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Article Info: Abstract

Nanoparticle-based drug delivery systems have emerged as a powerful strategy to enhance drug
bioavailability and ensure targeted therapeutic release. Levofloxacin (LFX), a widely used broad-
spectrum fluoroquinolone antibiotic, is limited by poor aqueous solubility, low oral bioavailability,
and systemic side effects. This study investigates the formulation, characterization, and evaluation
of levofloxacin-loaded nanoparticles aimed at improving its pharmacological performance.
Various nanoparticle carriers, including polymeric nanoparticles, lipid-based nanocarriers, and
inorganic nanoparticles, were explored for their ability to encapsulate LFX and improve its
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delivery. Key formulation parameters such as encapsulation efficiency, drug loading, in vitro
release profile, and stability at 4°C, 25°C, and 40°C were assessed. The optimized formulations
demonstrated acceptable stability and sustained drug release across the tested conditions.
Biocompatibility studies revealed no significant cytotoxic effects, as confirmed by high cell
viability percentages, indicating the safety of the nanoparticle systems. Furthermore, the
nanoparticle-loaded formulations exhibited enhanced dissolution behavior and potent in vitro
antimicrobial activity against both Gram-negative and Gram-positive bacteria (p<0.05).
Pharmacokinetic studies revealed statistically significant improvements (p<0.05) in maximum
plasma concentration (Cmax), elimination half-life (ti2), and area under the curve (AUC)
compared to conventional formulations. In vivo evaluation using an infection model confirmed the
superior antimicrobial efficacy of the nanoparticle-based system. The results collectively indicate
that nanoparticle-based delivery of LFX substantially improves its bioavailability, pharmacokinetic
profile, and therapeutic efficacy. These findings support the potential application of
nanotechnology in overcoming the limitations of conventional LFX therapy and enhancing clinical
outcomes in bacterial infection treatment.
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INTRODUCTION

Levofloxacin (LFX) is a widely used antibiotic for

treating bacterial infections, including respiratory,
urinary, and skin infections!. It has a better
pharmacokinetic profile than ciprofloxacin

theoretically2. However, its therapeutic efficacy is often
limited by poor bioavailability, rapid clearance, and
systemic toxicity3. Nanoparticle-based drug delivery
offers a promising solution by improving drug solubility,
prolonging circulation time, and enabling targeted
delivery to infected tissues # 5. There is limited effort in
the literature towards improving the therapeutic
performance of levofloxacin.

Nanoparticle-based drug delivery systems have
emerged as a transformative approach in modern
medicine, offering enhanced bioavailability and targeted
drug release. These systems are particularly significant
in formulating antibiotics like levofloxacin, a broad-
ISSN: 2250-1177 [42]

spectrum fluoroquinolone used to treat various
bacterial infections® 7. Despite its efficacy, LFX's
therapeutic potential is often limited by poor water
solubility, rapid metabolism, and non-specific
distribution, leading to suboptimal bioavailability and
potential side effects®. Integrating levofloxacin into
nanoparticle-based delivery systems may address these
challenges, improving therapeutic efficacy and patient
outcomes.

Nanoparticles are submicron-sized particles ranging
from 1 to 100 nanometers, engineered from various
materials such as lipids, polymers, and metals 2 10, Their
small size and large surface area enable them to interact
closely with biological membranes, facilitating
improved drug delivery 1. Several nanoparticle-based
delivery systems have been formulated. These include
liposomes, solid-liquid nanoparticles, polymeric
nanoparticles (e.g., polymeric micelles and dendrimers

CODEN (USA): JDDTAO


http://jddtonline.info/
https://crossmark.crossref.org/dialog/?doi=10.22270/jddt.v15i5.7119&amp;domain=pdf
http://dx.doi.org/10.22270/jddt.v15i5.7119

Ogba et al.

