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Abstract 

_______________________________________________________________________________________________________________ 
Superficial fungal infections, such as dermatophytosis, candidiasis, and pityriasis versicolor, are 
common worldwide and often affect the quality of life. Their incidence is increasing due to factors 
such as climate change, global travel, and the extensive use of immunosuppressive therapies. 
Conventional antifungal agents, including azoles and allylamines, face limitations such as drug 
resistance, poor skin penetration, and adverse effects. Plant-derived phytoconstituents contain 
several bioactive compounds with promising antifungal activity; however, their topical use is 
restricted because of their low permeability through the stratum corneum. Transferosomes, 
highly flexible lipid vesicles, offer an effective strategy for enhancing the skin delivery of 
phytoconstituents. This review explains the basic principles of transferosomes technology, 
discusses the antifungal activities of various plant-derived phytoconstituents, and reviews 
preparation methods, characterization techniques, and findings from in vitro and in vivo studies. 
This study aimed to highlight the potential of transferosomes as a novel and efficient approach 
for delivering phytoconstituents to treat superficial fungal diseases. 

Keywords: antifungal, drug delivery, fungal infections, phytoconstituents, topical treatment, 
transferosomes 

 

1. Introduction 

Fungal infections affecting the skin, such as 
dermatophytosis, candidiasis, and pityriasis versicolor, 
are a major global health issue, impacting individuals' 
quality of life and leading to high healthcare expenses. 
These skin infections impose a heavy health burden 
worldwide, affecting millions of people. Although 
traditional antifungal treatments are generally effective, 
they face challenges such as drug resistance, poor skin 
absorption, and side effects, prompting the need to 
explore alternative treatment options1,2. Traditional 
antifungal medications, including azoles and allylamines, 
have long been the treatment cornerstone. Nonetheless, 
the rise of drug resistance, especially in species such as 
Candida auris and Trichophyton mentagrophytes, 
presents a significant challenge to effective 
management3. The most drug-resistant fungi include 
species from the Candida and Aspergillus genera. Some 
pathogens are found worldwide, while others are limited 
to specific regions4. Moreover, these agents typically 
have poor skin penetration, resulting in inadequate drug 
levels at the affected site, and can cause unwanted side 

effects, such as skin irritation and systemic harm5. In 
response to these challenges, the exploration of natural 
products and innovative drug delivery systems has 
gained significant momentum. Herbal remedies, with 
their diverse array of bioactive compounds, have 
demonstrated promising antifungal activity against a 
wide range of dermatophytes and yeast. Curcuma longa, 
Clove, Cinnamon oil, Neem, Datura metel, and Zingiber 
officinale have been studied as herbal sources with 
potent antifungal properties. offers a rich source of 
natural compounds with both antifungal and immune-
boosting properties, suggesting that combining these 
approaches could lead to more effective treatment. Plant-
derived antimicrobials can be used independently or in 
conjunction with conventional antibiotics. 6–10. The 
stratum corneum presents a significant barrier to the 
effective topical delivery of herbal compounds to the 
skin. To mitigate this, ultra-deformable lipid vesicles, 
known as transferosomes, have been investigated. These 
vesicles, composed of phospholipids and edge activators, 
facilitate transdermal drug delivery through their 
enhanced flexibility and ability to interact with lipid 
bilayers of the skin.11–13. 
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This review provides a comprehensive overview of the 
current state of research on herbal transferosomes for 
the treatment of topical fungal diseases. This review 
delves into the fundamental principles of transferosomes 
technology, explores the antifungal potential of various 
phytoconstituents, and critically analyzes in vitro and in 
vivo studies evaluating the efficacy of these novel 
delivery systems.  

2. Common Fungal Pathogens and Their 
Associated Diseases 

Topical fungal infections affecting the superficial layers 
of the skin, hair, and nails are common clinical 
presentations, affecting a significant proportion of the 
global population. Table 1 shows the diversity of topical 
fungal infections, highlighting the specific organisms and 
clinical presentations.

. 

