

Advancements, Challenges, and Future Directions in Biosensor Technology for Healthcare and Diagnostics

Rajveer Bhaskar¹, Monika Ola², Sunil Shinde^{2*}, Arun Pawar², Vaishnavi Madwe², Rohini Tikhe², Shivani Khade²

¹ Department of Industrial Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra, India 425405.

² Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule, Maharashtra, India 425405.

Article Info:

Article History:

Received 13 May 2025
Reviewed 04 July 2025
Accepted 29 July 2025
Published 15 August 2025

Cite this article as:

Bhaskar R, Ola M, Shinde S, Pawar A, Madwe V, Tikhe R, Khade S, Advancements, Challenges, and Future Directions in Biosensor Technology for Healthcare and Diagnostics, Journal of Drug Delivery and Therapeutics. 2025; 15(8):315-326
DOI: <http://dx.doi.org/10.22270/jddt.v15i8.7171>

*For Correspondence:

Sunil Dnyaneshwar Shinde, Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dist. Dhule 425405, Maharashtra, India.

Abstract

Biosensors are transforming healthcare by enabling faster, more cost-effective, and less invasive methods for disease detection, monitoring, and personalized therapy. In the future, these devices are expected to facilitate real-time data collection as replacements for traditional testing methods, which can be complex and invasive. However, the widespread adoption of biosensors in clinical practice is currently limited by several challenges. Key issues include thermal instability, variability in performance, interference from complex biological environments, and difficulties in integrating these technologies within existing healthcare systems. Additionally, the high production costs and the absence of standardized regulatory guidelines for everyday healthcare applications pose significant barriers.

Recent advances in nanotechnology, artificial intelligence (AI), and stem-cell-based biosensors may help address some of these challenges. Nanomaterials like carbon nanotubes and gold nanoparticles enhance the sensitivity and specificity of biosensors. Moreover, AI-driven applications can facilitate real-time data interpretation and decision-making, while stem-cell-based biosensors offer a promising new avenue for achieving realistic *in vivo* responses in disease detection and drug screening.

Despite these advancements, challenges such as miniaturization, ensuring safe use, biocompatibility of new materials, and data security still need to be overcome. However, as research progresses, biosensors are likely to become recognized for early disease detection, health monitoring, and personalized treatment. Continuous improvements in biosensors will enhance their credibility, make them more cost-effective, and increase their accessibility, ultimately leading to better health outcomes.

Keywords: Biosensor in Healthcare, Its advancement and Challenges.

1. Introduction

The term "biosensor" comes from the fusion of two words: "bio," which refers to biological components or living organisms, and "sensor," which is a device used to detect and respond to specific stimuli. The concept of a biosensor was first introduced by Cammann in 1969^{1,2}. Later, the International Union of Pure and Applied Chemistry (IUPAC) defined a biosensor as an integrated receptor-transducer device that combines a biological sensing element with a physicochemical transducer. This device generates a measurable signal that is proportional to the concentration of the analyte of interest².

Biosensors are designed as analytical devices that detect amounts of specific analytes. A biosensor thus comprises two main components: a bio-recognition element and a transducer^{3,4}. The bio-recognition element identifies the target analyte, while the transducer converts that molecular recognition into an electrical signal measurable and interpretable in an analytical device. Various biomolecules could serve as bio-recognition elements, such as enzymes, nucleic acids, antibodies,

proteins, and peptides. This flexibility allows biosensors to detect specific physicochemical changes occurring in the body that are usually associated with diseases; thus, diagnosis and monitoring are undertaken with very high sensitivity and specificity^{4,5}.

Bio recognition elements in a biosensor could be a bioreceptor, a biomimetic component, or any biological material that interacts with or binds specifically to the analyte^{6,7}. Once done by the bio-recognition element with the analyte, the transducer will take over, converting the biological signal into a measurable physicochemical signal. By different detection methods such as electrochemical, optical, fluorescence, electrochemiluminescence, or piezoelectric for transduction, this procedure can be employed^{8,9,10}.

2. Types of Biosensors

Biosensors can be classified based on the type of biological receptor used and the method of transduction. Below is an overview of the various types of biosensors:

2.1 Classification Based on Biological Receptors Used

• Enzymatic Biosensors:

Enzymes serve as biological recognition elements in enzyme-based biosensors. These exploit enzyme catalytic activities through the interaction between the substrate (of the analyte) or an inhibitor with the enzyme. The consequence of the enzyme-catalyzed reaction produces several amounts of a product associated with a concentration of the analyte. Most of such biosensors operate with electrochemical transducers. A good example of this type is glucose sensors, which employ the enzyme glucose oxidase to indicate glucose concentrations^{15,16}.

• Microbial or Whole-Cell Biosensors:

They utilize whole cells of microorganisms (e.g., bacteria or fungi) as a biological receptor for microbial biosensors. These organisms can rapidly replicate and use their cellular receptors to detect various analytes. Microbial biosensors are widely used for environmental monitoring, food quality testing, drug screening, and detection of heavy metals, pesticides, and organic contaminants^{15,17}.

• Tissue-Based Biosensor:

Biosensors based on tissues use cells from either animals or plants as biological receptors. These may be used for in vitro and in vivo applications like drug testing, tissue engineering, environmental stress analysis, and modeling diseases. They are especially useful in assessing the tissue condition and response to a particular condition or material^{18,19}.

• Immuno-Sensors:

High specificity is found in the antigen-antibody reactions, which are used in these immuno-sensors. Mostly, these immuno-sensors utilize antibodies as a recognition element, and these sensors are used primarily for disease diagnosis, including cancers, through the detection of specific antigens. These sensors are extremely sensitive and can be either labeled (with optical tags) or label-free (using techniques such as Surface Plasmon Resonance (SPR), for detecting structural change^{20,21}.

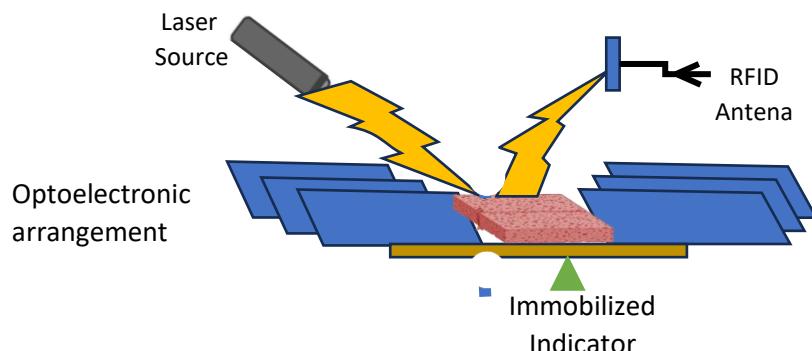
• DNA Sensors and Aptamers:

DNA sensors rely on either single-stranded DNA or RNA molecules in sensing specific proteins or complementary strands of DNA. Besides, they can act as biological receptors, such as aptamers, since they are synthetic oligonucleotides that fold into certain structures. These sensors can be enclosed in nanoparticles for the detection of disease-related biomarkers, with possible application for cancer or other pathogen diagnosis²².

• Nanomaterial-Based Biosensors:

Due to the biomimetic properties of nanoparticles and nanowires, they can also serve as biological receptors. These include gold, tungsten, and graphene-based nanoparticles for their possible adsorption or embedding biological entities, thus improving analyte detection by such nanomaterials as metallic and semiconducting nanoparticles. These nanomaterial biosensors are currently being popularized because they are sensitive and versatile for different biosensing applications^{16,23}.

2.2 Classification Based on the Transduction System Used


Biosensors may be categorized based on the kind of transduction system they utilize to transform biological signals into measurable outputs. These include the following main methods:

• Electrochemical Sensors:

Electrochemical biosensors are those that measure the electrochemical changes occurring on the electrode surface when the analyte interacts with the sensor. Based on the electrical change measured, these sensors can be classified into potentiometric (voltage change), amperometric (current change), or conductometric (changes in charge transport). Electrochemical sensors are simple, inexpensive, and easily miniaturized, making them very promising for point-of-care devices, such as glucose meters. They are commonly used in assays based on DNA/RNA detection, enzyme assays, and environmental monitoring. A notable example is the sandwich assay method used in pregnancy tests and urinalysis strips^{24,25}.