and inorganic nanoparticles (silicon dioxide
nanoparticles).
Liposomes are spherical vesicles consisting of

phospholipid bilayers encapsulating an aqueous core,
suitable for delivering hydrophilic and hydrophobic
drugs. Liposomes enhance drug solubility and stability,
thereby enabling targeted delivery and reduced toxicity.
Solid lipid nanoparticles (SLNs) comprise solid lipids
stabilized by surfactants. SLNs offer advantages such as
controlled drug release and improved drug stability.
They are biocompatible and can be engineered for
targeted delivery!?. Polymeric nanoparticles are
polymeric micelles and dendrimers. These are formed
by the self-assembly of amphiphilic block copolymers.
The nanoparticles have a hydrophobic core and
hydrophilic shell, for delivering hydrophobic drugs.
They enhance drug solubility and provide controlled
release 13. Dendrimers are hyper-branched, tree-like
polymers with numerous functional groups on their
surface, allowing for high drug-loading capacity and
precise control over drug release profiles 1. Silicon
dioxide nanoparticles (SNPs) have a tunable porous
structure and high surface area, making them amenable
for drug loading and controlled release 1213,

Encapsulating LFX in nanoparticles may enhance
solubility, improving absorption and therapeutic
efficacy. Nanoparticles can designed to release LFX in a
controlled manner, maintaining therapeutic drug levels
over extended periods and reducing dosing frequency.
Encapsulation  protects LFX from  premature
degradation, enhancing its stability and bioavailability!4.
Targeted drug delivery is crucial for maximizing
therapeutic efficacy while minimizing side effects.
Nanoparticle-based systems can also achieve targeted
release of LFX through utilizing the enhanced
permeability and retention (EPR) effect. Nanoparticles
accumulate more in infected tissues, increasing local
drug concentration!. Furthermore, modifying the
surface of nanoparticles with ligands that recognize
specific receptors on bacterial cells or infected tissues
allows for precise delivery of LFX to the target site 16-18,

Nanoparticle-based delivery systems have shown
promise in enhancing the treatment of various
infections. Nanoparticles can facilitate the delivery of
LFX into infected cells, effectively targeting intracellular
pathogens. Encapsulating LFX in nanoparticles can
improve its penetration into biofilms, enhancing its
efficacy against biofilm-associated infections 1°.

Despite the advantages, several challenges remain in
developing nanoparticle-based delivery systems for
levofloxacin. These include ensuring that nanoparticles
are safe and biocompatible. Future research should
focus on optimizing nanoparticle formulations to
enhance LFX's therapeutic efficacy, conducting
comprehensive preclinical and clinical studies to assess
safety and effectiveness, and developing scalable
manufacturing  processes to facilitate clinical
translation.

In conclusion, nanoparticle-based drug delivery systems
offer a promising strategy to enhance the bioavailability
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and targeted release of LFX. By addressing current
limitations associated with conventional delivery
methods, these systems can potentially improve
therapeutic outcomes for patients suffering from
bacterial infections. This paper investigates the design
and optimization of LFX-loaded nanoparticles, aiming to
enhance bioavailability and achieve controlled drug
release.

METHODS
Materials

Levofloxacin ~ (LFX) was procured from a
pharmaceutical-grade supplier (Nishchem International
Private Ltd, India). Poly(lactic-co-glycolic acid) (PLGA)
similarly sourced, was used as a carrier. Additional
excipients, including surfactants (e.g, Tween 80,
Poloxamer 188) and stabilizers (Fisher Scientific,
Germany) were procured. Organic solvents (e.g,
dichloromethane, and ethanol) were used for
nanoparticle preparation. MTT (3-(4, 5-Dimethylthiazol-
2-yl)-2, 5-diphenyltetrazolium bromide), cancer cells,
cell culture medium, fetal bovine serum (FBS),
phosphate-buffered saline (PBS), dimethyl sulfoxide
(DMSO0), well-plate