Table 1: Fungal Organisms and Diseases 

Disease Responsible Organisms Common Locations Ref 

Tinea Pedis (Athlete's Foot) Trichophyton rubrum, Trichophyton 
mentagrophytes, Epidermophyton floccosum 

Between toes, soles of feet 14 

Tinea Cruris (Jock Itch) Trichophyton rubrum, Epidermophyton floccosum Groin, inner thighs 15 

Tinea Corporis (Ringworm) Trichophyton spp., Microsporum spp. Body, face, limbs 16 

Tinea Capitis (Scalp 
Ringworm) 

Trichophyton spp., Microsporum spp. Scalp, hair follicles 16 

Onychomycosis (Nail 
Fungus) 

Trichophyton rubrum, other dermatophytes, 
Candida spp. 

Fingernails, toenails 17 

Cutaneous Candidiasis Candida albicans, other Candida spp. Skin folds, diaper area, mouth 18 

Malassezia Folliculitis Malassezia species Chest, back, upper arms 19 

Seborrheic Dermatitis Malassezia species Scalp, face, chest 20 

 

3. Drying of Biomass – Different drying 
techniques 

Appropriate drying techniques help reduce moisture 
content, prevent microbial growth, increase shelf life, 

and facilitate handling and storage. However, improper 
drying can lead to the loss or degradation of heat-
sensitive bioactive compounds. A comparative overview 
of commonly used drying methods is presented in Table 
2

 

Table 2: A Comparative Analysis of Plant Drying Methods 

Drying Method Description Advantages Disadvantages Ref 

Sun Drying Fresh herbs placed on 
ventilated racks and exposed to 
direct sunlight. 

Simple and low cost. Possible degradation of color, 
aroma, and heat-sensitive 
compounds; not ideal for all 
plants. 

21,22 

Shed Drying Herbs dried in shaded areas 
with good ventilation. 

Preserves essential oils; 
suitable for heat-sensitive 
herbs 

Longer drying time. 21,22 

Solar Drying Uses solar energy, either 
directly or through heated air 
from solar collectors. 

Better preservation of flavor 
and phytoconstituents 
compared to open sun drying. 

Requires specialized solar 
drying equipment. 

22,23 

Hot Air Oven 
Drying  

Uses controlled temperature, 
air flow, and time for uniform 
drying. 

Controlled conditions; good 
for moisture removal and 
volatile reduction. 

High temperatures (>55°C) 
may cause oxidation or loss of 
sensitive compounds. 

24,25 

Freeze Drying 
(Lyophilization) 

Removes water by sublimation 
under vacuum after freezing the 
material. 

Excellent preservation of 
phytochemicals; removes up 
to 95% of water. 

Expensive and requires 
specialized equipment. 

24,26,2

7 

Microwave 
Drying 

Uses microwave energy to 
rapidly heat water molecules 
inside plant tissue. 

Very fast drying; retains 
essential oil components 
effectively. 

Uneven heating may occur, 
especially with large batches. 

21,22,2

8 
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4. Extraction methods 

Selecting an appropriate extraction method is essential 
for obtaining antifungal phytoconstituents intended for 
transferosomes encapsulation. The ideal technique 
should prevent thermal degradation, ensure high 
extraction efficiency, and be compatible with the 
transferosomes preparation process. Several commonly 
used extraction methods are described below. 

I. Maceration Method 

Maceration is a gentle and straightforward extraction 
technique in which crushed plant material is soaked in a 
suitable solvent (menstruum) for several days at room 
temperature. The mixture is periodically agitated to 
enhance extraction. After extraction, the liquid is 
separated from the solid residue (marc), which is 
pressed to recover any remaining solvent 9. Although 
maceration is easy to perform, it has limitations such as 
long extraction times and relatively low efficiency. 
However, it is particularly suitable for thermolabile 
compounds that may degrade at high temperatures29. 
Different solvents can extract various classes of 
phytochemicals—such as glycosides, alkaloids, 
terpenoids, and saponins—depending on their 
polarity.30. Ane Patrícia Cacique reported that, 
Catharanthus roseus extracts were optimized for total 
phenol content using maceration. The optimal conditions 
were 30 mg dry plant tissue in 50:50 ethanol-water at 
50 °C for 1 hour31. 