• Optical Sensors:

Optical biosensors detect the analyte's effect on properties of light, such as diffraction, reflection, or fluorescence, by the biological receptor^{24,26,27}.

*Figure 1: Optical Biosensor*²⁴

• Piezoelectric Sensors:

Also referred to as piezoelectric mass biosensors, this type of mass sensor makes use of a vibrating piezoelectric crystal (usually quartz) as the sensing element. When the analyte binds to the sensor, it causes changes in the resonant frequency of the crystal and induces an oscillation voltage output. These sensors are commonly used for gas-phase analysis but are also applied in liquid-phase detection. Piezoelectric sensors are more sensitive and versatile; they are more expensive, as is the case with optical sensors²⁴.

• Thermal or Calorimetric Sensors:

Thermal biosensors measure temperature variation due to biological reactions, like catalysis due to enzymatic reactions. The heat produced in the reaction can be measured as released and multiplied by a calibration factor to find out the concentration or amount of analyte. These biosensors find their applications largely in the field of detecting pesticides, pathogens, or even serum cholesterol. Enzyme-based reactions have been found to play a prominent role in thermometric biosensors^{16,24}.

2.3. New Generation Biosensors

• Quantum Dots.

Quantum Dots (QDs) are semiconductor crystals with a nanometre-scale that amplify both specificity and sensitivity for optical biosensing techniques. The applications of QDs are varied, ranging from measuring pH and ions to quantifying DNA, RNA, proteins, and medicines, but they have been known to be limited by their potential toxicity and non-reusability. Thus, ongoing research continues to solve these problems^{24,28-30}.

• Graphene-Based Biosensors

A great material for biosensors is graphene, a mono-layer of carbon atoms in a hexagonal lattice. The excellent electrical conductivity and large surface area of graphene make it very good at performing this function because the two-dimensional format allows very fast electron transfer, necessary for the correct detection of biomolecules³¹. Graphene electrode system has proven to be highly effective in the electrochemical analysis of small molecules (e.g. glucose and amino acids)^{24,32}.

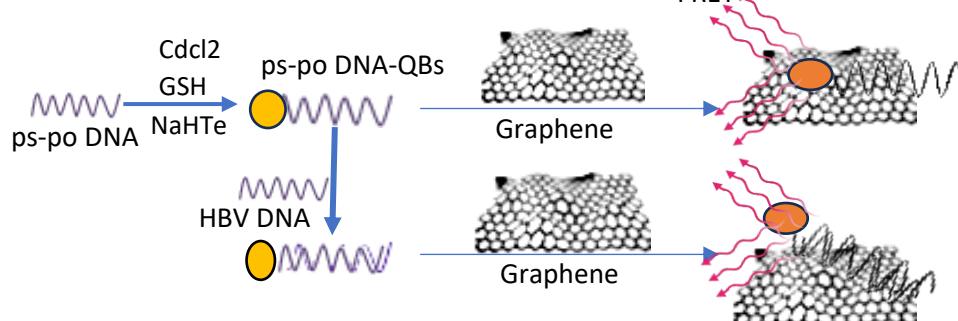
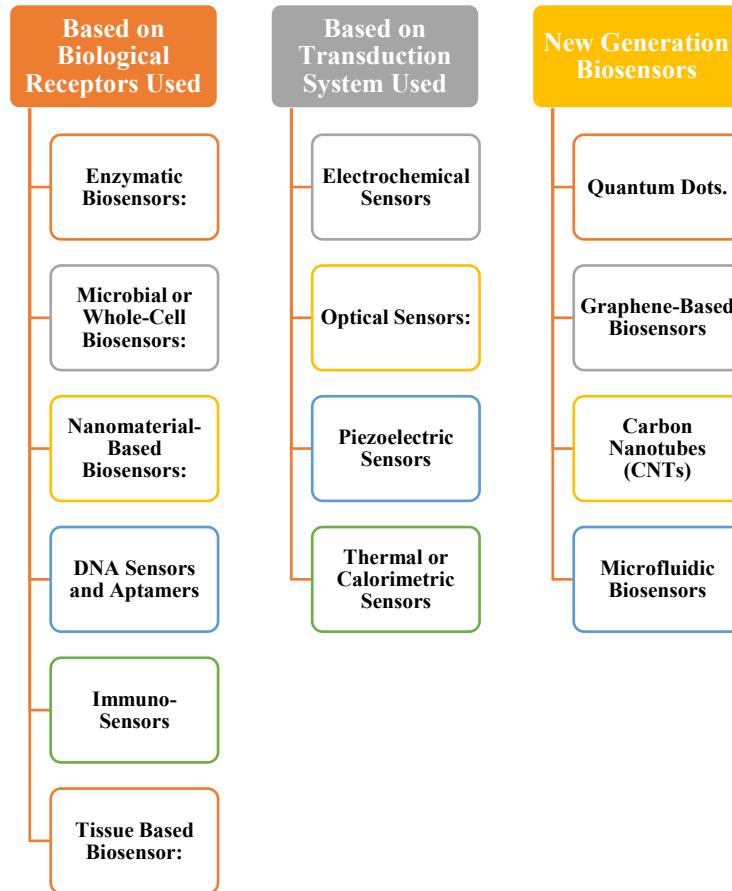


Figure 2: Graphene Based Biosensor²⁴


• Carbon Nanotubes (CNTs)

Carbon nanotubes (CNTs) are tubular shapes of rolled graphene sheets. These materials exhibit extraordinary mechanical strength, electrical conductivity, and thermal stability appropriate for use as biosensors. The detection of biomolecules, such as viruses, nucleic acids, and proteins, by CNTs is based on the changes that can be produced in the electrical conductivity of the measured system whenever the analyte interacts with the sensor probe^{24,33,34}.

• Microfluidic Biosensors

Microfluidic biosensors are analytical instruments that work with very small amounts of analyte fluids for the detection of specific target molecules. They function on the principle of measuring changes in mass and/or dielectric properties due to the binding of an analyte, such as a tumor marker or pathogen, with its specific receptor on the sensor. The high surface-area-to-volume ratios of microfluidic devices make it possible to analyze even extremely low concentrations of analytes^{24,35-37}.

CLASSIFICATION OF BIOSENSOR

3. Working Principle of Biosensors: Decoding Biological Complexity

A biosensor observes the bioreceptor-analyte interaction to detect the specificities in the analyte. After the analyte attaches itself to a bioreceptor, a biological signal is generated due to this attachment. The transducer is then able to transform that biological signal into some measurable form, electrically or optically. The signal is transferred to the electronics, where it is conditioned and digitized for processing. Finally, the output would be easily understood by an end-user, allowing real-time monitoring or analysis^{11,12}.

3.1. Biological Sensing Element and Transducer Interaction

The basic principle governing a biosensor is the coupling between its biological sensing component and the transducer. The biological sensing element is usually an enzyme, but it can also be another biological entity (tissues, cells, or microorganisms). It interacts with a specific biological material that alters its properties, thus triggering an electroenzymatic process, which the transducer recognizes. The transducer outputs signal the biological reaction into an electric signal, the basis for the next types of analysis.

The electrical signal generated by the transducer can either be current or voltage, depending on the sensor design. If the sensor produces a current, the current must be converted to the corresponding voltage using a

current-voltage converter using operational amplifiers, which is extremely necessary for data processing³⁸.

3.2. Signal Purification and Gain

After conversion, the electrical signal is usually weak and can be prone to external noise. For sure, the signals are amplified through an op-amp-based amplifier. This tends to strengthen the signal and enhances its clarity and precision, which is very important for accurate measurement.

3.3. Signal Processing and Filtering

Once the signal is ready, it passes into a signal conditioner where it may be subjected to a low-pass RC filter. This signal conditioning unit purifies the signal, removing noise and keeping only the relevant information for the upcoming processor stage.

3.4. Data Analysis & Digital Conversion

The conditioned signal is now analyzed at a microcontroller or processor that interprets and performs sophisticated examinations of the data. This unit does not just process data; rather, it determines the way the information will impact decision-making. The final output from this analysis is converted into a digital form suitable for further storage and interpretation.

