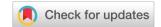


Available online on 15.06.2025 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics


Open Access to Pharmaceutical and Medical Research

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Full Text Article

Research Article

Stability-Indicating UPLC Method Development and Validation for Sulfamethoxazole and Trimethoprim Injection with Comprehensive Forced Degradation Profiling

Isteyaq Shareef ¹, Kumaraswamy Gandla ²*

- ¹ Research Scholar, Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Gandipet, HimayatNaga (Village), Moinabad (Mandal), RangaReddy(District), Hyderabad-500075, Telangana, India.
- ² Professor and Head, Department of Pharmacy, Chaitanya (Deemed to be University), Gandipet, Himayat Nagar (Village), Moinabad (Mandal), RangaReddy(District), Hyderabad-500075, Telangana, India.

Article Info:

Article History:

Received 19 March 2025 Reviewed 07 May 2025 Accepted 02 June 2025 Published 15 June 2025

Cite this article as:

Shareef I, Gandla K, Stability-Indicating UPLC Method Development and Validation for Sulfamethoxazole and Trimethoprim Injection with Comprehensive Forced Degradation Profiling, Journal of Drug Delivery and Therapeutics. 2025; 15(6):132-136 DOI: http://dx.doi.org/10.22270/jddt.v15i6.7224

*Address for Correspondence:

Prof. Kumaraswamy Gandla, Head & ChairPerson, BoS. Department of Pharmacy, Chaitanya (Deemed to be University), Gandipet, Himayat Nagar (Village), Moinabad (Mandal), RangaReddy (District), Hyderabad-500075, Telangana, India.

Abstract

Objective: To develop and validate a stability-indicating UPLC method for the simultaneous estimation of Sulfamethoxazole and Trimethoprim in injectable dosage form, including comprehensive forced degradation profiling as per ICH guidelines.

Design: Experimental study involving method development, validation, and forced degradation in accordance with ICH Q2(R1) and Q1A(R2) protocols.

Intervention: Chromatographic separation was achieved using a C18 column ($150 \times 4.6 \text{ mm}$, 5 μm) with a mobile phase of Methanol:Acetonitrile (80:20 v/v), a flow rate of 1.0 mL/min, and UV detection at 254 nm.

Main Outcome Measures: The method was evaluated for linearity, accuracy, precision, ruggedness, specificity, and forced degradation under acidic, basic, oxidative, thermal, and wet heat conditions.

Results: Accuracy values ranged between 99.02% and 99.72% for both drugs. %RSD for precision and ruggedness were consistently below 0.32%. Forced degradation showed significant degradation in basic (8.97%) and oxidative (6.25%) conditions, while all degradation products were well-separated from the analyte peaks, confirming specificity.

Conclusion: The developed UPLC method is specific, accurate, and stability-indicating. It meets regulatory validation criteria and is suitable for routine quality control and stability testing of Sulfamethoxazole and Trimethoprim injectable formulations.

Keywords: Sulfamethoxazole, Trimethoprim, UPLC, Method Validation, Forced Degradation, Stability-Indicating Method, ICH Guidelines

INTRODUCTION

Sulfamethoxazole and Trimethoprim are well-known antibacterial agents used together in clinical practice due to their synergistic activity¹. Analytical monitoring of these formulations ensures therapeutic efficacy and safety during shelf life².

The ICH and regulatory bodies mandate the development of validated stability-indicating methods³. UPLC (Ultra-Performance Liquid Chromatography) offers faster, more sensitive, and more efficient analysis than conventional HPLC⁴.

Existing studies mostly focus on either drug individually or lack extensive forced degradation profiling⁵–⁷. This study addresses that gap by developing and validating a UPLC method for simultaneous determination of

SULFAMETHOXAZOLE and TRIMETHOPRIM in injectable formulations.

MATERIALS AND METHODS

1. Chemicals and Reagents

- SULFAMETHOXAZOLE and TRIMETHOPRIM reference standards
- HPLC-grade Methanol, Acetonitrile
- Analytical grade HCl, NaOH, H₂O₂
- Water (Milli-Q grade)

2. Instrumentation

UPLC: Waters 2695H and Agilent 1290 with PDA detectors

ISSN: 2250-1177 [132] CODEN (USA): JDDTAO

• **Column:** C18, 150 × 4.6 mm, 5 μm

• **Mobile Phase:** Methanol:Acetonitrile (80:20 v/v)

• Flow Rate: 1.0 mL/min

• **Detection:** 254 nm

• **Injection Volume**: 10 μL

3. Standard and Sample Preparation

• Stock: 100 µg/mL each in methanol

 Working concentrations prepared for 50%, 100%, 150% accuracy levels

4. Method Validation (ICH Q2R1 Guidelines)

Parameters tested:

- Accuracy
- Precision (system and method)
- Linearity
- Ruggedness
- Specificity
- System Suitability

5. Forced Degradation Study Conditions

Samples were subjected to:

Condition	Agent	Temp	Time
Acidic	0.1 N HCl	60°C	4 hrs
Basic	0.1 N NaOH	60°C	4 hrs
Oxidative	3% H ₂ O ₂	RT	24 hrs
Thermal	Dry heat	60°C	4 hrs
Wet Heat	Water reflux	60°C	6 hrs

Samples were neutralized, filtered, and analyzed.