II. Percolation Method 

Percolation is generally more efficient than maceration 
because fresh solvent continuously replaces the 
saturated solvent within the column29. Solvent selection 
is important—nonpolar solvents like ether and hexane 
work well for oil extraction from seeds, while aqueous 
solvents are used for extracting polar constituents from 
leaves 30.  Percolation is a modified form of maceration in 
which the solvent slowly passes through a column of 
powdered plant material under gravity. The solvent is 
allowed to percolate for 24 hours, and the collected 
extract (percolate) is combined with expressed liquid 
from the marc to form the final extract 32. A comparative 
study on extracting cannabidiol (CBD) from hemp 
biomass showed that percolation yielded higher 
concentrations than maceration, suggesting its potential 
for extracting lipophilic compounds from various 
botanical materials 33.  

III. Decoction 

Compared to maceration, decoction can improve the 
solubility of phytochemicals, such as alkaloids, 
flavonoids, and polysaccharides. However, decoction has 
limitations, including the presence of impurities in the 
crude extract and the inability to extract heat-sensitive or 
volatile components29,30. Decoction involves boiling plant 
material in water to extract heat-stable, water-soluble 
compounds. The process may last from minutes to hours 
and is followed by filtration. Decoction is suitable for 
woody materials such as roots, seeds, and bark32. A study 
by Ennaifer et al. optimized decoction conditions for 
Pelargonium graveolens, using response surface 

methodology to assess how time and temperature 
influence antioxidant activity and polysaccharide yield34.  

IV. Microwave-Assisted Extraction 

Microwave-Assisted Extraction (MAE) utilizes non-
ionizing radiation to extract plant metabolites. 
Microwave energy covers a frequency range of 300 MHz–
300 GHz. Microwaves induce dipole rotation in organic 
molecules, causing the destruction of hydrogen bonds 
and enhances solvent penetration into the plant matrix, 
facilitating the extraction of plant metabolites35. Solvents 
with high dielectric constants are preferred for MAE 
because nonpolar solvents are transparent to 
microwaves and remain unheated36. In closed-vessel 
MAE, increasing the temperature from 60 to 120°C 
significantly enhanced the extraction efficiency. Since 
pressure is directly dependent on temperature, it allows 
for heating above the boiling point30. The optimal 
extraction time varies widely, ranging from 30 seconds 
to 20 minutes, although longer extraction time leads to 
degradation of phytochemicals. The microwave power 
was inversely proportional to irradiation time. Generally, 
longer exposure at lower power levels (e.g., 30-150 W) is 
considered more appropriate for most extraction cases, 
as it improves extraction efficiency while minimizing the 
risk of thermal degradation37,38. According to  Asma Khalf, 
MAE of polyphenols from dried seed powder was 
determined using a FLEXIWAVE microwave oven. The 
optimized extraction conditions included a sample-to-
solvent ratio of 1:20, extraction time, temperature, and 
ethanol concentration varied according to a Box-
Behnken design, and a constant power of 1200 W39. 
Microwave-assisted extraction (MAE) of total phenolic 
contents (TPC) from E. indica using ethanol40. 
Microwave-assisted extraction (MAE) experiments on 
onion leaves were conducted using a PreeKem-M3 
digestion system with a microwave frequency of 2450 
MHz41. 

V. Hot Continuous counter current extraction 
method (Soxhlet extraction) 

This technique involves circulating a fixed quantity of 
solvent through an extractor via evaporation and 
condensation. The extraction time for Soxhlet extraction 
is typically approximately 24 h at temperatures ranging 
from to 65-100°C. The choice of solvent is also crucial; 
inert and easy-to-remove solvents are preferred. 
However, samples with high water content cannot be 
extracted using this method, as it may 
cause degradation30,32 42. The Soxhlet extraction 
apparatus consisted of a thimble-shaped filter paper 
containing the crude substance placed within a glass 
cylinder fitted with a siphon tube and inlet tube. A water 
condenser was attached to the cylinder, which was then 
inserted into the neck of the round-bottom flask 
containing the solvent. The solvent flask was heated in a 
water or sand bath, causing the solvent vapor to rise 
through the inlet tube and condense in the condenser. 
The condensed solvent then comes into contact with the 
crude substance and dissolves it. As the solution reached 
the top of the siphon tube, it was siphoned back into the 
flask, maintaining a continuous supply of solvent vapor 
and allowing the dissolved organic compounds to flow 
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back into the flask. Finally, the heating is stopped, and the 
solution is distilled to recover the solvent, leaving the 
extracted organic compound behind. Typical variables 
influencing Soxhlet extraction include the nature of plant 
material, particle size, solvent polarity, and extraction 
duration43,44. 