3.5. Display and Visualization

Then, the processed digital signal is finally available on a display screen, which is generally found to be an LCD,

CODEN (USA): JDDTAO

making that biological quantity observable. It can be very helpful to the user for making decisions based on real-

time data since it enhances the access and usability of the biosensor^{2,38,39}.

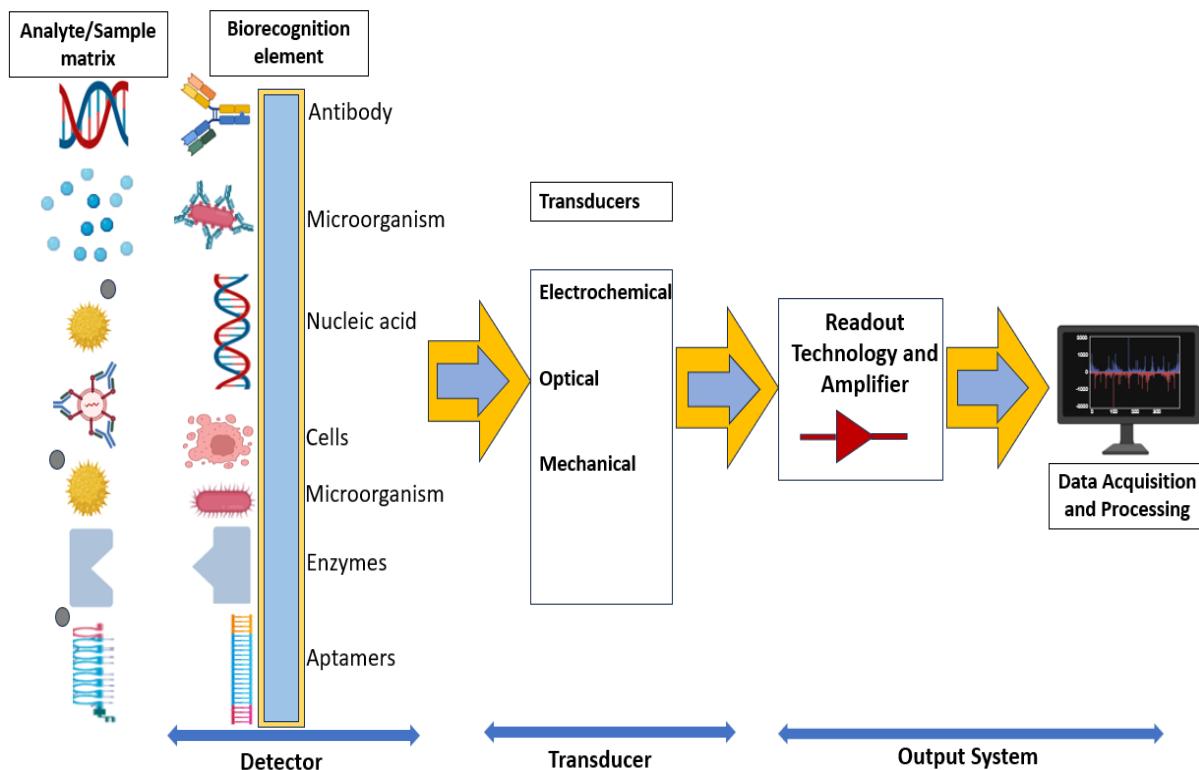


Figure 3: Working Principle of Biosensor ²⁴

4. Distinctive features of biosensors in health care:

4.1 Early Disease Detection and Pandemic Response

Recently, it was the pandemic of COVID-19 pandemic that underscored the role of biosensors in infectious disease diagnosis. These sensors are incorporated to detect the presence of viruses or identify disease early, greatly enhancing public health action's effectiveness. Similarly, biosensors help to diagnose many other infections, including avian influenza, SARS, and the Hendra virus^{40,41}.

4.2 Heart Disease and Biomarker-Based Diagnostics

It is well known that cardiovascular diseases cause a high annual toll of more than 17 million deaths globally. Biomarker biosensors very much contribute to the diagnosis or prognosis^{42,43}.

4.3 Diabetes Management

The incidence rises worldwide, and the increasing need for effective non-invasive diagnosis has begun creating an acute demand. Biosensors have greatly enhanced the management of diabetes by enabling real-time blood glucose monitoring⁴³⁻⁴⁵.

4.4 Applications in Disease Diagnostics and Cancer Research

Biosensors are now an indispensable tool for disease detection, particularly cancer detection, through indicators for the early stages of the disease. The electrochemical biosensors promise to be useful and convenient compared to the time-consuming

conventional methods in cancer diagnosis. They can also detect toxic trace metals from water, poisonous pathogens, and other toxins in the environment⁴⁶⁻⁴⁸.

4.5 Point-of-Care Diagnostics

But there are so many other advantages of having biosensors that they do provide quick, on-site analysis, making them highly suitable for point-of-care (POC) diagnostics. They are portable and give immediate results, which would allow for diagnosis and early treatment. Glucose monitoring or pregnancy tests, let alone drug addiction detection, are available these days to be found in most households. Other applications of biosensors are on monitoring vital signs such as blood pressure and joint rotation in health care settings, which then give real-time data for health management at these endpoints^{43,49,50}.

4.6 Implantable Biosensors and Future Directions

Implantable biosensors will revolutionize patient care as they can monitor physiological parameters all the time, and lead to personalized medicines, further improving the treatment of diseases. However, implantable biosensors will possibly play a major role in meeting the needs of chronic diseases and individualized prescriptions, although many challenges regarding technical limitations and the demand for authenticated biomarkers exist on their way. Soft pressure sensors, however, are emerging as very important elements for health care applications because of their flexibility and adaptability⁵¹⁻⁵³.

5. Biosensors in Diagnostics

5.1 Cardiovascular Diseases (CVDs)

Cardiovascular disease remains a leading cause of death worldwide. Biomarkers such as C-reactive protein (CRP), myoglobin, brain natriuretic peptide (BNP), and cardiac Troponin I (cTnI) are evident and assist healthcare professionals in detecting heart abnormalities early. Testing for these biomarkers has often been tedious via ELISA or fluorometric assays. Due to the biosensor provides quick and fast results^{54-57,61}.

5.2 Bacterial and viral infections: Diagnosis

The most important applications of biosensors in bacteria and virus detection are in the diagnosis of infectious diseases. It was the recent COVID pandemic that proved how rapidly the identification of a viral infection could be done by biosensors. Common pathogens like Urinary Tract Infections (UTIs), HIV-1, and cancer of the cervix due to HPV can also be diagnosed using this technology⁵⁷⁻⁶⁰.

5.3. Biosensors as Diagnostic Tool for Cancer

Biomarkers of human cancers include various cellular proteins, enzymes such as LDH, tumor cell DNA/RNA, and interleukins. Advancements in biosensor technology have now helped to develop a sensor that detects cancer biomarkers, significantly improving diagnostics when compared with conventional methods like ELISA or imaging-based protocols^{59,61-64}.

5.4. Immunological Disorders and Autoimmunity

Biosensors are used in the identification of autoimmune pathology, since autoimmune pathology occurs when the immune system attacks the body's own cells. The major challenge has been the isolation of disease-specific biomarkers, because certain autoantibodies can also be found in healthy persons or can emerge during infections^{65,66}.

5.5. Other Applications in Disease Diagnosis

Biosensors are not only used in laboratories or clinical settings, but they can also be used in primary health care or sometimes even at home, since using them is easy. Miniaturized biosensors would include such devices as microfluidic chips and paper-based sensors that are already available in the market for Point-of-care (PoC) applications. Such devices enable fast and accurate detection of diseases like cancer and can be applied even in households or less resource-rich settings⁶⁷⁻⁷⁰.

6. Integration of Biosensors with Drug Delivery Systems

From a health point of view, biosensors are tools that have contributed effectively to the diagnosis and monitoring progression of diseases. They do have the advantages of being user-friendly, cost-effective, fast, strong, and able to study many biomarkers in one analysis[75,76]. One of their further benefits is that they can be deployed as platforms in drug delivery systems without sample preparation, as they can directly measure specific biomarkers in biological mixtures. For instance, microneedles are global systems of drug delivery that are

less invasive and painless and do not contact blood, thereby reducing infection and contamination risks^{71-74,77,78}.

