomedical Investigations. Molecules. 2019; 24(4):675. DOI: 10.3390/molecules24040675 https://doi.org/10.3390/molecules24040675
Midwoud PM, Merema MT, Verpoorte E, & Groothuis GMM. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab on a Chip. 2010; 10(20):2778.DOI: 10.1039/c0lc00043d. https://doi.org/10.1039/c0lc00043d
Tsamandouras N, Chen WLK, Edington CD, Stokes CL, Griffith LG, & Cirit M. Integrated Gut and Liver Microphysiological Systems for Quantitative In Vitro Pharmacokinetic Studies. The AAPS Journal. 2017; 19(5):1499-1512. DOI: 10.1208/s12248-017-0122-4. https://doi.org/10.1208/s12248-017-0122-4
Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports. 2017; 7(1). DOI: 10.1038/s41598-017-08879-x. https://doi.org/10.1038/s41598-017-08879-x
Maschmeyer I, Hasenberg T, Jaenicke A, Lindner M, Lorenz AK, et al. Chip-based human liver-intestine and liver-skin co-cultures - A first step toward systemic repeated dose substance testing in vitro. European Journal of Pharmaceutics and Biopharmaceutics. 2015; 95: 77-87.DOI: 10.1016/j.ejpb.2015.03.002 https://doi.org/10.1016/j.ejpb.2015.03.002
Oleaga C, Bernabini C, Smith AS, SrinivasanB, Jackson M, et al. Hickman JJ. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Scientific Reports. 2016; 6(1).DOI: 10.1038/srep20030. https://doi.org/10.1038/srep20030
Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, et al. Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Scientific Reports. 2018; 8(1). DOI: 10.1038/s41598-018-22749-0. https://doi.org/10.1038/s41598-018-22749-0
Published
Abstract Display: 861
PDF Downloads: 762
PDF Downloads: 38 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.