5. Evaluation of Antifungal Activity 

For the development of effective Phytoconstituent-
Loaded Transferosomes, it is crucial to assess the 
antifungal activity of the encapsulated compounds 
accurately. These methods provide the necessary data to 
evaluate the potency of the extracts and optimize 
transferosomes formulations. 

I. Agar disk diffusion  

The agar disk diffusion technique is widely employed for 
assessing the antimicrobial activity of plant extracts. 
Fungal colonies (8–24-hour cultures) grown on nutrient 
agar plates were selected and cultured in Mueller-Hinton 
Broth (MHB), Tryptone soy agar or Nutrient agar. The 
inoculum size typically consists of 10^7 CFU/mL for 
yeasts, equivalent to the McFarland 0.5 turbidity 
standard Filter paper disks impregnated with test 
compounds are placed on agar plates inoculated with 
fungal cells.  The drying time for the impregnated disks 
was varied from 2 h to overnight under a laminar flow 
cabinet. Negative controls consisted of pure DMSO, 
sterile distilled water, or ethanol, while positive controls 
included antibiotics, such as vancomycin, amoxicillin, 
and amphotericin B discs. Following incubation at 48 
hours at 25°C. The diffusion of chemicals from the discs 
into the agar medium inhibited the growth of 
microorganisms, resulting in distinct zones of inhibition 
around each disc. The minimum inhibitory concentration 
(MIC) was determined as the lowest concentration of 
plant extract or pure phenolic acid that produced an 
inhibition zone around the disc45,46.  

II. Agar well diffusion  

The agar well diffusion assay is analogous to the agar disk 
diffusion assay, which shares similar principles. 
Standardized bacterial and Candida broth cultures (0.5 
McFarland standard) were streaked onto Mueller-Hinton 
agar (MHA) plates to create uniform lawn growth and 
allowed to dry at room temperature for 30 minutes4748. 
Mueller-Hinton Agar (MHA) plates were divided into 
quadrants and labeled. A sterile cork borer or tip is then 
used to create a cylindrical well (6-8 mm diameter) in the 
agar49. Extract at concentrations of 25%, 50%, 75%, and 
100% were then added to the wells, allowing the 
solutions to diffuse into the MHA at room temperature 
for specified hour50. Pure solvents served as controls, 
whereas antibiotics were used as reference standards. 
The plates were incubated at 37°C overnight for yeast-
like fungi or at room temperature for 48 hours for mold51. 
The antifungal activity of the extract was determined by 
measuring the diameters of the inhibition zones which 
were measured using a metal caliper and recorded in 
millimeters52,5354 

III. Antimicrobial gradient method (E-Test).  

The E-test is a combination of the diffusion and dilution 
methods. This technique involves creating a 
concentration gradient of the compound in the agar 
medium55. This method is specifically designed to 
determine the minimum inhibitory concentration 
(MIC)56–58. The test involves using a specialized test strip 
impregnated with gradient concentration of the 
antimicrobial agent(extract), which is then placed on an 
agar plate inoculated with the test organism59. After 
incubation, the antimicrobial activity is visible as an 
ellipse of inhibited growth around the strip, As the 
antimicrobial agent diffuses from the strip into the agar, 
a zone of inhibition forms and the MIC value is 
determined by the point where the ellipse intersects the 
scale60,61. Terbinafine minimum inhibitory 
concentrations (MICs) were determined using the 
gradient test method with Terbinafine Ezy MIC Strips. 
The strips showed an MIC range of 0.002-32 mg/mL. The 
terbinafine strips were placed on the agar, and MICs were 
determined after 5 days of incubation at 25°C62. This 
method offers flexibility and allows laboratories to test 
the drugs of their choice. However, with costs ranging 
from $2 to $3 per strip, this approach can become 
expensive when testing multiple drugs63. 