6.1 Bio-Micro-Electro-Mechanical Systems (Bio-MEMS)

BioMEMS technology will overcome many disadvantages of traditional implantable drug delivery systems, including unintended drug dumping, side effects, and patient compliance issues. Furthermore, they are usually temporary and expensive to replace. Conventional pumps work by osmotic, electrolytic, or peristaltic methods, while BioMEMS technology has enabled the development of piezoelectric pumps that afford better and more accurate transdermal drug delivery^{79-83,94}.

6.2 Microfabricated Devices

In general, microfabrication has changed in biosensing; however, its lifespan is short, causing a limitation in time. The research should be focused on developing implanted biosensor devices that perform drug delivery and monitoring for extended durations. Overcoming such issues enhances longevity and biomaterial compatibility, and biofouling surrounds them⁸⁴.

Apart from microparticles, researchers have developed micro-reservoirs formed by silicon covered with gold membranes that rupture when stimulated through voltage. Alternatively, smart polymers can respond to changes in the concentration of an analyte so that their collapse might trigger the release of the drug. The futuristic micro-fabricated devices pave the path toward the maturity of controlled-release microchipping, which offers new avenues for drug delivery and biosensor-integrated applications⁸⁵⁻⁸⁷.

6.3 Lab-on-a-Chip Systems in Healthcare and Environmental Applications

Lab-on-chip (LOC) technology systems are growing quickly because they have several important advantages in health care and environmental monitoring[88]. They include rapid analysis of data, enhanced diagnostics, and portability, allowing people to monitor their health without going to a professional health care provider regularly. Technologies like LOC can produce data equivalent to that often acquired using traditional laboratory testing to improve point-of-care access to diagnosis and treatment⁸⁸⁻⁹³.

7. Challenges in the Development of Biosensors for Healthcare

7.1. Enzyme Stability

Stability of enzymes is also one of the main challenges in the development of biosensors, because enzymes have generally been regarded as the most common biorecognition elements in sensors. As a result of extreme conditions such as temperature changes or varying pH levels, enzymes denature or lose their efficiency. Denaturation, therefore, results in an impact on the lifetime and performance of the sensor, which can lead to untrustworthy measurements and is of greater concern in case of medical diagnostics, where accuracy is of great value⁹⁴⁻⁹⁷.

7.2. Variability in Enzyme Activity

Variation of enzyme activity introduces variation in the performance of the sensor, and this may happen as a result of either environmental conditions or intrinsic conditions of enzymes, which would seriously affect the sensor's reliability. Such variation is a significant challenge for deployment in critical healthcare applications that require values to be consistent and precise⁹⁸.

7.3. Immobilization Techniques

The overall efficiency of any biosensor is drastically influenced by the immobilization process of enzymes or other biorecognition molecules onto the sensor surface. Improper immobilization itself may cause loss of enzyme activity or hinder the sensor from interacting with the target analyte, and thus reduce its overall performance. Thus, improving homemade immobilization techniques is essential for the development of more reliable biosensors^{99,100}.

7.4. Complexity of Sample Matrices

Biological samples such as blood, urine, or saliva are complex mixtures that often contain other substances that interfere with the detection of the target analyte in the sensor. Such interferences can cause false-positive or false-negative results; these results are even more dangerous in medical diagnosis, where misdiagnosis or even an inappropriate treatment takes place because the results might be incorrect¹⁰¹.

7.5. Interfacing Existing Healthcare Systems

It is another issue to introduce biosensor installations into the existing healthcare settings. Biosensors need to be incorporated with the automated diagnostic systems in real-time data processing as peripherals of existing and new health care systems. The development of biosensors that operate in tandem with clinical workflows and minimal human intervention must be the most significant for use⁶¹.

7.6. High Production Cost

Biosensors are expensive to manufacture, especially those having very advanced features. This translates to a lack of availability for their widespread use, especially for application in resource-poor health care settings that mainly consider affordability. The cost has to be reduced for the manufacture of biosensors so that a broader segment of the community can access them in any health environment⁵⁶.

7.7. Regulatory and Standardization Issues

The absence of standard regulatory guidelines makes biosensors complicated to develop and approve for medical usage. Biosensors must meet stringent safety and efficacy standards before they can be allowed in clinical settings, and the absence of clear regulatory pathways can cause delays for a long period before introducing new technologies. Standardization protocols on biosensor development can simplify the procedure for approval and improve access for adoption¹⁰².

7.8. Signal Capture and Transduction

Biosensors rely on the successful capture of biorecognition signals and their transduction into measurable outputs. Signal transduction occurs by means such as electrochemical, optical, or acoustic detection. These signals need to be reliably captured and converted to give quality results in the case of biosensors, particularly in the field of medical diagnostics, where accuracy is crucial³⁹.

7.9. Enhancement of Transducer Performance

The other consideration is transducer performance enhancement. The transducer constitutes the detection and conversion element. It is required to be sensitive and responsive to lower concentrations of analytes. To improve sensitivity, response time, and reproducibility of transducers is important to make sure that biosensors achieve accurate disease diagnosis and health monitoring¹⁰³.

7.10. Specificity and Sensitivity

The sensitivity and specificity of a biosensor for healthcare applications should be very high. Sensitivity involves the ability of a biosensor to detect small concentrations of a biomarker, while specificity guarantees that the correct biomarker can be distinguished from all others found in the sample. In the absence of these qualities, biosensors may bring about false positives and negatives, which would compromise their reliability in clinical diagnostics^{104,105}.

7.11. Reproducibility and Consistency

For a biosensor to be trusted in the medical field, it is important to have logical and consistent results, whether from batch to batch or under changing environmental conditions. Sensor performance variation, either due to the manufacturing process or external environments, can, at times, lead to degraded results, and, hence, reproducibility becomes an important requisite of such technologies^{39,105-107}.

8. Future Advances in Biosensors Technology

Since their invention, biosensors have found important applications in many sectors, particularly in healthcare, in the diagnosis and monitoring of diseases¹³.

Continuous health parameter monitoring is now possible because of technology like wearable and implantable biosensors and the newer advances in biosensor technology. The future for biosensors is expected to move beyond the existing simple primary diagnostics and therapeutic capabilities and explore new frontiers such as targeted treatment and personalized medicine¹⁴.

8.1 Nanotechnology in Biosensors

Nanotechnology for biosensors is an extremely early stage, whereby much scientific investigation has already shown the implementation of nanoscale materials into biosensors that detect specific biological molecules such as proteins, enzymes, and nucleic acids¹⁰⁸⁻¹¹¹. Since some sensor applications were formed using electrodes with nanoscale sensor elements like carbon nanotubes, gold-nanoparticles, quantum dots¹¹², and magnetic

nanoparticles¹¹³, most of the nanomaterial-probe characteristics have shown an increase in the sensitivity of biosensors as a result of exceptional property benefits of nanomaterials - chemical, physical, optical, and mechanical. There lies so much opportunity for further research concerning signal amplification within both cell-based and cell-free biosensing systems. The substrate over which nanomaterials are dispersed has a significant impact on the performance of these biosensors in the future^{111,114}.

8.2 Artificial Intelligence and Biosensors

A biosensor is developed into an internal part of Artificial Intelligence so that one can wear a sensor and keep a continuous watch on health parameters in real-time. AI improves how data is collected through biosensors to identify patterns, make classifications, and draw inferences that will contribute to improved diagnostics and treatment strategies. Having AI and biosensors together, therefore, closes the gap between raw data collection and actionable insight to more personalized and precise healthcare^{114,115}.

8.3 Stem Cells toward Biosensor Development

The biggest promise for biosensors in the future is most likely in stem cells and the way they can produce more biologically relevant cell-based sensors. They can culture and differentiate into specialized cell types, representing *in vitro* performance better than cell lines. Thus, it generates a range of humanized cell types for more appropriate application in biosensor technology in drug testing and toxin screening^{114,116-118}.

8.4 Cellomics in Biosensor Research

The combination of cellomic studies with microfabrication technologies will further the development of biosensors that can detect very subtle changes in cellular processes and therefore provide very valuable information for the earliest possible detection of diseases or monitoring any therapeutic intervention for effectiveness. As the field of cellomics progresses, it will continue to way for more accurate biosensors, in terms of reliability, real-time monitoring of biological systems^{114,119}.