Preparation of nanoparticles

The method employed was a solvent evaporation
procedure. PLGA nanoparticles encapsulating
levofloxacin were synthesized via the solvent
evaporation method. Briefly, LFX was dissolved in an
organic solvent containing PLGA. The solution was
emulsified with an aqueous phase containing
surfactants under sonication. The organic solvent was
then evaporated wunder reduced pressure, and
nanoparticles were collected via centrifugation and
lyophilized 20,

Characterization of nanoparticles

The average particle size and zeta potential of the
nanoparticles were determined using dynamic light
scattering (DLS). Morphological analysis was conducted
using scanning electron microscopy (SEM) and
transmission electron microscopy (TEM). Encapsulation
efficiency (EE) and drug loading (DL) were assessed via
high-performance liquid chromatography (HPLC). LFX
content was quantified after dissolving the
nanoparticles in an appropriate solvent and filtering the
solution. FTIR analysis was conducted to assess possible
interactions between LFX and the nanoparticle matrix.
DSC was used to analyze the thermal properties and
confirm drug encapsulation.

Encapsulation efficiency (EE%) and drug loading
(DL%)

EE% = (Amount of drug encapsulated /Total drug added) x100

...(Eq. 1)
__ Ameount of drug encapsulated

EEW = Total drug added x100  ..Eq.2

Amount of drug encepsulated

DLY% =

x100 ..Eq.3

Total weight of nanoparticles or (drug+carrisrs)
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In vitro drug release studies

Drug release was evaluated using a dialysis method in
simulated physiological fluids—phosphate-buffered
saline (PBS, pH 7.4) and acetate buffer (pH 5.5). The
nanoparticles were suspended in the release medium
and maintained at 37°C with constant stirring. At
specific time intervals, aliquots were withdrawn and
analyzed using high-performance liquid
chromatography (HPLC).

Antimicrobial activity evaluation

The antibacterial activity of levofloxacin-loaded
nanoparticles was evaluated using the agar well
diffusion  technique and minimum inhibitory
concentration (MIC) assays against Escherichia coli
Pseudomonas  aeruginosa, Klebsiella pneumoniae,
Staphylococcus aureus, Streptococcus pneumoniae and
Clostridium difficile. Mueller-Hinton agar plates were
inoculated with bacterial cultures, and the wells were
filled with nanoparticle formulations. After 24 hours of
incubation, the zones of inhibition were measured. MIC
values were similarly established through broth dilution
methods.

Cytotoxicity assays

Cytotoxicity of the nanoparticles was evaluated using
MTT assays on human epithelial cell lines (e.g., HEK-
293), lung cancer (e.g.,, A549) and intestinal cancer (e.g.,
Caco-2). Cells were seeded in a well plate at a density of
1.0 x 104 cells per well. Test preparations (conventional
LFX or nanoparticle-loaded were added and incubated
for 72h. A volume of 10 pL of MTT solution (5mg/mL)
was added to each well and incubated for 72h. The
medium was washed with PBS before adding DMSO to
each well to dissolve the formazan crystals. The
resulting absorbance of each well was measured at
570nm using a spectrophotometer. The cell viability
was measured by comparing the absorbance of treated
cells to that of untreated controls.

Bioavailability and pharmacokinetic studies

Pharmacokinetic studies were performed on Wistar rats
(rat model) to compare the bioavailability and plasma
concentration-time profiles of conventional LFX with
those of the nanoparticle formulations.

Animal preparation

Healthy male animals aged 6-8 weeks of weight 200-
250g were obtained from Charles Commercial Breeders,
Umuahia, Nigeria. The animals were acclimatized to
laboratory conditions for 7 days with standard housing

Table 1: Characteristics of nanoparticle-loaded formulation
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conditions - temperature (22 = 2°C), humidity (40-
70%), and 12-hour light/dark cycle. Standard chow and
water were provided ad libitum. Approval for use of
animals was obtained from an Institutional Animal
Ethics Committee (IAEC) or IACUC and procedures
followed the 3Rs principle (Replacement, Reduction,
and Refinement).