IV. Broth micro dilution  

This approach involves serial dilutions of an antifungal 
agent in a liquid growth medium, which is then 
inoculated with a standardized fungal suspension. Stock 
solutions of plant extracts and the positive control drug 
prepared in dimethyl sulphoxide (DMSO)64. Two-fold 
serial dilutions of the plant extract were prepared in a 
specified concentration range and transferred to a 96-
well microplate. Fresh fungal colonies were suspended in 
Mueller-Hinton broth to achieve a turbidity of 0.5 
McFarland standard65,66. Inoculate each well containing 
the antibiotic solution and the growth control well with 
the fungal suspension67,68. After incubation, turbidity of 
the wells was checked visually or using an automated 
reader. The MIC can be determined by measuring 
fluorescence intensity or turbidity at specified 
wavelengths63. The concentration with a prominent 
decrease in turbidity was determined as the minimum 
inhibitory concentration (MIC)69,70. Recently, improved 
and validated colorimetric microdilution assays have 
been developed, using triphenyl tetrazolium chloride 
(TTC) as an indicator.  These assays can correlate 
absorbance with the concentration of viable 
microorganisms and determine not only MIC but also 
50% and 90% inhibitory concentrations (IC50 and IC90, 
respectively)71,72. Guidelines such as Clinical and  
Laboratory Standards Institute (CLSI) and European 
Committee on Antimicrobial Susceptibility Testing 
(EUCAST) provide a framework for testing the 
antimicrobial susceptibility of bacteria, yeast, and 
filamentous fungi73,74. 

V. TLC Bioautography  

Bioautography can be effectively combined with thin-
layer chromatography (TLC) to separate and identify 
bioactive compounds75. The test process involved the 
application of a specific amount of plant extract to a silica 
gel plate and developed using a suitable solvent system 
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to separate the phytochemicals. A suspension of the test 
bacteria was then sprayed or dipped onto a TLC plate. 
The bioautogram is incubated under suitable condition 
76. The bioautograms were developed by spraying the 
plates with p-iodonitrotetrazolium violet (INT) solution, 
resulting in white spots indicating inhibition zones 
against a pink-purple colored background 77. These salts 
are converted into colored formazan by living 
microorganisms, indicating growth. The Rf values of the 
active spots with antifungal activity on the bioautograms 
were compared to identify the antifungal compounds78. 
Schmou et al. and sakunpak et al. developed TLC using  
silica gel G60 F254 and developed with mobile phase 
with multiple solvents79,80. 

VI. Time kill test 

This test involves exposing microorganisms to varying 
concentrations of antimicrobial agents over a specific 
period, providing insights into time-dependent or 
concentration-dependent effects75.Time-kill testing is 
the most effective method for evaluating the bactericidal 
or fungicidal effects of antimicrobial compounds and 
understanding their interactions with microbial cells81.  
The test involves incubating bacterial suspensions with 
test tubes or wells containing growth medium and 
specific concentrations of antimicrobial agents are 
prepared. The test microorganisms were then inoculated 
into each tube or well to ensure a consistent starting cell 
density. The tubes or wells are incubated under 
controlled conditions for predetermined time intervals, 
and samples are withdrawn at each interval (0-24 hours) 
and the percentage of dead cells is calculated relative to 
the growth control using the agar plate count method82–

84. The colonies were counted and compared with the 

control in terms of cfu/mL85. A bactericidal effect is 
typically achieved with a 90% lethality rate at 6 hours or 
99.9% lethality at 24 hours. Generally, samples were 
taken at 3, 6, 9, and 18 hours86.  

