“Organs on a Chip”: Revolutionization in personalized treatment

Authors

Abstract

Organs-on-a-chip” (OOAC), involves microfluidics based biomaterial sciences, bio-engineering and cell biology majorly cell isolation and cell culturing aspects. This technology claims to develop 3-dimensional tissues structurally and physiologically in simulation to in vivo providing relevant results in terms of physiological and genetic aspects with virtue of its origin from human systems. In recent times, experts from diversified disciplines have developed and established many OOAC systems with an assertion of being perfect for drug research replacing convectional cell cultures and animal testing due to the technical limitations in the applicability  of the same in vivo for systemic complexities and genetic variances. “Organs-on-a-chip” has attracted substantial interest for its wide range of applications in fields of drug research, regenerative medicine and personalized medicine. Successful development and establishments of different OOACs will contribute towards newer avenues in the path of precised personalized medicine. 

Keywords: Organs on a chip, personalized medicine, OOAC, 3D cell culture

Keywords:

Organs on a chip, personalized medicine, OOAC, 3D cell culture

DOI

https://doi.org/10.22270/jddt.v11i4.4909

Author Biographies

Subhalaxmi Sahoo, Research Intern, Rapture Biotech, Gujarat, India

Research Intern, Rapture Biotech, Gujarat, India

Priyanka Patel, Director, Rapture Biotech, Gujarat, India

Director, Rapture Biotech, Gujarat, India

Meghna Goswami, Research Assistant, Rapture Biotech, Gujarat, India

Research Assistant, Rapture Biotech, Gujarat, India

References

Polini A, Prodanov L, Bhise NS, Manoharan V, Dokmeci MR, & Khademhosseini. A Organs-on-a-chip: a new tool for drug discovery. Expert Opinion on Drug Discovery. 2014; 9(4):335-352.DOI: 10.1517/17460441.2014.886562. https://doi.org/10.1517/17460441.2014.886562

Harper AR, & Topol EJ. Pharmacogenomics in clinical practice and drug development. Nature Biotechnology. 2012; 30(11): 1117-1124.DOI: 10.1038/nbt.2424. https://doi.org/10.1038/nbt.2424

Hughes J, Rees S, Kalindjian S, & Philpott K. Principles of early drug discovery. British Journal of Pharmacology. 2011; 162(6):1239-1249. DOI: 10.1111/j.1476-5381.2010.01127.x. https://doi.org/10.1111/j.1476-5381.2010.01127.x

Chen L, K Morrow J, T Tran H, S Phatak S, Du-Cuny L, & Zhang S. From Laptop to Benchtop to Bedside: Structure-based Drug Design on Protein Targets. Current Drug Metabolism. 2012; 18(9):1217-1239.DOI: 10.2174/138161212799436386. https://doi.org/10.2174/138161212799436386

Rafael VCG, Glaucius O, & Adriano DA. Modern Drug Discovery Technologies: Opportunities and Zhang B, Korolj A, Lai B F L, & Radisic M. Advances in organ-on-a-chip engineering. Nature Reviews Materials. 2011; 3(8):257-278.DOI: 10.2174/138620711797537067. https://doi.org/10.2174/138620711797537067

Zhang B, Korolj A, Lai BFL, & Radisic M. Advances in organ-on-a-chip engineering. Nature Reviews Materials. 2018b; 3(8):257-278. DOI:10.1038/s41578-018-0034-7 https://doi.org/10.1038/s41578-018-0034-7

Guillouzo A, & Guguen-Guillouzo C. Evolving concepts in liver tissue modeling and implications forin vitrotoxicology. Expert Opinion on Drug Metabolism & Toxicology. 2008; 4(10):1279-1294. DOI: 10.1517/17425255.4.10.1279. https://doi.org/10.1517/17425255.4.10.1279

Beebe DJ, Ingber DE, & den Toonder J. Organs on Chips 2013. Lab on a Chip. 2013; 13(18): 3447. DOI: 10.1039/c3lc90080k. https://doi.org/10.1039/c3lc90080k

Selimović E, Dokmeci MR, & Khademhosseini A. Organs-on-a-chip for drug discovery. Current Opinion in Pharmacology. 2013; 13(5): 829-833. DOI: 10.1016/j.coph.2013.06.005. https://doi.org/10.1016/j.coph.2013.06.005