The animals were divided into two groups (n = 6 per
group). Group A receives the conventional drug (e.g.,
LFX) while Group B is the nanoparticle formulation. The
drugs were administered by intravenous (tail vein or
marginal ear vein) at a dose based on human equivalent
dose (HED) conversion. An equivalent drug amount was
administered to animals in both groups (e.g., 10 mg/kg
levofloxacin). Blood samples were collected at
predefined intervals (e.g., 0, 1, 2, 4, 6, 8, 12, 24 hours).
The site volume taken was 200-500 pL per time point
into EDTA-coated tubes and centrifuged at 3000 rpm for
10 min at 4°C. The plasma was separated and stored at —
20°C until analysis. At the end of the study, animals
were euthanized humanely (e.g, CO, inhalation). The
animals were monitored for signs of toxicity (lethargy,
weight loss, grooming habits), behavioral changes, and
local reactions at the injection site. Animals used in the
research had records of animal ID, weight, group, dose,
administration time, blood collection times, sample
handling procedures, and any adverse effects observed.

Statistical analysis

All experiments were conducted in triplicate, and
results were expressed as mean * standard deviation.
Statistical comparisons were performed using t-tests
and ANOVA, with a significance level of p < 0.05.

Ethical considerations

All  animal studies were conducted following
institutional ethical guidelines and approved by the
Institutional Review Committee of University of Uyo,
Nigeria

RESULTS

The key parameters of the formulation were assessed
and presented in Table 1. The nanoparticle formulation
demonstrated satisfactory results based on key
evaluated parameters. It exhibited optimal particle size
distribution, high encapsulation efficiency, desirable
surface charge (zeta potential), and sustained drug
release profile—indicating good stability, bioavailability
potential, and suitability for targeted delivery
applications.

Parameters Method employed Value (Mean * SD) Comment

Particle size (nm) DLS 17510 Satisfactory
Zeta Potential (mV) Zeta Sizer -25%2 Satisfactory
Polydispersible Index DLS 0.16 £ 0.05 Satisfactory
Drug Loading (%) UV-Vis Spectroscopy 20+1.5 Satisfactory
Encapsulation Efficiency (%) UV-Vis Spectroscopy 85+3 Satisfactory

*DLS=Dynamic Light Scattering

ISSN: 2250-1177 [44]
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The stability testing results were satisfactory, showing
minimal changes in physical appearance, particle size,
zeta potential, and drug content over the test period. In
Table 2, the findings indicate that the formulation
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maintains its integrity and performance under the
tested storage conditions, confirming its suitability for
long-term use.

Table 2: Stability testing of the Nanoparticle-loaded formulation

Condition Particle size (nm) Zeta Potential (mV) Drug retention (%)
4°C (Refrigeration) 150+3 -23.7.+1.7 99.3+1.1
25°C (Room Temperature) 160+2 -22.5+1.3 98.2+1.6
40°C (Accelerated stability) 170+5 -18.1+£1.2 94.8+1.3

*Drug retention% is calculated after 30 days

Figure 1 presents the dissolution profile for the
conventional drug and the nanoparticle-loaded
formulations. The nanoparticle-loaded formulation
exhibited a superior dissolution profile compared to the
conventional-drug formulation, indicating enhanced
solubility and improved release characteristics. This
improved performance is attributed to the increased
surface area, reduced particle size, and the amorphous
nature of the drug within the nanoparticulate matrix.
The sustained and controlled release observed in the
nanoparticle formulation ensures prolonged drug
availability, which can enhance therapeutic efficacy and
reduce dosing frequency. Additionally, the formulation
achieved faster initial dissolution rates, suggesting
potential for improved onset of action. These findings
highlight the effectiveness of nanoparticle-based
delivery systems in overcoming solubility and
bioavailability challenges commonly associated with
poorly water-soluble drugs, making them promising
candidates for enhanced drug delivery in clinical
applications.