6. Transferosomes  

Transferosomes are specially designed vesicular carrier 
systems that consist of an inner aqueous compartment 
enclosed by a lipid bilayer and an edge activator. This 
unique structure creates ultra-deformable vesicles with 
self-optimizing and self-regulating capabilities, allowing 
them to penetrate the skin through narrow pores to 
deform and pass through the  

stratum corneum (SC) without significant depletion. 
Transferosomes up to 500 nm in size can spontaneously 
penetrate the SC6,87.  The structure of a transferosome 
consists of an aqueous core surrounded by a complex 
lipid bilayer. These systems are formed by complexing 
phytoconstituents with phospholipids. The 
phospholipids used possess both hydrophilic and 
lipophilic properties, allowing them to interact with both 
water-soluble and fat-soluble constituents of the 
Phytoconstituent-Loadedand act as a drug carrier for 
non-invasive targeted drug delivery and sustained 
release of therapeutic agents88,89. Transferosomes are 
composed of phosphatidylcholine, edge activator and 
other ingredients as shown in Table 3. The exact 
mechanism of transferosomes' enhanced delivery of 
active substances across the skin is not well understood 
but may include combination of Drug vectorization, 
Stratum corneum disruption or Penetration features of 
transferosome vesicles90,91. 

 

 

Figure 1: Transferosomes Structure 

 

Polar lipids, such as those found in transferosomes, 
attract water due to their hydrophilic residues. As a 
result, lipid bilayers resist dehydration, and lipid vesicles 
move from dry locations to areas with high water 
concentrations. When a transferosomes suspension is 

applied to the skin surface, the lipid vesicles sense the 
osmotic gradient and move along it to avoid dehydration. 
To achieve this, transferosomes must be sufficiently 
deformable to pass through the narrow pores in the 
skin88 92. Transferosomes composed of surfactants have 
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optimal rheological and hydration properties, allowing 
them to overcome the skin penetration difficulty by 
squeezing themselves along the intracellular sealing 
lipids of the stratum corneum. Transferosomes 
demonstrate higher permeation efficiency compared to 
conventional liposomes, despite having a similar bilayer 

structure that facilitates the encapsulation of lipophilic, 
hydrophilic, and amphiphilic drugs93. They offer a 
promising solution for improving antifungal drug 
delivery systems are typically administered as creams or 
gels, offering non-invasive and patient-friendly 
treatments with improved compliance94,95.

 

6.1 Composition of Transferosomes 

Table 3: Key Components of Transferosomes Vesicles 

Ingredients Example Role Ref 

Phospholipids Soya Phosphatidylcholine 

Egg Phosphatidylcholine 

Phosphatidylserine Dipalmityl 
Phosphatidylcholine 

Distearyl Phosphatidylcholine 

Provide lipid bilayer forming vesicle 88 

Edge Activator 

(Surfactant) 

Sodium Cholates 

Sodium Deoxycholate 

Tween80 

Span60, Span 65 

Provide flexibility, elasticity, Improve 
permeation as well as act as stabilizer 

89 

Buffering Agent Saline Phosphate Buffer (Ph 7) Hydrating the thin film, Adjust pH 91 

Solvents Ethanol 

Methanol 

Chloroform 

Water 

Dissolve phospholipids and edge 
activators 

96 

 

6.2 Methods of Transferosomes Preparation:  The selection of a suitable method is critical for achieving optimal 
transferosomes characteristics, such as size, stability, and encapsulation efficiency. Various methods are listed below. 

 

Figure 2: Transferosomes Preparation Methods 
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I. Thin film hydration method/ Rotary 
Evaporation sonication  

The preparation of vesicles involves a multi-step process. 
Initially, phospholipids and edge activators are dissolved 
in a volatile organic solvent mixture, such as chloroform 
and methanol, in a round-bottom flask. Lipophilic drugs 
can be incorporated during this stage. Subsequent 
evaporation of the organic solvent under reduced 
pressure using a rotary vacuum evaporator yields a thin 
film. The deposited film is then hydrated with a buffer 
solution of appropriate pH, allowing for the 
incorporation of hydrophilic drugs. The resulting 
vesicles are then sonicated and homogenized through 
extrusion via polycarbonate membranes with decreasing 
pore sizes (200-100 nm) to obtain 
uniform, small vesicles97,98.  

II. Modified hand shaking method 

The modified hand-shaking method, analogous to the 
rotary evaporation-sonication method, offers an 
alternative approach to preparing lipid-based 
formulations. Initially, a round-bottom flask is charged 
with an organic solvent, lipophilic drug, phospholipids, 
and edge activator, yielding a clear, transparent solution 
upon complete dissolution. Subsequently, the organic 
solvent is evaporated through manual agitation, while 
the flask is partially immersed in a thermostatically 
controlled water bath (40-60°C), resulting in the 
formation of a thin lipid film. Following overnight 
incubation to ensure complete solvent removal, the film 
is hydrated with an appropriate buffer solution at a 
temperature exceeding its phase transition temperature, 
facilitating the incorporation of hydrophilic drugs96,99–

103.   