Langer R, & Vacanti J. Tissue engineering. Science. 1993; 260(5110):920-926. DOI: 10.1126/science.8493529. https://doi.org/10.1126/science.8493529

El-Ali J, Sorger PK, & Jensen KF. Cells on chips. Nature. 2006; 442(7101):403-411. DOI: 10.1038/nature05063. https://doi.org/10.1038/nature05063

Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, & Ingber DE. Reconstituting Organ-Level Lung Functions on a Chip. Science. 2010; 328(5986):1662-1668.DOI: 10.1126/science.1188302. https://doi.org/10.1126/science.1188302

Shlomai A, Schwartz RE, Ramanan V, Bhatta A, de Jong YP, et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proceedings of the National Academy of Sciences. 2014; 111(33):12193-12198.DOI: 10.1073/pnas.1412631111. https://doi.org/10.1073/pnas.1412631111

Jackman CP, Carlson AL, & Bursac N. Dynamic culture yields engineered myocardium with near-adult functional output. Biomaterials.2016; 111: 66-79. DOI: 10.1016/j.biomaterials.2016.09.024. https://doi.org/10.1016/j.biomaterials.2016.09.024

Oleaga C, Bernabini C, Smith AS, Srinivasan B, Jackson M, et al. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Scientific Reports. 2016; 6(1). DOI: 10.1038/srep20030. https://doi.org/10.1038/srep20030

Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nature Communications. 2017; 8(1). DOI: 10.1038/ncomms14584. https://doi.org/10.1038/ncomms14584

Vernetti L, Gough A, Baetz N, Blutt S, Broughman JR, et al. Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle. 2017. DOI: 10.1038/srep42296. https://doi.org/10.1038/srep42296

Whitesides GM. The origins and the future of microfluidics. Nature. 2006; 442(7101):368-373.DOI: 10.1038/nature05058 https://doi.org/10.1038/nature05058

Daw R, & Finkelstein J. Lab on a chip. Nature. 2006; 442(7101): 367. DOI: 10.1038/442254b. https://doi.org/10.1038/442254b

Mitchell P. Microfluidics-downsizing large-scale biology. Nature Biotechnology.2001; 19(8):717-721. DOI: 10.1038/90754. https://doi.org/10.1038/90754

Duffy DC, McDonald JC, Schueller OJA, & Whitesides GM. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry. 1998; 70(23):4974-4984.DOI: 10.1021/ac980656z. https://doi.org/10.1021/ac980656z

Xia Y, & Whitesides GM. SOFT LITHOGRAPHY. Annual Review of Materials Science. 1998; 28(1):153-184. DOI: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G

Song JW, Gu W, Futai N, Warner KA, Nor JE, & Takayama S. Computer-Controlled Microcirculatory Support System for Endothelial Cell Culture and Shearing. Analytical Chemistry. 2005; 77(13):3993-3999. DOI: 10.1021/ac050131o. https://doi.org/10.1021/ac050131o

Lam MT, Huang YC, Birla RK, & Takayama S. Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs. Biomaterials. 2009; 30(6): 1150-1155. DOI: 10.1016/j.biomaterials.2008.11.014. https://doi.org/10.1016/j.biomaterials.2008.11.014

Jang K, Sato K, Igawa K, Chung UI, & Kitamori T. Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening. Analytical and Bioanalytical Chemistry. 2007; 390(3):825-832. DOI: 10.1007/s00216-007-1752-7. https://doi.org/10.1007/s00216-007-1752-7

Kimura H, Yamamoto T, Sakai H, Sakai Y, & Fujii T. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab on a Chip. 2008; 8(5): 741. DOI: 10.1039/b717091b. https://doi.org/10.1039/b717091b

Jang KJ, & Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip. 2010; 10(1):36-42. DOI: 10.1039/b907515a. https://doi.org/10.1039/B907515A

Galie PA, Nguyen DHT, Choi CK, Cohen DM, Janmey PA, & Chen CS. Fluid shear stress threshold regulates angiogenic sprouting. Proceedings of the National Academy of Sciences. 2014; 111(22): 7968-7973.DOI: 10.1073/pnas.1310842111. https://doi.org/10.1073/pnas.1310842111