Antimicrobial efficacy

LFX-loaded nanoparticles demonstrated significantly
enhanced antibacterial activity = compared to

conventional drug due to improved cellular uptake and
sustained release. Table 2 revealed that there was
significant difference in the antimicrobial efficacy of the
nanoparticle-loaded formulation compared to the
conventional formulation.

120 4

100 -

80 +

60

40 +

20 A

Drug release %

Hour

Figure 1: Comparative drug release profile for LFX
conventional drug and the nanoparticle-loaded
formulation (Conventional drug 4 and Nanoparticle m )

Table 2: Activity against bacterial strains(gram negative and positive organisms)

Bacterial strain Gram classification Zone of inhibition of formulation
Conventional drug Nanoparticle-loaded
Escherichia coli Negative 15.3+x1.4 25.4+1.1
Pseudomonas aeruginosa Negative 13.7+1.9 26.9+1.3
Klebsiella pneumonia Negative 16.5+1.3 24.8+1.3
Staphylococcus aureus Positive 18.3+1.6 29.4+1.3
Streptococcus pneumonia Positive 17.7+0.4 26.7x1.4
Clostridium difficile Positive 18.5+0.4 27.1+1.3

ISSN: 2250-1177 [45]
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Pharmacokinetic evaluation

Nanoparticle formulations exhibited higher
bioavailability (increased AUC) and prolonged half-life
compared to conventional LFX, confirming their

Journal of Drug Delivery & Therapeutics. 2025; 15(5):42-49

potential for improved therapeutic outcomes. Table 3
revealed the pharmacokinetic parameters for the
compared products and the nanoparticulate formulation
presented a significantly higher AUC and other
bioavailability indices.

Table 3: Pharmacokinetic profile of LFX products in animal model

Parameters Conventional drug Nanoparticle formulation
Cmax (pug/mL) 6.5+0.8 9.8+1.2

Tmax(h) 2.1+0.2 2.5+0.3

AUC(pg.h/Ml 27.6+1.8 59.8+2.4

t1/2 5.6%1.2 6.9+1.3

Relative Bioavailability 100 (reference) 257+18

In vivo, antibacterial activity of nanoparticles was
observed due to an expected increased residence time
(RT) compared to the conventional formulation.
Similarly, improved bioavailability, higher area under
the curve (AUC), and related improved pharmacokinetic

attributes are expected of the nanoparticulate
formulation. Table 4 revealed the superlative efficacy of
the nanoparticulate formulation to the conventional
product.

Table 4: In vivo antibacterial efficacy of LFX in an infection Model

Bacterial load Reduction %
Treatment Groups At start After 24h (CFU/mL) | After 48h (CFU/mL) After 24h After 48h
Control 1.5x 107 1.8x 107 2.0x107 -20.0 -33.3
Conventional drug Load | 1.5x 107 7.2x106 3.8x10°6 52 74.7
Nanoparticle-loaded 1.5x107 4.5x 106 6.5x 105 70 95.7

The cytotoxicity and biocompatibility vis-a-vis the
therapeutic efficacy of LFX nanoparticulate formulation
were satisfactory as there was no significant difference
in the percentage viability, an index for the comparison,
at the employed concentrations. Table 5 shows similar

safety profiles for the tests and the control suggesting
that the nanoparticulate drug does not introduce
additional cytotoxic risk. The lack of significant
difference also implies that both formulations may have
equivalent biocompatibility.

Table 5: Cytotoxicity of LFX-loaded particles in Human cell lines (MTT Assay)

Cell line Viability % of formulation
Control Conventional drug Nanoparticle -loaded
HEK 293 100+2.4 81+2.0 91.4+2.5
A549 (Lung Cancer) 100+2.4 78+1.5 81.7+1.5
Caco-2 (Intestinal) 100+2.4 85+2.2 87.3+1.3

DISCUSSION

Nanoparticle-based drug delivery systems have
emerged as a transformative approach in
pharmaceutical sciences, particularly for improving the
bioavailability and targeted release of poorly soluble
drugs such as LFX. LFX, a broad-spectrum
fluoroquinolone antibiotic was considered for this
explorative research as it exhibits suboptimal