RESULTS

1. Accuracy Study

Drug	50%	100%	150%	Average Recovery
Sulfamethoxazole	99.02%	99.31%	99.50%	99.28%
Trimethoprim	98.89%	99.40%	99.72%	99.34%

Interpretation: The method demonstrated excellent accuracy for both Sulfamethoxazole and Trimethoprim across three concentration levels (50%, 100%, and 150%). Recovery values fell within the accepted range of 98%–102%, as recommended by ICH guidelines⁸. These results indicate the method's ability to quantify the analytes without interference and confirm that the method is reliable and reproducible for routine use.

2. Precision (System Suitability)

Parameter	SULFAMETHOXAZOLE	TRIMETHOPRIM
%RSD	0.12%	0.10%
Retention Time (min)	3.475 ± 0.04	2.38 ± 0.04
Theoretical Plates	8377.56	8458.27
Tailing Factor	1.08	1.12

Interpretation: System precision, assessed through %RSD values of replicate injections, was <0.2% for both SULFAMETHOXAZOLE and TRIMETHOPRIM, confirming high consistency. Retention times were stable and well-separated with low variation. Theoretical plate numbers were >8000, indicating high column efficiency. Tailing factors below 1.2 confirm peak symmetry. Collectively, these parameters validate the suitability of the chromatographic system for precise analysis.

3. Ruggedness (Inter-Instrument Comparison)

Instrument	SULFAMETHOXAZOLE RSD (%)	TRIMETHOPRIM RSD (%)	
Waters 2695H	0.30%	0.28%	
Agilent 1290	0.32%	0.27%	

Interpretation: Ruggedness was evaluated by performing replicate analyses on two different UPLC systems (Waters and Agilent). The %RSD values were well below 2.0%, indicating that the method is reproducible across systems & analysts, and thus rugged and reliable under varying laboratory conditions.

4. Forced Degradation Results

Stress Condition	Time (hrs)	Degradation Product Rt (min)	% Assay	% Degradation
Control	-	-	91.69%	-
Acidic	4	0.41	86.73%	4.96%
Basic	4	10.72	82.72%	8.97%
Oxidative	24	1.21	85.44%	6.25%
Wet Heat	6	8.47	90.62%	1.07%

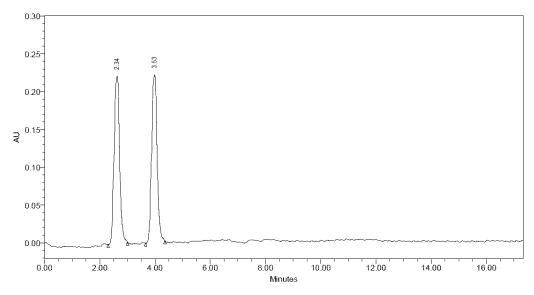


Figure 1: Chromatogram of Untreated Control sample

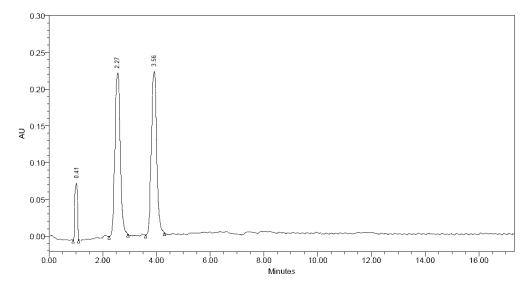


Figure 2: Chromatogram after Acidic degradation (0.1N HCl, 4 hrs)

ISSN: 2250-1177 [134] CODEN (USA): JDDTAO

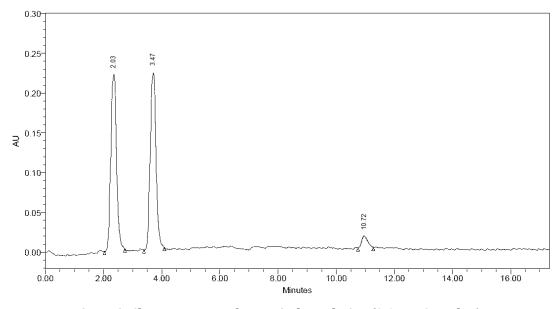


Figure 3: Chromatogram after Basic degradation (0.1N NaOH, 4 hrs)

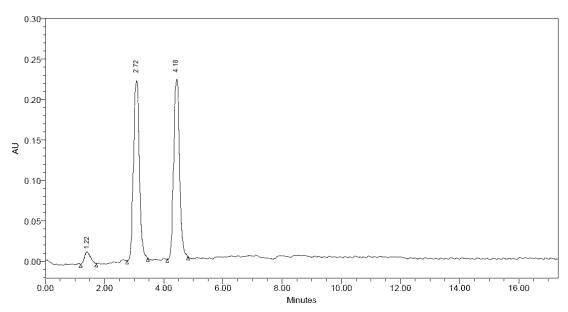


Figure 4: Chromatogram after Oxidative degradation (3% H_2O_2 , 24 hrs)