Booth R, & Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab on a Chip. 2012. 12(10): 1784. https://doi.org/10.1039/c2lc40094d

Kwon JS, & Oh J. Microfluidic Technology for Cell Manipulation. Applied Sciences.2018; 8(6): 992. DOI:10.3390/app8060992. https://doi.org/10.3390/app8060992

Sosa-Hernández JE, Villalba-Rodríguez AM, Romero-Castillo KD, Aguilar-Aguila-Isaías MA, García-Reyes IE, et al. Organs-on-a-Chip Module: A Review from the Development and Applications Perspective. Micromachines. 2018; 9(10): 536.DOI: 10.3390/mi9100536. https://doi.org/10.3390/mi9100536

Nau H. Species differences in pharmacokinetics and drug teratogenesis. Environmental Health Perspectives.1986; 70: 113-129. DOI: 10.1289/ehp.8670113. https://doi.org/10.1289/ehp.8670113

Lin JH. Species similarities and differences in pharmacokinetics. Drug Metab Disposition.1995b; 23(10): 1008-1021. DOI:10.1.1.842.9148.

Nedergaard M. Garbage Truck of the Brain. Science.2013; 340(6140):1529-1530. DOI: 10.1126/science.1240514. https://doi.org/10.1126/science.1240514

van der Helm MW, van der Meer AD, Eijkel JCT, van den Berg A, & Segerink LI. Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers.2016; 4(1):e1142493.DOI: 10.1080/21688370.2016.1142493. https://doi.org/10.1080/21688370.2016.1142493

Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, et al. A Human Disease Model of Drug Toxicity-Induced Pulmonary Edema in a Lung-on-a-Chip Microdevice. Science Translational Medicine. 2012b; 4(159): 159ra147.DOI: 10.1126/scitranslmed.3004249 https://doi.org/10.1126/scitranslmed.3004249

Mammoto T, Mammoto A, Torisawa YS, Tat T, Gibbs A, et al. Mechanochemical Control of Mesenchymal Condensation and Embryonic Tooth Organ Formation. Developmental Cell. 2011; 21(4): 758-769. DOI: 10.1016/j.devcel.2011.07.006. https://doi.org/10.1016/j.devcel.2011.07.006

Nikolic M, Sustersic T, & Filipovic N. In vitro Models and On-Chip Systems: Biomaterial Interaction Studies With Tissues Generated Using Lung Epithelial and Liver Metabolic Cell Lines. Frontiers in Bioengineering and Biotechnology. 2018; 6.DOI: 10.3389/fbioe.2018.00120. https://doi.org/10.3389/fbioe.2018.00120

Zhang C, Zhao Z, Abdul Rahim NA, van Noort D, & Yu H. Towards a human-on-chip: Culturing multiple cell types on a chip with compartmentalized microenvironments. Lab on a Chip. 2009; 9(22): 3185. DOI: 10.1039/b915147h. https://doi.org/10.1039/b915147h

Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, et al. A Human Disease Model of Drug Toxicity-Induced Pulmonary Edema in a Lung-on-a-Chip Microdevice. Science Translational Medicine. 2012; 4(159):159ra147.DOI: 10.1126/scitranslmed.3004249. https://doi.org/10.1126/scitranslmed.3004249

Punde TH, Wu WH, Lien PC, Chang YL, Kuo PH, et al. A biologically inspired lung-on-a-chip device for the study of protein-induced lung inflammation. Integrative Biology. 2014; 7(2): 162-169. DOI: 10.1039/c4ib00239c. https://doi.org/10.1039/c4ib00239c

Yi Y, Park J, Lim J, Lee CJ, & Lee SH. Central Nervous System and its Disease Models on a Chip. Trends in Biotechnology. 2015; 33(12): 762-776.DOI: 10.1016/j.tibtech.2015.09.007. https://doi.org/10.1016/j.tibtech.2015.09.007

Bauer S, Wennberg Huldt C, Kanebratt KP, Durieux I, Gunne D, et al. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model. Scientific Reports. 2017; 7(1). DOI: 10.1038/s41598-017-14815-w. https://doi.org/10.1038/s41598-017-14815-w

Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015. JAMA Oncology. 2017b; 3(4):524. DOI: 10.1001/jamaoncol.2016.5688. https://doi.org/10.1001/jamaoncol.2016.5688