III. Vortex Sonication. 

A novel approach to preparing transferosomes involves 
a straightforward mixing and sonication process. 
Initially, phospholipids, edge activator, and drug are 
combined in a phosphate buffer. The mixture is then 
vigorously agitated using vortexing, yielding a milky 
transferosome suspension. Subsequent sonication in a 
bath sonicator at room temperature, followed by 
extrusion through polycarbonate membranes of 
decreasing pore sizes (450-220 nm), results in a 
homogeneous transferosomal formulation96,100,101,103–105.  

IV. Ethanol injection  

A novel method for preparing lipid-based formulations 
involves a solvent injection technique. Initially, a clear 
organic phase solution is obtained by dissolving 
phospholipid, edge activator, and lipophilic drug in 
ethanol via magnetic stirring. Concurrently, an aqueous 
phase is prepared by dissolving water-soluble 
substances in a phosphate buffer, allowing for the 
incorporation of hydrophilic drugs. Both solutions are 
heated to 45-50°C. The ethanolic phospholipid solution is 
then injected dropwise into the aqueous solution under 
continuous stirring. Finally, ethanol is removed via 
vacuum evaporation, and the resulting dispersion is 
sonicated to reduce particle size, yielding a 
uniform formulation96,101–106. 

V. High Pressure Homogenization Technique  

A simplified method for preparing transferosomes 
involves a combination of ultrasonic shaking and high-
pressure homogenization. Initially, phospholipids, edge 
activator, and drug are uniformly dispersed in a 
phosphate-buffered saline (PBS) solution or distilled 
water containing alcohol, followed by simultaneous 
ultrasonic shaking and stirring. The mixture is then 
subjected to intermittent ultrasonic shaking to facilitate 
further dispersion. Subsequent homogenization using a 
high-pressure homogenizer yields a uniform 
transferosomal formulation, which is then stored under 
suitable conditions96,102. 

VI. Reverse phase evaporation method 

A novel method for preparing vesicular formulations 
involves a multi-step process. Initially, phospholipids 
and edge activator are dissolved in a mixture of organic 
solvents, such as diethyl ether and chloroform, in a 
round-bottom flask, allowing for the incorporation of 
lipophilic drugs. The solvent is then evaporated using 
rotary evaporation to yield lipid films, which are 
subsequently redissolved in an organic phase comprising 
isopropyl ether and/or diethyl ether. A two-phase 
system is formed by adding an aqueous phase, enabling 
the incorporation of hydrophilic drugs. Sonication using 
a bath sonicator transforms this system into a 
homogeneous water-in-oil (w/o) emulsion. Finally, slow 
evaporation of the organic solvent using rotary 
evaporation yields a viscous gel, which eventually forms 
a vesicular suspension96,101–106. 

VII. Centrifugation process 

A lipid-based formulation can be prepared through a 
multi-step process. Initially, phospholipids, edge 
activator, and lipophilic drug are dissolved in an organic 
solvent. The solvent is then removed using rotary 
evaporation under reduced pressure, followed by 
vacuum drying to eliminate residual solvent. The 
resulting lipid film is subsequently hydrated with an 
appropriate buffer solution by centrifugation at room 
temperature, enabling the incorporation of hydrophilic 
drugs. The hydrated vesicles are then allowed to swell at 
room temperature, and the resulting multilamellar 
vesicles are further processed through sonication at 
room temperature to achieve the desired 
formulation100,102,103. 

6.3 Evaluation of Transferosomes 

Various techniques provide crucial data on the physical 
and chemical properties of transferosomes, which are 
essential for predicting their performance in drug 
delivery. 

