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One of the fundamental goals of mankind is to regulate
periodic changes for our benefit. This is certainly relevant in
the fields of medicine and pharmaceuticals, which are
frequently undergoing change. The creation of new ideas or
interpretations in general chemical and mechanical
engineering has been driven by the drug and
biopharmaceutical sectors, which have been a restricted
source of imaginative and original technologies or machinery.
Mechanical innovation is urgently needed in the
pharmaceutical sector to facilitate the production of drugs for
human use. The "one size fits all" philosophy underlies current
prescription practices; nonetheless, numerous crucial fields of
medicine demand fresh approaches, necessitating new
pharmaceutical development procedures. As a result, Artificial
Intelligence (AI) is being used more frequently, which will
potentially alter the ways in which clinical evaluations and
trainings are conducted as well. A modern concept known as
"big data" describes expansive datasets that are
insurmountable via traditional data analysis; the rapid
deployment of Al-enabled technology on these large clinically
derived datasets continues to provide useful information that

can inform the course of drug developmentl.

Traditional drug discovery is often an expensive, laborious,
and often time-consuming pursuit in which there exists a large
chasm between the identification of promising drug
candidates and the employment of such novel drugs in the

clinicZ. As such, there has been an increasing interest in
leveraging artificial intelligence (AI) and machine learning
(ML) (as illustrated by Figure 1) to expedite drug discovery as
well as drug development, in addition to reducing the
associated financial costs. Drug discovery is loosely divided
into 1) identification of disease of interest and the molecular
drug target as well as its validation, 2) development of a high
throughput invitro assay to screen for compound hits against
the identified target and 3) optimization of potency and

selectivity of hit compounds to enable in vivo testing3.

Currently Al is most often used in the identification and
validation of target proteins as well as in the development and

2. Drug Discovery

TARGET
VALIDATION
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optimization of hit molecules and drug candidates?. On the
other hand, drug development is often divided into the
preclinical stage and the clinical stage. In the preclinical stage
in vivo testing in animals is conducted to assess toxicity,
safety, stability (summarized as  Structure-Activity
Relationship (SAR) as well as, manufacturing optimization and
clinical trial protocol drafting. In the clinical stage, the efficacy
and safety of the novel drug is assessed in humans after the

approval of the IND (investigational New Drug) application3

as shown in Figure 2 and Figure 4.

The introduction of Al and ML into the pharmaceutical
industry has resulted in the entrance of large non-
pharmaceutical tech companies into the health sector such as
IBM, Microsoft, and Google. Novartis has started to collaborate
with Microsoft and has developed a new way to customize
drugs. Nvidia has also established a similar partnership with
Schrodinger in early 2021; the coalescence of expertise in the
design of GPU software with expertise in drug development,
shall yield biomolecular predictions that are of high accuracy
and high performance. Historically, drug discovery as well as
development has taken an average of 12-15 years and has cost
billions of dollars. But, the integration of Al and Machine
Learning, is a promising avenue that can greatly reduce the
time and monetary demands of the drug development process.
This emerging technology will not only help to develop more
effective drugs but will also help to develop drugs with high
specificity toward their target. Additionally, the expertise
required in integrating Al and ML into the drug discovery and
development pipeline will continue to require partnerships
between pharmaceutical companies and data science-based
technology companies. There is a growing interest in 100% in
silico drug development according to leaders in the field such
as the CEO and President of IKTOS, Yann

Gaston-Mathe in addition to, projections of increased market
value of companies that conduct Al-integrated high
throughput screening due to an increase in the efficacy of

hitsl.

o PRECLINICAL » CLINICAL >
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Figure 2: Broad stages of drug development prior to FDA approval

2.1.Target Identification and Validation

Proteins are critical molecules in the human body and are key
in mediating the bioactivity of drugs and certain
conformational changes can lead to dysfunction and then
disease. The 3-D structure of a protein can provide insights
about how a ligand, or a drug would engage it. There has also
been a dearth in libraries of the 3-D structure of large
molecules as they have been difficult to resolve through
biological experimentation, but the structures of small
molecules that could be optimized into drugs have been
successfully predicted via ligand binding predicting programs
such as Alphafold (that have revolutionized the target
identification stage of drug discovery).

Through leveraging its deep learning neural network (a form
of machine learning), Alphafold can predict the 3-D structure
of protein/target, as well as the associated target binding
affinity; the target is often the most significant causal factor for

5

a disease of interest”. The Al computer system IBM Watson
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has also discovered RNA-binding proteins responsible for
ALS(Amyotrophic Lateral Sclerosis), and has reported 4

prominent RNA-binding proteins worth targeting6'7.There
has also arisen a great potential for the further exploration of
small molecule conjugated antibody therapeutics as a result of
growing protein structure databases, due to their unique
target binding affinity8.
The elucidation of the structure of a target protein is essential
in designing an effective drug and Al and ML has been
increasingly used in the predication of protein conformational

structure to identify druggable protein targetsg. Recently, the
frontrunner, protein structure predicting Al program and
winner of 2020’s CASP(Critical Assessment of Structure
Prediction) competition has been Alphafold which also

inspired offshoots such as RoseTTAFold10. DeepMind’s
Alphafold can leverage experimentally determined protein
structures and amino acid sequences from the vast Protein
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Data Bank(PDB) to glean evolutionary relationships between
amino acids to predict the three dimensional structure of
related proteins through its deep learning networks(a type of
machine learning that emulates human neural networks); the
predicted structures also receive a score which reflects the
program’s assessment of the accuracy of the structural

outputn. Nonetheless, Alphafold also has some significant
blind spots such as its inability to account for protein folding
pathways and doesn’t account for the different conformational
structures that arise upon changes in activation or even upon
post-translational modification; this limits Alphafold to a tool
best used in early drug discovery as a supplemental tool to

experimental determination of protein structurelz.Target
validation is a crucial step of drug discovery and as such Al
and ML based in-silico validation requires training with high-

quality and rich data sets13 ; this is key as ineffective, toxic and
non-safe compounds need to be filtered out and must not be
allowed to carry on in the development pipeline. The growing
power of protein structure predicting Al programs is
promising but cannot be completely depended on for target
validation as of yet.