Fan Y, Avci NG, Nguyen DT, Dragomir A, Akay YM, et al. Engineering a High-Throughput 3-D In Vitro Glioblastoma Model. IEEE Journal of Translational Engineering in Health and Medicine. 2015; 3:1-8.DOI: 10.1109/JTEHM.2015.2410277. https://doi.org/10.1109/JTEHM.2015.2410277

Ling K, Huang G, Liu J, Zhang X, Ma Y, et al. Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids. Engineering. 2015; 1(2): 269-274. DOI:10.15302/J-ENG-2015062.https://doi.org/10.15302/J-ENG-2015062

Wagner I, Materne EM, Brincker S, Süßbier U, Frädrich C, et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab on a Chip. 2013c; 13(18):3538. DOI: 10.1039/c3lc50234a. https://doi.org/10.1039/c3lc50234a

Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integrative Biology. 2013; 5(9):1119-1129.DOI: 10.1039/c3ib40049b. https://doi.org/10.1039/c3ib40049b

Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab on a Chip. 2015; 15(12):2688-2699. DOI: 10.1039/c5lc00392j. https://doi.org/10.1039/C5LC00392J

Phan DTT, Wang X, Craver BM, Sobrino A, Zhao D, et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab on a Chip. 2017; 17(3):511-520. DOI: 10.1039/c6lc01422d. https://doi.org/10.1039/C6LC01422D

Mao AS & Mooney DJ. Regenerative medicine: Current therapies and future directions. Proceedings of the National Academy of Sciences. 2015; 112(47):14452-14459.DOI: 10.1073/pnas.1508520112. https://doi.org/10.1073/pnas.1508520112

Han YL, Wang S, Zhang X, Li Y, Huang G, et al. Engineering physical microenvironment for stem cell based regenerative medicine. Drug Discovery Today. 2014; 19(6):763-773.DOI: 10.1016/j.drudis.2014.01.015. https://doi.org/10.1016/j.drudis.2014.01.015

Park SH, Sim WY, Min BH, Yang S S, Khademhosseini A, & Kaplan DL. Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells under Mechanical Stimulation. PLoS ONE.2012; 7(9):e46689. DOI: 10.1371/journal.pone.0046689. https://doi.org/10.1371/journal.pone.0046689

Tam A, Wadsworth S, Dorscheid D, Man SP, & Sin DD. The airway epithelium: more than just a structural barrier. Therapeutic Advances in Respiratory Disease. 2011; 5(4):255-273. DOI: 10.1177/1753465810396539. https://doi.org/10.1177/1753465810396539

Zhang L, Wang J, Zhao L, Meng Q, & Wang Q. Analysis of chemoresistance in lung cancer with a simple microfluidic device. ELECTROPHORESIS. 2010; 31(22):3763-3770. DOI: 10.1002/elps.201000265. https://doi.org/10.1002/elps.201000265

Zhang Y, Handley D, Kaplan T, Yu H, Bais AS, et al. High Throughput Determination of TGFβ1/SMAD3 Targets in A549 Lung Epithelial Cells. PLoS ONE. 2011; 6(5): e20319.DOI: 10.1371/journal.pone.0020319. https://doi.org/10.1371/journal.pone.0020319

Visone R, Gilardi M, Marsano A, Rasponi M, Bersini S, & Moretti M. Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering. Molecules.2016; 21(9):1128.DOI: 10.3390/molecules21091128. https://doi.org/10.3390/molecules21091128

Grosberg A, Nesmith AP, Goss JA, Brigham MD, McCain ML, & Parker KK. Muscle on a chip: In vitro contractility assays for smooth and striated muscle. Journal of Pharmacological and Toxicological Methods. 2012; 65(3):126-135. DOI: 10.1016/j.vascn.2012.04.001. https://doi.org/10.1016/j.vascn.2012.04.001

Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, & Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials. 2013; 34(23):5813-5820. DOI: 10.1016/j.biomaterials.2013.04.026. https://doi.org/10.1016/j.biomaterials.2013.04.026

Zhang X, Wang T, Wang P, & Hu N. High-Throughput Assessment of Drug Cardiac Safety Using a High-Speed Impedance Detection Technology-Based Heart-on-a-Chip. Micromachines. 2016; 7(7):122.DOI: 10.3390/mi7070122. https://doi.org/10.3390/mi7070122