ISSN: 2250-1177 [46]

bioavailability due to limited solubility and stability
issues. Conventional oral and intravenous formulations
often lead to wvariable absorption and systemic
clearance, reducing the drug’s therapeutic efficiency.
However, encapsulating drugs in nanoparticles, such as
liposomes, polymeric nanoparticles, and solid lipid
nanoparticles, has been shown to significantly enhance
their solubilities and bioavailabilities 2! (Patel et al,
2022). This discussion evaluates the impact of
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nanoparticulate formulations on the pharmacokinetic
properties, therapeutic efficacy, and safety profile of
LFX.

Studies indicate that nanoparticle-based LFX
formulations exhibit improved dissolution rates due to
their high surface area-to-volume ratio and enhanced
permeation through biological membranes 22 (Singh &
Sharma, 2023). Moreover, surface modifications using
hydrophilic polymers like polyethylene glycol (PEG)
prevent premature clearance by the reticuloendothelial
system (RES), thereby prolonging systemic circulation 23
(Wang et al.,, 2021).

This study has shown the effect of nanoparticulate
formulation of LFX on its bioavailability. LFX-loaded
nanoparticles have been observed, in this study, to
exhibit higher antibacterial effects than the
conventional drug. This is typically demonstrated
through lower minimum inhibitory concentrations
(MICs) or higher zones of inhibitions, as observed in the
result in Table 2. This indicates that nanoparticles are
more potent exhibiting improved bacterial kill rates,
especially against resistant or biofilm-forming strains of
microorganisms. A review article expatiates on topics
where nanoparticle-based strategies hold significant
potential to advance treatment against local bacterial
infections, including (1) promoting antibiotic
localization to the pathogen, (2) modulating drug-
pathogen interaction against antibiotic resistance, and
(3) enabling novel anti-virulence approaches for ‘drug-
conventional’ antimicrobial activity?24.

One of the critical advantages of nanoparticle-based
delivery systems is their potential for targeted drug
release. Traditional LFX administration results in
widespread distribution, leading to off-target effects and
systemic  toxicity. In contrast, nanoparticulate
formulations can be engineered for active or passive
targeting. For example, ligand-functionalized
nanoparticles conjugated with specific targeting
moieties, such as folate or transferrin, exhibit
preferential accumulation at infection sites 25 (Zhao et
al, 2024). Nanoparticles are often made from
biodegradable polymers (e.g., PLGA), which allow the
drug to be released gradually over time rather than all
at once. The nanoparticle-loaded LFX performs exactly
like these showing benefits that include maintaining
therapeutic levels of LFX for an extended period and
reduced dosing frequency. This can improve patient
compliance. It also minimizes peak-trough fluctuations
in drug concentration, decreasing potential side effects
or toxicity. All these translate to improved
bioavailability, especially in oral formulations.

Furthermore, stimuli-responsive nanoparticles that
release LFX in response to environmental triggers, such
as pH or enzymatic activity, have been developed. PH-
sensitive nanoparticles enhance drug release in acidic
infection  sites, improving local therapeutic
concentration while minimizing systemic exposure 7
(Kumar et al, 2023). Improved cellular uptake
nanoparticles can be engineered to penetrate bacterial
cell membranes more efficiently, especially in Gram-
negative bacteria, as observed in Table 2 where drug
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access is usually restricted. They enter host cells (e.g.,
macrophages) more effectively. This is crucial for
treating intracellular infections. Nanoparticles facilitate
drug transport across epithelial barriers, such as those
in the lungs or gastrointestinal tract thereby having
access to the site of action. This means increased
amount of drug reaches the site of infection, especially
in cases where bacteria are intracellular or located in
difficult-to-penetrate tissues.