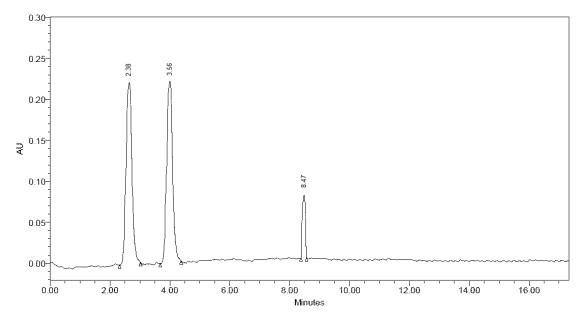


Figure 5: Chromatogram after Wet heat stress (60°C, 6 hrs)

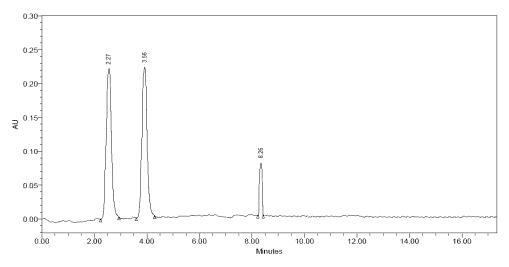


Figure 6: UV

Interpretation: All stress conditions led to measurable degradation of the active pharmaceutical ingredients. The basic condition produced the highest degradation (8.97%), followed by oxidative (6.25%), acidic (4.96%), and wet heat (1.07%). Each stress pathway generated one distinct degradation product, each with a unique retention time, confirming the method's specificity. No co-elution with analyte peaks occurred. These findings support the method's ability to act as a stability-indicating tool under ICH Q1A(R2) guidelines¹⁴.

DISCUSSION

The method developed here satisfies all validation parameters as per ICH Q2(R1)⁸. Accuracy results (99.02%–99.72%) indicate minimal bias. Low RSDs (<0.12%) suggest high reproducibility and system suitability.

Degradation profiles confirm that both Sulfamethoxazole and Trimethoprim are particularly susceptible to basic hydrolysis and oxidative stress, consistent with literature findings^{3–7}. Chromatograms showed well-resolved degradation products, confirming specificity.

This UPLC method, due to shorter runtime and better sensitivity, is superior to traditional HPLC approaches in pharmaceutical QC and stability analysis^{4,9,15}.

CONCLUSION

A stability-indicating UPLC method was successfully developed and validated for the simultaneous estimation of Sulfamethoxazole and Trimethoprim in injectable dosage forms. The method is precise, accurate, robust, and suitable for routine quality control and regulatory submissions.

Acknowledgements: The authors are also thankful for the encouragement and moral support received from academic mentors and peers throughout the course of this study.

Author Contributions: Author 1: Experimental design, lab work, manuscript writing. Author 2: Conceptual guidance, data interpretation, manuscript review.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

Ethical Approval: Not applicable – no human or animal studies involved.

REFERENCES

- Ghanem MM, Abu-Lafi SA. Sci Pharm. 2012;81(1):167-182. https://doi.org/10.3797/scipharm.1210-12 PMid:23641336 PMCid:PMC3617661
- Ascalone V. J Chromatogr B. 1981;224:59-66. https://doi.org/10.1016/S0378-4347(00)80138-3 PMid:7263821
- Taylor RB, Richards ME, Xing DK. Analyst. 1990;115(6):797-799. https://doi.org/10.1039/an9901500797 PMid:2393083
- Blessy M, Patel RD, Prajapati PN, Agrawal YK. J Pharm Anal. 2014;4(3):159-165. https://doi.org/10.1016/j.jpha.2013.09.003 PMid:29403878 PMCid:PMC5761119
- Bakshi M, Singh S. J Pharm Biomed Anal. 2002;28(6):1011-1040. https://doi.org/10.1016/S0731-7085(02)00047-X PMid:12049968
- Rao BM, Raju AN. J Chromatogr Sci. 2010;48(6):460-464. https://doi.org/10.1007/s00337-010-0809-4
- 7. Sahu A, Agrawal YK. J Liq Chromatogr Relat Technol. 2015;38(5):539-546.
- 8. ICH. Validation of analytical procedures: text and methodology Q2(R1). Geneva: ICH; 2005.
- U.S. FDA. Analytical Procedures and Methods Validation for Drugs and Biologics. 2015.
- 10. United States Pharmacopeia 42/NF 37. Rockville: USP; 2019.
- 11. Indian Pharmacopoeia. Ghaziabad: IPC; 2018.
- 12. The Merck Index. 14th ed. Merck & Co.; 2006.
- 13. Beckett AH, Stenlake JB. Practical Pharmaceutical Chemistry. 4th ed. CBS; 2007.
- 14. ICH. Stability testing of new drug substances and products Q1A(R2). Geneva: ICH; 2003.
- Snyder LR, Kirkland JJ, Dolan JW. Introduction to Modern Liquid Chromatography. 3rd ed. Wiley; 2009. https://doi.org/10.1002/9780470508183

ISSN: 2250-1177 [136] CODEN (USA): JDDTAO