Marsano A, Conficconi C, Lemme M, Occhetta P, Gaudiello E, et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab on a Chip. 2016; 16(3): 599-610. DOI: 10.1039/c5lc01356a. https://doi.org/10.1039/C5LC01356A

Schneider O, Zeifang L, Fuchs S, Sailer C, & Loskill P. User-Friendly and Parallelized Generation of Human Induced Pluripotent Stem Cell-Derived Microtissues in a Centrifugal Heart-on-a-Chip. Tissue Engineering Part A. 2019; 25(9-10):786-798.DOI: 10.1089/ten.TEA.2019.0002. https://doi.org/10.1089/ten.tea.2019.0002

Watkins PB, Merz M, Avigan MI, Kaplowitz N, Regev A, & Senior JR. The Clinical Liver Safety Assessment Best Practices Workshop: Rationale, Goals, Accomplishments and the Future. Drug Safety. 2014; 37(S1): 1-7.DOI: 10.1007/s40264-014-0181-8. https://doi.org/10.1007/s40264-014-0181-8

Lucena MI, Andrade RJ, Rodrigo L, Salmeron J, Alvarez A, et al. Trovafloxacin-Induced Acute Hepatitis. Clinical Infectious Diseases.2000; 30(2): 400-401.DOI: 10.1086/313680. https://doi.org/10.1086/313680

Shlomai A, Schwartz RE, Ramanan V, Bhatta A, de Jong YP, et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proceedings of the National Academy of Sciences.2014; 111(33): 12193-12198.DOI: 10.1073/pnas.1412631111. https://doi.org/10.1073/pnas.1412631111

Khetani SR, & Bhatia SN. Microscale culture of human liver cells for drug development. Nature Biotechnology. 2007; 26(1): 120-126. DOI: 10.1038/nbt1361. https://doi.org/10.1038/nbt1361

Ware BR, Berger DR, & Khetani SR. Prediction of Drug-Induced Liver Injury in Micropatterned Co-cultures Containing iPSC-Derived Human Hepatocytes. Toxicological Sciences. 2015; 145(2): 252-262.DOI: 10.1093/toxsci/kfv048. https://doi.org/10.1093/toxsci/kfv048

Ploss A, Khetani SR, Jones CT, Syder AJ, Trehan K, et al. Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proceedings of the National Academy of Sciences. 2010; 107(7):3141-3145. DOI: 10.1073/pnas.0915130107. https://doi.org/10.1073/pnas.0915130107

Nguyen TV, Ukairo O, Khetani SR, McVay M, Kanchagar C, et al. Establishment of a Hepatocyte-Kupffer Cell Coculture Model for Assessment of Proinflammatory Cytokine Effects on Metabolizing Enzymes and Drug Transporters. Drug Metabolism and Disposition. 2015; 43(5): 774-785.DOI: 10.1124/dmd.114.061317. https://doi.org/10.1124/dmd.114.061317

Tadeo I, Berbegall AP, Escudero LM, Ãlvaro T, & Noguera R. Biotensegrity of the Extracellular Matrix: Physiology, Dynamic Mechanical Balance, and Implications in Oncology and Mechanotherapy. Frontiers in Oncology. 2014; 4. DOI: 10.3389/fonc.2014.00039. https://doi.org/10.3389/fonc.2014.00039

Young EWK. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integrative Biology. 2013; 5(9): 1096. DOI: 10.1039/c3ib40076j. https://doi.org/10.1039/c3ib40076j

Feng X, Du W, Luo Q, & Liu BF. Microfluidic chip: Next-generation platform for systems biology. Analytica Chimica Acta. 2009; 650(1): 83-97. DOI: 10.1016/j.aca.2009.04.051. https://doi.org/10.1016/j.aca.2009.04.051

Wlodkowic D, & Cooper JM. Tumors on chips: oncology meets microfluidics. Current Opinion in Chemical Biology. 2010; 14(5): 556-567.DOI: 10.1016/j.cbpa.2010.08.016. https://doi.org/10.1016/j.cbpa.2010.08.016