Such controlled release mechanisms optimize
pharmacokinetics by maintaining therapeutic plasma
levels over an extended duration, reducing dosing
frequency, and improving patient adherence ¢ (Chen et
al.,, 2022).

The efficacy of LFX-loaded nanoparticles in combating
bacterial infections has been well-documented.
Nanoparticles facilitate better drug penetration into
bacterial biofilms. This is a challenge in treating
persistent infections. LFX-loaded chitosan
nanoparticles, for instance, demonstrate enhanced
antibacterial activity against resistant Pseudomonas
aeruginosa and Staphylococcus aureus strains compared
to conventional formulations ? (Mitra et al., 2024).

Additionally, nanoparticle-mediated intracellular drug
delivery enhances efficacy against intracellular
pathogens such as Mycobacterium tuberculosis. This is
particularly beneficial for diseases where bacterial
sequestration within host cells limits drug action®
(Gupta & Verma, 2021). The sustained-release profile of
nanoparticles ensures prolonged bacterial exposure to
LFX, reducing the likelihood of resistance development
10 (Hassan et al., 2022).

Despite its therapeutic benefits, conventional LFX
therapy is associated with adverse effects, including
gastrointestinal disturbances, tendinopathy, and central
nervous system toxicity. Nanoparticle-based
formulations mitigate these issues by enabling lower
dosing while maintaining therapeutic efficacy. The use
of biodegradable carriers such as poly(lactic-co-glycolic
acid) (PLGA) reduces systemic toxicity by ensuring
controlled and localized drug release 2¢ (Zhang et al.,
2023).

Moreover, encapsulation in lipid-based carriers
enhances the drug’s stability and minimizes direct
interaction with gut flora, reducing dysbiosis-related
side effects. These formulations also exhibit improved
tolerability in elderly and immunocompromised
patients, broadening the clinical applicability of LFX 27.

Improved cellular uptake nanoparticles can be
engineered to penetrate bacterial cell membranes more
efficiently, especially in Gram-negative bacteria, as
observed in Table 2 where drug access is usually
restricted due to the nature of the cell wall constitution.
They enter host cells (e.g, macrophages) more
effectively. This is an advantage for treating intracellular
infections. Nanoparticles facilitate drug transport across
epithelial barriers, such as those in the lungs or
gastrointestinal tract thereby having access to the site of
action. This means more drug reaches the site of
infection, especially in cases where bacteria are

CODEN (USA): JDDTAO



Ogba et al.

intracellular or located in difficult-to-penetrate tissues.
The superlative performance of the nanoparticulate
product hinges on the attributes of nanoparticle
technology.

This study has revealed that nanoparticles enhance LFX
bioavailability through several mechanisms. It has
shown that encapsulation in lipid or polymeric matrices
enhances solubility and dissolution rate. Similarly, it has
supported that the ensuing surface modification with
PEGylation, causes a reduction in the otherwise rapid
clearance by the reticuloendothelial system (RES).

Polymeric carriers enable sustained drug release,
maintaining therapeutic levels for extended periods.
Additionally, nanoparticles can shield LFX from
premature degradation in the gastrointestinal tract or
systemic circulation. In targeted drug delivery,
functionalization of nanoparticles (e.g., with ligands or
antibodies) as an improvement in this research, can
enable targeting to specific tissues, cells, or bacterial
species. This will ensure sustained and localized drug
delivery reducing the chances for bacteria developing
resistance by avoiding sub-therapeutic drug levels.

CONCLUSION

In conclusion, nanoparticle-based drug delivery systems
represent a promising advancement in enhancing the
bioavailability, targeted delivery, and therapeutic
effectiveness of levofloxacin. By addressing the
limitations of conventional formulations—such as poor
pharmacokinetics, adverse side effects, and bacterial
resistance—these nanotechnological approaches hold
significant potential to improve treatment outcomes.
Although clinical translation remains a challenge,
ongoing innovations in nanomedicine are poised to
shape the future of antibiotic therapy and contribute
meaningfully to the curing of infectious diseases.
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