9. Future Advantages of Biosensors

Biosensors are becoming important instruments in research and healthcare. Their applications are across different fields. These devices are expected to give more benefits in the future, such as the following:

- **Accuracy and Reliability:** Biosensors provide fast, accurate results as necessary for any clinical setting. Providing consistent and reliable data will continue to make it the preferred choice while diagnosing medical conditions¹²⁰.
- **Cheap and Reusable:** According to the design, many biosensors are mass-produced at a low-cost basis, usually reusable, and hence very cheap for wide applications. These biosensors would generally provide accessibility and cost-effectiveness for both clinical and personal uses¹²⁰.

• **More User-Friendly:** This means that with advances in biochip technology, biosensors are becoming increasingly user-friendly, requiring little specialized expertise for their use. Most probably, these will allow patients and health care providers alike to operate with ease¹²⁰.

• **Portability:** The development of portable biosensors, particularly those that include nanotechnology, is expanding the potential for point-of-care testing and remote monitoring, especially for patients who require continuous health monitoring¹²⁰.

9.1 Future Challenges in Biosensor Development

Despite the wide potential, many challenges need to be addressed to use biosensors widely. Some of them are given below:

- **Detection of Small Analytes:** Some biosensor technologies, for example, Surface Plasmon Resonance (SPR), have limitations in the detection of small analytes. This type of analyte will provide a very weak signal that makes it very difficult to detect. More sensitive SPR sensors will have to be developed to overcome this limitation¹²¹.
- **Ethical Problems Associated with Microbial-Based Biosensors:** Although these biosensors have shown some hope, some ethical issues are raised regarding genetic modification and the potential applications of microbial-based biosensors in humans. It will be a prime point to develop this further by addressing ethical concerns¹²².
- **Sensor Stability:** All biosensors will have to show stability and performance at low and very high temperatures. The successful performance of biosensors in the real world is very important for them to be applicable in many fields¹²³.

High Research and innovation are ongoing for these problems, and it is difficult to believe that in the future, these challenges will be solved.

Conclusion

Biosensors are gradually becoming vital components in present-day health care systems, with excellent promises for enhancing diagnosis, patient monitoring, and treatments custom-tailored to individual patients' conditions. Unfortunately, numerous hurdles have prevented their widespread use, such as enzyme stability, variability in sensor response, interference from complete biological samples, and higher costs of development and manufacturing. Thus, the ability to surpass the above-mentioned challenges could deliver the magical figure for the realization of an overall potential biosensor in the clinical application.

Emerging technologies in nanotechnology, artificial intelligence, and stem cell-based biosensing will primarily focus on overcoming these drawbacks by enhancing sensitivity, specificity, and performance. More important than ever before, combining nanomaterials with AI-driven data analysis is said to lead to real-time health monitoring, enabling very early detection and personalized therapies, while miniaturization sensor

design will become more user-friendly and accessible towards point-of-care deployment.

However, rather than technological leap-frogging, widespread implementation could require the able overcoming regulatory and standardization hurdles for biosensors to be declared safe, reliable, and scalable. The promise of biosensors, indeed, holds great promise in the healthcare future, given that they are to become major pillars for emerging medical diagnostics and personalized medicine, as well as overall healthcare management. Thereby, progress made will continue over time and further research developments used, not only in improving patient outcomes but also in making healthcare delivery better for the entire world.

Conflict of Interest: The authors declare no potential conflict of interest concerning the contents, authorship, and/or publication of this article.

Author Contributions: All authors have equal contributions in the preparation of the manuscript and compilation.

Source of Support: Nil

Funding: The authors declared that this study has received no financial support.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting this paper are available in the cited references.

Ethical approval: Not applicable.

References

- Nic M, et al., IUPAC compendium of chemical terminology-the gold book, International Union of Pure and Applied Chemistry, 2005.
- Bhatia D, et al., Biosensors and their widespread impact on human health, *Sensors International*, 2024; 5:100257. <https://doi.org/10.1016/j.sintl.2023.100257>
- Polat EO, et al., Transducer technologies for biosensors and their wearable applications, *Biosensors*, 2022; 12(6):385. <https://doi.org/10.3390/bios12060385> PMid:35735533 PMCid:PMC9221076
- Cicha I, et al., Biosensor-integrated drug delivery systems as new materials for biomedical applications, *Biomolecules*, 2022; 12(9):1198. <https://doi.org/10.3390/biom12091198> PMid:36139035 PMCid:PMC9496590
- Metkar SK, Girigoswami K, Diagnostic biosensors in medicine-a review, *Biocatalysis and Agricultural Biotechnology*, 2019; 17:271-283. <https://doi.org/10.1016/j.bcab.2018.11.029>
- Turner A, Karube I, Wilson GS, *Biosensors: fundamentals and applications*, Oxford University Press, 1987. [https://doi.org/10.1016/S0003-2670\(00\)85361-1](https://doi.org/10.1016/S0003-2670(00)85361-1)
- Forster RJ, Bertoncello P, Keyes TE, Electrogenerated chemiluminescence, *Annual Review of Analytical Chemistry*, 2009; 2(1):359-385. <https://doi.org/10.1146/annurev-anchem-060908-155305> PMid:20636067
- Katey B, et al., A review of biosensors and their applications, *ASME Open Journal of Engineering*, 2023; 2. <https://doi.org/10.1115/1.4063500>
- Gupta R, Chaudhury N, Entrapment of biomolecules in sol-gel matrix for applications in biosensors: Problems and future prospects, *Biosensors and Bioelectronics*, 2007; 22(11):2387-2399. <https://doi.org/10.1016/j.bios.2006.12.025> PMid:17291744
- Rodrigues D, et al., Skin-integrated wearable systems and implantable biosensors: a comprehensive review, *Biosensors*, 2020; 10(7):79. <https://doi.org/10.3390/bios10070079> PMid:32708103 PMCid:PMC7400150
- Ghasemi-Varnamkhasti M, et al., Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods, *Trends in Food Science & Technology*, 2018; 80:71-92. <https://doi.org/10.1016/j.tifs.2018.07.018>
- Shanbhag MM, et al., Fundamentals of bio-electrochemical sensing, *Chemical Engineering Journal Advances*, 2023; 16:100516. <https://doi.org/10.1016/j.cej.a.2023.100516>
- Vo DK, Trinh KTL, Advances in wearable biosensors for healthcare: Current trends, applications, and future perspectives, *Biosensors*, 2024; 14(11):560. <https://doi.org/10.3390/bios14110560> PMid:39590019 PMCid:PMC11592256
- Ghazizadeh E, et al., Approaches of wearable and implantable biosensor towards of developing in precision medicine, *Frontiers in Medicine*, 2024; 11:1390634. <https://doi.org/10.3389/fmed.2024.1390634> PMid:39091290 PMCid:PMC11293309
- Rocchitta G, et al., Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids, *Sensors*, 2016; 16(6):780. <https://doi.org/10.3390/s16060780> PMid:27249001 PMCid:PMC4934206
- Naresh V, Lee N, A review on biosensors and recent development of nanostructured materials-enabled biosensors, *Sensors*, 2021; 21(4):1109. <https://doi.org/10.3390/s21041109> PMid:33562639 PMCid:PMC7915135
- Park M, Tsai SL, Chen W, Microbial biosensors: engineered microorganisms as the sensing machinery, *Sensors*, 2013; 13(5):5777-5795. <https://doi.org/10.3390/s130505777> PMid:23648649 PMCid:PMC3690029
- Hasan A, et al., Recent advances in application of biosensors in tissue engineering, *BioMed Research International*, 2014; 2014(1):307519. <https://doi.org/10.1155/2014/307519> PMid:25165697 PMCid:PMC4140114
- Acha V, et al., Tissue-based biosensors, *Recognition Receptors in Biosensors*, 2010:365-381. https://doi.org/10.1007/978-1-4419-0919-0_9
- Chen H, et al., The applications of electrochemical immunosensors in the detection of disease biomarkers: A review, *Molecules*, 2023; 28(8):3605. <https://doi.org/10.3390/molecules28083605> PMid:37110837 PMCid:PMC10144570
- Karachaliou CE, Livaniou E, Immunosensors for autoimmune-disease-related biomarkers: A literature review, *Sensors*, 2023; 23(15):6770. <https://doi.org/10.3390/s23156770> PMid:37571553 PMCid:PMC10422610
- Ning Y, Hu J, Lu F, Aptamers used for biosensors and targeted therapy, *Biomedicine & Pharmacotherapy*, 2020; 132:110902. <https://doi.org/10.1016/j.biopha.2020.110902> PMid:33096353 PMCid:PMC7574901
- Malik P, et al., Emerging nanomaterials for improved biosensing, *Measurement: Sensors*, 2021; 16:100050. <https://doi.org/10.1016/j.measen.2021.100050>
- Patel S, et al., Biosensors in health care: the milestones achieved in their development towards lab-on-chip-analysis, *Biochemistry Research International*, 2016; 2016(1):3130469. <https://doi.org/10.1155/2016/3130469> PMid:27042353 PMCid:PMC4794574
- Chin CD, Linder V, Sia SK, Commercialization of microfluidic point-of-care diagnostic devices, *Lab on a Chip*, 2012; 12(12):2118-2134. <https://doi.org/10.1039/c2lc21204h> PMid:22344520
- Watts HJ, Lowe CR, Pollard-Knight DV, Optical biosensor for monitoring microbial cells, *Analytical Chemistry*, 1994; 66(15):2465-2470. <https://doi.org/10.1021/ac00087a010> PMid:7522419