Kim C, Bang JH, Kim YE, Lee SH, & Kang JY. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Lab on a Chip. 2012; 12(20): 4135. DOI: 10.1039/c2lc40570a. https://doi.org/10.1039/c2lc40570a

Yang CG, Wu YF, Xu ZR, & Wang JH. A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay. Lab on a Chip. 2011; 11(19): 3305.DOI: 10.1039/c1lc20123a. https://doi.org/10.1039/c1lc20123a

Lee S, & Sung J. Microtechnology-Based Multi-Organ Models. Bioengineering. 2017; 4(4): 46. DOI: 10.3390/bioengineering4020046. https://doi.org/10.3390/bioengineering4020046

Marx U, Walles H, Hoffmann S, Lindner G. Horland R, et al. 'Human-on-a-chip' Developments: A Translational Cutting-edge Alternative to Systemic Safety Assessment and Efficiency Evaluation of Substances in Laboratory Animals and Man? Alternatives to Laboratory Animals. 2012; 40(5): 235-257. DOI: 10.1177/026119291204000504. https://doi.org/10.1177/026119291204000504

Bhang B, Montgomery M, Chamberlain M, Ogawa S, Korolj A, et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Materials. 2016; 15(6):669-678.DOI: 10.1038/nmat4570. https://doi.org/10.1038/nmat4570

Palaninathan V, Kumar V, Maekawa T, Liepmann D, Paulmurugan R, et al. Multi-organ on a chip for personalized precision medicine. MRS Communications.2018; 8(3): 652-667. DOI: 10.1557/mrc.2018.120. https://doi.org/10.1557/mrc.2018.120

Zhao Y, Kankala R, Wang SB, & Chen AZ. Multi-Organs-on-Chips: Towards Long-Term Biomedical Investigations. Molecules. 2019; 24(4):675. DOI: 10.3390/molecules24040675 https://doi.org/10.3390/molecules24040675

Midwoud PM, Merema MT, Verpoorte E, & Groothuis GMM. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab on a Chip. 2010; 10(20):2778.DOI: 10.1039/c0lc00043d. https://doi.org/10.1039/c0lc00043d

Tsamandouras N, Chen WLK, Edington CD, Stokes CL, Griffith LG, & Cirit M. Integrated Gut and Liver Microphysiological Systems for Quantitative In Vitro Pharmacokinetic Studies. The AAPS Journal. 2017; 19(5):1499-1512. DOI: 10.1208/s12248-017-0122-4. https://doi.org/10.1208/s12248-017-0122-4

Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports. 2017; 7(1). DOI: 10.1038/s41598-017-08879-x. https://doi.org/10.1038/s41598-017-08879-x

Maschmeyer I, Hasenberg T, Jaenicke A, Lindner M, Lorenz AK, et al. Chip-based human liver-intestine and liver-skin co-cultures - A first step toward systemic repeated dose substance testing in vitro. European Journal of Pharmaceutics and Biopharmaceutics. 2015; 95: 77-87.DOI: 10.1016/j.ejpb.2015.03.002 https://doi.org/10.1016/j.ejpb.2015.03.002

Oleaga C, Bernabini C, Smith AS, SrinivasanB, Jackson M, et al. Hickman JJ. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Scientific Reports. 2016; 6(1).DOI: 10.1038/srep20030. https://doi.org/10.1038/srep20030

Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, et al. Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Scientific Reports. 2018; 8(1). DOI: 10.1038/s41598-018-22749-0. https://doi.org/10.1038/s41598-018-22749-0

Published

2021-07-15
Statistics
Abstract Display: 861
PDF Downloads: 762
PDF Downloads: 38

How to Cite

1.
Sahoo S, Patel P, Goswami M. “Organs on a Chip”: Revolutionization in personalized treatment. J. Drug Delivery Ther. [Internet]. 2021 Jul. 15 [cited 2026 Jan. 13];11(4):81-7. Available from: https://www.jddtonline.info/index.php/jddt/article/view/4909

How to Cite

1.
Sahoo S, Patel P, Goswami M. “Organs on a Chip”: Revolutionization in personalized treatment. J. Drug Delivery Ther. [Internet]. 2021 Jul. 15 [cited 2026 Jan. 13];11(4):81-7. Available from: https://www.jddtonline.info/index.php/jddt/article/view/4909