A. Vesicle Size, Morphology and Zeta Potential 

To determine vesicle size, measurements can be taken 
using Dynamic Light Scattering (DLS) technology. The 
vesicle solution is first mixed with a medium, and three 
readings are taken. Next, the sample is filtered using 
distilled water and a 0.2 mm filter. The filtered sample is 
then diluted with saline, and vesicle size is measured. 
Finally, specialised equipment such as the Malvern 
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Zetasizer and Transmission Electron Microscopy (TEM) 
is used to analyse vesicle size, distribution, structure and 
zeta potential. This value indicates the surface charge of 
transferosomes, influencing their interactions and 
stability107–111. 

B. Entrapment efficiency  

To determine the percentage entrapment efficiency 
(%EE) of drugs in vesicles, two methods can be 
employed. The direct method involves 
ultracentrifugation to separate the vesicles from the 
supernatant, followed by disruption of the sedimented 
vesicles with a solvent. The resulting solution is then 
analyzed using HPLC or spectrophotometry to determine 
the drug content, and %EE is calculated accordingly. 

%EE =  
Amount of drug entrapped

Total amount of drug
  × 100            (1)                                  

 In contrast, the indirect method involves diluting and 
filtering the supernatant to measure the free drug 
concentration. %EE is then calculated by subtracting the 
free drug amount from the total added drug amount and 
dividing by the total added drug amount108,110,112–114. 

%EE =  
Amount of drug added−Amount of drug free

Total amount of drug added
× 100    

  (2)                                  

C. Degree of Deformability 

To evaluate deformability, a standardized method is 
employed, utilizing pure water as a reference. The 
transferosomal preparation is then sequentially passed 
through a series of microporous filters with precisely 
defined pore sizes, ranging from 50 to 400 nanometers. 
After each filtration step, the particle size and size 
distribution of the transferosomes are measured using 
the Dynamic Light Scattering (DLS) technique. By 
analyzing these measurements, the degree of 
deformability is quantitatively expressed, providing 
valuable insights into the formulation's potential to 
permeate through narrow pores and 
biological membrane 115,116. The degree of deformability 
is expressed as :  

D = J  ×  
rv

rp
             (3)                                 

Where, 

  D= Degree of deformability,  

  J = Amount of suspension extruded during 5 min, 

  rv = Size of the vesicle  

  rp = Pore size of the barrier.  

D. In-vitro skin permeation studies 

Franz diffusion cells are used to study skin permeation. 
Animal skin, such as rat skin or porcine skin, is used to 
study skin penetration. The skin is mounted on a donor 
chamber, with the dorsal surface facing the chamber, 
allowing researchers to assess how the formulation 
penetrates the skin. The selected membranes, mimicking 
the stratum corneum, are mounted on the receptor 
compartments. The receptor compartments contain 
phosphate buffer saline solution, stirred by a magnetic 
bar, and maintained at 37 ±0.5°C to simulate blood 

circulation. Transferosomal formulation is added to the 
donor compartment, and the cell is left open to mimic 
non-occluded conditions. At regular intervals, samples 
are withdrawn from the receptor medium, replaced with 
fresh medium to maintain sink conditions, and analyzed 
using HPLC or spectroscopic methods114,115,117. 

7. Conclusion  

The advent of transferosomes technology represents a 
promising strategy for enhancing the delivery of 
phytoconstituents in the treatment of topical fungal 
infections. The ability of these ultra-deformable vesicles 
to penetrate the stratum corneum significantly improves 
drug bioavailability at infection sites, which is crucial in 
the context of rising antifungal resistance. Furthermore, 
the integration of potent herbal remedies with 
transferosomes carriers may lead to synergistic effects, 
amplifying the therapeutic efficacy while potentially 
reducing side effects associated with conventional 
antifungal therapies. Methods like thin film hydration 
and ethanol injection are commonly used to prepare 
herbal transferosomes. Characterization techniques such 
as vesicle size, entrapment efficiency, and in vitro release 
studies are important for optimizing transferosomes 
formulations. However, challenges remain in optimizing 
formulation parameters, scaling production, and 
ensuring therapeutic consistency. Future research 
should focus on clinical applications, long-term efficacy 
studies, and the development of protocols for 
standardized applications. Ultimately, herbal 
transferosomes have the potential to revolutionize the 
landscape of topical antifungal treatment, providing a 
safe and effective alternative for managing superficial 
fungal diseases. 
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