27. Syam R, et al., Biosensors: a novel approach for pathogen detection, *Vet Scan | Online Veterinary Medical Journal*, 2012; 7(1):102-102.

28. Nurunnabi M, et al., Targeted near-IR QDs-loaded micelles for cancer therapy and imaging, *Biomaterials*, 2010; 31(20):5436-5444. <https://doi.org/10.1016/j.biomaterials.2010.03.057> PMid:20409581

29. Frasco MF, Chaniotakis N, Semiconductor quantum dots in chemical sensors and biosensors, *Sensors*, 2009; 9(9):7266-7286. <https://doi.org/10.3390/s90907266> PMid:22423206 PMCid:PMC3290488

30. Wang Y, et al., Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity, *ACS Applied Materials & Interfaces*, 2013; 5(8):2786-2799. <https://doi.org/10.1021/am302030a> PMid:23394295

31. Kuila T, et al., Recent advances in graphene-based biosensors, *Biosensors and Bioelectronics*, 2011; 26(12):4637-4648. <https://doi.org/10.1016/j.bios.2011.05.039> PMid:21683572

32. Sun H, et al., Recent advances in graphene quantum dots for sensing, *Materials Today*, 2013; 16(11):433-442. <https://doi.org/10.1016/j.mattod.2013.10.020>

33. Rai M, et al., Biomedical applications of nanobiosensors: the state-of-the-art, *Journal of the Brazilian Chemical Society*, 2012; 23:14-24. <https://doi.org/10.1590/S0103-50532012000100004>

34. Chandra P, Electrochemical nanobiosensors for cancer diagnosis, *Journal of Analytical & Bioanalytical Techniques*, 2015; 6(1):e119. <https://doi.org/10.4172/2155-9872.1000e119>

35. Chen H, Nordon RE, Application of microfluidics to study stem cell dynamics, *Emerging Trends in Cell and Gene Therapy*, 2013:435-470. https://doi.org/10.1007/978-1-62703-417-3_19

36. Zhao C, Thuo MM, Liu X, A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers, *Science and Technology of Advanced Materials*, 2013; 14(5):054402. <https://doi.org/10.1088/1468-6996/14/5/054402> PMid:27877606 PMCid:PMC5090369

37. Chin CD, Linder V, Sia SK, Lab-on-a-chip devices for global health: Past studies and future opportunities, *Lab on a Chip*, 2007; 7(1):41-57. <https://doi.org/10.1039/B611455E> PMid:17180204

38. Fracchiolla NS, Artuso S, Cortelezzi A, Biosensors in clinical practice: focus on oncohematology, *Sensors*, 2013; 13(5):6423-6447. <https://doi.org/10.3390/s130506423> PMid:23673681 PMCid:PMC3690064

39. Bhalla N, Biosensors for drug discovery applications, *University of Bath*, 2015.

40. Tan TH, et al., Ubiquitous emergency medical service system based on wireless biosensors, traffic information, and wireless communication technologies: development and evaluation, *Sensors*, 2017; 17(1):202. <https://doi.org/10.3390/s17010202> PMid:28117724 PMCid:PMC5298775

41. Kudr J, et al., COVID-19: A challenge for electrochemical biosensors, *TrAC Trends in Analytical Chemistry*, 2021; 136:116192. <https://doi.org/10.1016/j.trac.2021.116192> PMid:33487783 PMCid:PMC7813498

42. Sciuotto G, et al., Miniaturized biosensors to preserve and monitor cultural heritage: From medical to conservation diagnosis, *Angewandte Chemie*, 2018; 130(25):7507-7511. <https://doi.org/10.1002/ange.201713298>

43. Haleem A, et al., Biosensors applications in medical field: A brief review, *Sensors International*, 2021; 2:100100. <https://doi.org/10.1016/j.sintl.2021.100100>

44. Caygill RL, Blair GE, Millner PA, A review on viral biosensors to detect human pathogens, *Analytica Chimica Acta*, 2010; 681(1-2):8-15. <https://doi.org/10.1016/j.aca.2010.09.038> PMid:21035597

45. Palchetti I, New trends in the design of enzyme-based biosensors for medical applications, *Mini Reviews in Medicinal Chemistry*, 2016; 16(14):1125-1133.

46. Sharma A, et al., Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring, *Molecules*, 2021; 26(3):748. <https://doi.org/10.3390/molecules26030748> PMid:33535493 PMCid:PMC7867046

47. Li J, Stachowski M, Zhang Z, Application of responsive polymers in implantable medical devices and biosensors, *Switchable and Responsive Surfaces and Materials for Biomedical Applications*, 2015:259-298. <https://doi.org/10.1016/B978-0-85709-713-2.00011-0>

48. Omidfar K, et al., Point-of-care biosensors in medicine: a brief overview of our achievements in this field based on the conducted research in EMRI (Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences) over the past fourteen years, *Journal of Diabetes & Metabolic Disorders*, 2020;1-5. <https://doi.org/10.1007/s40200-020-00668-0> PMid:33140004 PMCid:PMC7592446

49. Hosu O, et al., Minireview: smart tattoo, microneedle, point-of-care, and phone-based biosensors for medical screening, diagnosis, and monitoring, *Analytical Letters*, 2019; 52(1):78-92. <https://doi.org/10.1080/00032719.2017.1391826>

50. Moussilli MM, Falou ARE, Shubair RM, Overview of fiber optic surface plasmon resonance biosensors for medical applications, *2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)*, IEEE, 2018. <https://doi.org/10.1109/ANTEM.2018.8572836>

51. Ravindra NM, et al., Advances in the manufacturing, types, and applications of biosensors, *JOM*, 2007; 59:37-43. <https://doi.org/10.1007/s11837-007-0150-0>

52. Roda A, et al., Advanced biosensors for monitoring astronauts' health during long-duration space missions, *Biosensors and Bioelectronics*, 2018; 111:18-26. <https://doi.org/10.1016/j.bios.2018.03.062> PMid:29631159

53. Weihs F, et al., Resonance energy transfer-based biosensors for point-of-need diagnosis-progress and perspectives, *Sensors*, 2021; 21(2):660. <https://doi.org/10.3390/s21020660> PMid:33477883 PMCid:PMC7833371

54. Clark LC Jr, Lyons C, Electrode systems for continuous monitoring in cardiovascular surgery, *Annals of the New York Academy of Sciences*, 1962; 102(1):29-45. <https://doi.org/10.1111/j.1749-6632.1962.tb13623.x> PMid:14021529

55. Yoo EH, Lee SY, Glucose biosensors: an overview of use in clinical practice, *Sensors*, 2010; 10(5):4558-4576. <https://doi.org/10.3390/s100504558> PMid:22399892 PMCid:PMC3292132

56. Turner AP, Biosensors: sense and sensibility, *Chemical Society Reviews*, 2013; 42(8):3184-3196. <https://doi.org/10.1039/c3cs35528d> PMid:23420144

57. Mehrotra P, Biosensors and their applications-A review, *Journal of Oral Biology and Craniofacial Research*, 2016; 6(2):153-159. <https://doi.org/10.1016/j.jobcr.2015.12.002> PMid:27195214 PMCid:PMC4862100

58. Kucherenko I, Topolnikova YV, Soldatkin O, Advances in the biosensors for lactate and pyruvate detection for medical applications: A review, *TrAC Trends in Analytical Chemistry*, 2019; 110:160-172. <https://doi.org/10.1016/j.trac.2018.11.004>

59. Singh S, et al., Biological biosensors for monitoring and diagnosis, *Microbial Biotechnology: Basic Research and Applications*, 2020:317-335. https://doi.org/10.1007/978-981-15-2817-0_14

60. Zheng Y, et al., Challenges and perspectives of multi-virus biosensing techniques: A review, *Analytica Chimica Acta*, 2023; 1244:340860. <https://doi.org/10.1016/j.aca.2023.340860> PMid:36737150 PMCid:PMC9868144

61. Lino C, et al., Biosensors as diagnostic tools in clinical applications, *Biochimica et Biophysica Acta (BBA)-Reviews on Cancer*, 2022; 1877(3):188726. <https://doi.org/10.1016/j.bbcan.2022.188726> PMid:35367530

62. Akim AM, et al., Cancer and disease diagnosis-biosensor as potential diagnostic tool for biomarker detection, *Journal of Advanced Pharmaceutical Technology & Research*, 2022; 13(4):243-247. https://doi.org/10.4103/japt.japt_106_22 PMid:36568055 PMCid:PMC9784037

63. Benjamin SR, et al., Advancement in paper-based electrochemical biosensing and emerging diagnostic methods, *Biosensors*, 2023; 13(7):689. <https://doi.org/10.3390/bios13070689> PMid:37504088 PMCid:PMC10377443

64. Zhou Y, Qi M, Yang M, Current status and future perspectives of lactate dehydrogenase detection and medical implications: a review, *Biosensors*, 2022; 12(12):1145. <https://doi.org/10.3390/bios12121145> PMid:36551112 PMCid:PMC9775244

65. Rapp BE, Gruhl FJ, Länge K, Biosensors with label-free detection designed for diagnostic applications, *Analytical and Bioanalytical Chemistry*, 2010; 398:2403-2412. <https://doi.org/10.1007/s00216-010-3906-2> PMid:20563563

66. Pu K, Biosensors and bioimaging, *ChemBioChem: A European Journal of Chemical Biology*, 2019; 20(4):420-421. <https://doi.org/10.1002/cbic.201900021> PMid:30680871

67. Dou WT, et al., Fluorescence imaging of Alzheimer's disease with a flat ensemble formed between a quinoline-malononitrile AIEgen and thin-layer molybdenum disulfide, *ChemBioChem*, 2019; 20(14):1856-1860. <https://doi.org/10.1002/cbic.201800508> PMid:30295990

68. Deng Y, et al., Biomedical applications of fluorescent and magnetic resonance imaging dual-modality probes, *ChemBioChem*, 2019; 20(4):499-510. <https://doi.org/10.1002/cbic.201800450> PMid:30182382

69. Iqbal MJ, et al., Biosensing chips for cancer diagnosis and treatment: a new wave towards clinical innovation, *Cancer Cell International*, 2022; 22(1):354. <https://doi.org/10.1186/s12935-022-02777-7> PMid:36376956 PMCid:PMC9664821

70. Zong H, et al., Recent trends in smartphone-based optical imaging biosensors for genetic testing: A review, *View*, 2023; 4(4):20220062. <https://doi.org/10.1002/VIW.20220062>

71. Olvera D, Monaghan MG, Electroactive material-based biosensors for detection and drug delivery, *Advanced Drug Delivery Reviews*, 2021; 170:396-424. <https://doi.org/10.1016/j.addr.2020.09.011> PMid:32987096

72. Akolpoglu MB, et al., Biosensing-drug delivery systems for in vivo applications, *Advanced Biosensors for Health Care Applications*, Elsevier, 2019:249-262. <https://doi.org/10.1016/B978-0-12-815743-5.00009-3>

73. Wells CM, et al., Stimuli-responsive drug release from smart polymers, *Journal of Functional Biomaterials*, 2019; 10(3):34. <https://doi.org/10.3390/jfb10030034> PMid:31370252 PMCid:PMC6787590

74. Bhardwaj U, Papadimitrakopoulos F, Burgess DJ, A review of the development of a vehicle for localized and controlled drug delivery for implantable biosensors, *Journal of Diabetes Science and Technology*, 2008; 2(6):1016-1029. <https://doi.org/10.1177/193229680800200611> PMid:19885291 PMCid:PMC2769817

75. Patel T, Huang J, Kruckiewicz K, Multifunctional organic monolayer-based coatings for implantable biosensors and bioelectronic devices: review and perspectives, *Biosensors and Bioelectronics*: X, 2023; 14:100349. <https://doi.org/10.1016/j.biosx.2023.100349>

76. Tothill IE, Biosensors for cancer markers diagnosis, *Seminars in Cell & Developmental Biology*, 2009; Elsevier. <https://doi.org/10.1016/j.semcd.2009.01.015> PMid:19429492

77. Anderson JM, Langone JJ, Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems, *Journal of Controlled Release*, 1999; 57(2):107-113. [https://doi.org/10.1016/S0168-3659\(98\)00178-3](https://doi.org/10.1016/S0168-3659(98)00178-3) PMid:9971889

78. Maloney JM, An implantable microfabricated drug delivery system, *ASME International Mechanical Engineering Congress and Exposition*, 2003. <https://doi.org/10.1115/IMECE2003-43186> PMid:12509964

79. James T, Mannoor MS, Ivanov DV, BioMEMS-advancing the frontiers of medicine, *Sensors*, 2008; 8(9):6077-6107. <https://doi.org/10.3390/s8096077> PMid:27873858 PMCid:PMC3705549

80. Ma B, et al., A PZT insulin pump integrated with a silicon micro needle array for transdermal drug delivery, *56th Electronic Components and Technology Conference*, IEEE, 2006. <https://doi.org/10.1115/ICNMM2006-96005>

81. Voldman J, Gray ML, Schmidt MA, Microfabrication in biology and medicine, *Annual Review of Biomedical Engineering*, 1999; 1(1):401-425. <https://doi.org/10.1146/annurev.bioeng.1.1.401> PMid:11701495

82. Roberts DC, et al., A piezoelectric microvalve for compact high-frequency, high-differential pressure hydraulic micropumping systems, *Journal of Microelectromechanical Systems*, 2003; 12(1):81-92. <https://doi.org/10.1109/JMEMS.2002.807471>

83. Nuxoll EE, Siegel RA, BioMEMS devices for drug delivery, *IEEE Engineering in Medicine and Biology Magazine*, 2009; 28(1):31-39. <https://doi.org/10.1109/EMB.2008.931014> PMid:19150769

84. Grayson ACR, et al., A BioMEMS review: MEMS technology for physiologically integrated devices, *Proceedings of the IEEE*, 2004; 92(1):6-21. <https://doi.org/10.1109/JPROC.2003.820534>

85. Ahmed A, Bonner C, Desai TA, Bioadhesive microdevices for drug delivery: a feasibility study, *Biomedical Microdevices*, 2001; 3:89-95. <https://doi.org/10.1023/A:1011489907820>

86. Grabovac V, Guggi D, Bernkop-Schnürch A, Comparison of the mucoadhesive properties of various polymers, *Advanced Drug Delivery Reviews*, 2005; 57(11):1713-1723. <https://doi.org/10.1016/j.addr.2005.07.006> PMid:16183163

87. Ngoepe M, et al., Integration of biosensors and drug delivery technologies for early detection and chronic management of illness, *Sensors*, 2013; 13(6):7680-7713. <https://doi.org/10.3390/s130607680> PMid:23771157 PMCid:PMC3715220

88. Ahn CH, et al., Disposable smart lab on a chip for point-of-care clinical diagnostics, *Proceedings of the IEEE*, 2004; 92(1):154-173. <https://doi.org/10.1109/JPROC.2003.820548>

89. Santini JT Jr, Cima MJ, Langer R, A controlled-release microchip, *Nature*, 1999; 397(6717):335-338. <https://doi.org/10.1038/16898> PMid:9988626

90. Shah V, Chavda E, Injecting new ideas into drug delivery systems: a brief review on microchips as controlled drug delivery systems, *International Journal of Research in Pharmacy and Biosciences (IJRPB)*, 2011; 1:1-7.

91. Staples M, et al., Application of micro-and nano-electromechanical devices to drug delivery, *Pharmaceutical Research*, 2006; 23:847-863. <https://doi.org/10.1007/s11095-006-9906-4> PMid:16715375

92. Zahn JD, et al., Continuous on-chip micropumping for microneedle enhanced drug delivery, *Biomedical Microdevices*, 2004; 6:183-190. <https://doi.org/10.1023/B:BMMD.0000042047.83433.96> PMid:15377827

93. Khadka B, Lee B, Kim K-T, Drug delivery systems for personal healthcare by smart wearable patch system, *Biomolecules*, 2023; 13(6):929. <https://doi.org/10.3390/biom13060929> PMid:37371509 PMCid:PMC10295889

94. Yazdi MK, et al., Nanotechnology-based biosensors in drug delivery, in *Nanoengineered Biomaterials for Advanced Drug Delivery*, 2020, Elsevier; 767-779. <https://doi.org/10.1016/B978-0-08-102985-5.00032-2>

95. Psoma SD, Kanthou C, Wearable insulin biosensors for diabetes management: advances and challenges, *Biosensors*, 2023;

13(7):719. <https://doi.org/10.3390/bios13070719>
PMid:37504117 PMCid:PMC10377143

96. Wang J, Electrochemical glucose biosensors, *Chemical Reviews*, 2008; 108(2):814-825. <https://doi.org/10.1021/cr068123a>
PMid:18154363

97. Mateo C, et al, Improvement of enzyme activity, stability and selectivity via immobilization techniques, *Enzyme and Microbial Technology*, 2007; 40(6):1451-1463.
<https://doi.org/10.1016/j.enzmictec.2007.01.018>

98. Mor R, A review on development of enzymatic biosensors for industrial applications, *World Journal of Advanced Research and Reviews*, 2024; 23(1):2582-2590.
<https://doi.org/10.30574/wjarr.2024.23.1.2278>

99. Nguyen HH, et al, Immobilized enzymes in biosensor applications, *Materials*, 2019; 12(1):121.
<https://doi.org/10.3390/ma12010121> PMid:30609693
PMcid:PMC6337536

100. Bhardwaj T, A review on immobilization techniques of biosensors, *Int J Eng Res*, 2014; 3(5):294-298.

101. Singh S, Sharma M, Singh G, Recent advancements in urea biosensors for biomedical applications, *IET Nanobiotechnology*, 2021; 15(4):358-379. <https://doi.org/10.1049/nbt.2.12050>
PMid:34694714 PMCid:PMC8675831

102. McGrath MJ, et al, Regulations and standards: Considerations for sensor technologies, *Sensor Technologies: Healthcare, Wellness, and Environmental Applications*, 2013;115-135.
https://doi.org/10.1007/978-1-4302-6014-1_6

103. Biswas GC, et al, A review on potential electrochemical point-of-care tests targeting pandemic infectious disease detection: COVID-19 as a reference, *Chemosensors*, 2022; 10(7):269.
<https://doi.org/10.3390/chemosensors10070269>

104. Zarei M, Portable biosensing devices for point-of-care diagnostics: recent developments and applications, *TrAC Trends in Analytical Chemistry*, 2017; 91:26-41.
<https://doi.org/10.1016/j.trac.2017.04.001>

105. Yoon J, et al, Flexible electrochemical biosensors for healthcare monitoring, *Journal of Materials Chemistry B*, 2020; 8(33):7303-7318. <https://doi.org/10.1039/D0TB01325K> PMid:32647855

106. Cernian A, et al, PatientDataChain: a blockchain-based approach to integrate personal health records, *Sensors*, 2020; 20(22):6538.
<https://doi.org/10.3390/s20226538> PMid:33207620
PMcid:PMC7697358

107. Barhoum A, et al, Stimuli-bioresponsive hydrogels as new generation materials for implantable, wearable, and disposable biosensors for medical diagnostics: principles, opportunities, and challenges, *Advances in Colloid and Interface Science*, 2023; 317:102920. <https://doi.org/10.1016/j.jcis.2023.102920>
PMid:37207377

108. Magnano San Lio R, et al, Updates on developing and applying biosensors for the detection of microorganisms, antimicrobial resistance genes and antibiotics: a scoping review, *Frontiers in Public Health*, 2023; 11:1240584.
<https://doi.org/10.3389/fpubh.2023.1240584> PMid:37744478
PMcid:PMC10512422

109. Giorgi G, Tonello S, Wearable biosensor standardization: how to make them smarter, *Standards*, 2022; 2(3):366-384.
<https://doi.org/10.3390/standards2030025>

110. Jaime FJ, et al, Strengthening privacy and data security in biomedical microelectromechanical systems by IoT communication security and protection in smart healthcare, *Sensors*, 2023; 23(21):8944. <https://doi.org/10.3390/s23218944>
PMid:37960646 PMCid:PMC10647665

111. Huang X, Zhu Y, Kianfar E, Nano biosensors: properties, applications and electrochemical techniques, *Journal of Materials Research and Technology*, 2021; 12:1649-1672.
<https://doi.org/10.1016/j.jmrt.2021.03.048>

112. Li Y, Schluesener HJ, Xu S, Gold nanoparticle-based biosensors, *Gold Bulletin*, 2010; 43:29-41.
<https://doi.org/10.1007/BF03214964>

113. Haun JB, et al, Magnetic nanoparticle biosensors, *Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology*, 2010; 2(3):291-304. <https://doi.org/10.1002/wnan.84>
PMid:20336708

114. Gaba S, et al, Future advances of artificial biosensor technology in biomedical applications, *Talanta Open*, 2024; 9:100301.
<https://doi.org/10.1016/j.talo.2024.100301>

115. Jin X, et al, Artificial intelligence biosensors: challenges and prospects, *Biosensors and Bioelectronics*, 2020; 165:112412.
<https://doi.org/10.1016/j.bios.2020.112412> PMid:32729531

116. Vaddiraju S, et al, Emerging synergy between nanotechnology and implantable biosensors: a review, *Biosensors and Bioelectronics*, 2010; 25(7):1553-1565.
<https://doi.org/10.1016/j.bios.2009.12.001> PMid:20042326
PMcid:PMC2846767

117. O'Shaughnessy TJ, Liu JL, Ma W, Passaged neural stem cell-derived neuronal networks for a portable biosensor, *Biosensors and Bioelectronics*, 2009; 24(8):2365-2370.
<https://doi.org/10.1016/j.bios.2008.12.007> PMid:19162463

118. Liu Q, et al, In vitro assessing the risk of drug-induced cardiotoxicity by embryonic stem cell-based biosensor, *Sensors and Actuators B: Chemical*, 2011; 155(1):214-219.
<https://doi.org/10.1016/j.snb.2010.11.050>

119. Liu Q, et al, Cell-based biosensors and their application in biomedicine, *Chemical Reviews*, 2014; 114(12):6423-6461.
<https://doi.org/10.1021/cr2003129> PMid:24905074

120. Gundogdu A, et al, Biosensors: types, applications, and future advantages, *Journal of Scientific Reports-A*, 2023(052):457-481.
<https://doi.org/10.59313/jsr-a.1221899>

121. Abid SA, et al, Biosensors as a future diagnostic approach for COVID-19, *Life Sciences*, 2021; 273:119117.
<https://doi.org/10.1016/j.lfs.2021.119117> PMid:33508293
PMcid:PMC7834970

122. Ma Z, et al, Recent advances in the analytical strategies of microbial biosensor for detection of pollutants, *Chemosphere*, 2022; 306:135515.
<https://doi.org/10.1016/j.chemosphere.2022.135515>
PMid:35772520

123. Dzyadevych SV, et al, Amperometric enzyme biosensors: Past, present and future, *IRBM*, 2008; 29(2-3):171-180.
<https://doi.org/10.1016/j.rbmret.2007.11.007>