2.2.Hit Identification

Hit identification is the next step in drug discovery and in this
process large swaths of molecules are exposed to the target to
identify molecules that bind with greater affinity. Deep
Docking is a QSAR model dependent, deep learning tool, that
allows for the identification of the best hit compounds by
thousands of times greater enrichment of compound without

the loss of any effective binders14. Similarly, iterative
screening also helps in extraction of the most promising
compound from compound libraries and facilitates high-
throughput screening. There are various machine learning

Oral Absorption
»
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methods being used for hit identification and screening such
as RF (Random Forest), Support Vector Machines (SVM), Light
Gradient Boosting Machine (LGBM), Deep Neural Network

(DNN) and Graph Convolutional Neural Network 1516,
2.3.Lead optimization

The demand for in silico technologies or Al applications in
pharmaceutical development research has increased and will
continue to do so, due to a need for accurate prediction of
pharmacokinetics/ADMET (Absorption, Distribution,
Metabolism and Toxicity, as shown in Figure 3) of hit
compounds, as pharmacokinetics as well as toxicity need to be
assessed to prevent the failure of candidate drug in a later
stage of drug development. The pharmacokinetics of a
molecule can be predicted and modeled in relation to the
target protein’s 3-D structure, through various methods like
molecule docking, dynamics simulation, quantum mechanisms
as well as PBPK (Quantitative-activity relationship and

physiologically based pharmacokinetic) modeling17. Between
2005 and 2010, Astra Zeneca worked on small molecule drug
discovery and found that most drugs failed in development
due to their toxicity. Through machine learning they found that
they could have predicted ADMET at an earlier stage and could
have saved a lot of money and time as well. Al not only allows
for the high throughput optimization of lead compounds but
also makes it possible to assess target affinity that can be

optimized via medicinal chemistry18. Lipinski “rule of five”,
which has been used to assess drug-likeness and the
likelihood of oral bioavailability of drugs in development, has
at times been a barrier for advancing drugs with drug-likeness
properties but violate a Lipinski rule and Al can be applied to
resolve their drug candidacy through machine learning at a

lower time and financial cost19'20.
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Figure 3: ADMET properties
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Figure 4: Application of Al and ML at different stages of drug development

3. How does Al and ML enhance traditional
computational drug development?

The issues related to traditional computational drug
development methods were those of computational
limitations and of high time consumption. However,
traditional computational drug development still played an
essential role in drug discovery but has greatly benefited from
the integration of Al as well as ML which have greatly reduced
the time and financial demands as shown in Figure 4. Today,
ML enabled tools are revolutionizing ligand-binding target
protein identification based on 3-D structure with the prime
example being DeepMind’s AlphaFold, which as described
earlier predicts 3-D protein structures through amino acids
sequences. Such advancement in drug development will allow
for speedy design of drugs with high binding affinities for their
target proteins. There are several areas where traditional drug
development has been improved by Al integration and has
resulted in FDA approved drugs; the reduced processing time
in molecular dynamics simulation by CNN-AI enabled, de novo
drug simulating designing tool, MolAlCal and multiparametric

QSAR are prime examp1e521.

QSAR(Quantitative Structure-Activity Relationship) is a form
of SAR in which statistical and computational modeling that is
bolstered by Al and ML is employed to predict the biological
and physical properties as well as the activity of novel drugs,
in a cost and time efficient manner; this varies from traditional

SAR which entails exhaustive and costly biological assaysls'22
. Any form of predictive computational modeling is only as
good as its parameters and as such there are multiple types of
QSAR methods that are classified based on the parameters
they consider and can be utilized in varying circumstances

depending on the parameter of interest23. QSAR is integral in
drug discovery as it allows for the generation of a small pool of
molecules of interest that may possess desirable properties
that can be further investigated and ascertained in vivo, and
this is especially useful when screening large compound
libraries as it ameliorates the significant time and resource

burden that plagues early traditional drug discovery24.
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Classical QSAR(which refers to the Hansch and Free-Wilson
analysis methods) operates under the assumption that the
chemical structure of compounds determines their bioactivity,
and leverages an input of a library of molecules that includes
their physical chemistry properties, known bioactivity,
chemical structures as well as the known activity of the
ligands of interest to conduct statistical relationship
assessments that can be extrapolated to predict the bioactivity
and physical chemistry properties of a novel compound

without the need for organic synthese515'25'26. QSAR
methods have matured since their introduction in the 1960s
by Corwin Hansch and have grown to include the 3D structure
of molecules/ligands which allows for more accurate
prediction of ligand-receptor interactions, as well as the
determination of relationship between a ligand’s structure and
bioactivity; this method is known as 3D-QSAR and is the most

widely used QSAR method today27'28’29. As idyllic as QSAR
may sound, it isn’t without its weaknesses and in no way could

supplant traditional sAR30,
3.1.Al and ML in Drug Toxicity Assessment

ML has been of great interest to drug developers and data
scientists alike and there are various ML methods that are in
use today such as LR, RF, and SVM, as previously

mentioned15'16'31. However, all these methods suffer from a
decrease in accuracy when it comes to molecular prediction of
complex compounds and have resulted in a more complex
form of ANN (Artificial Neural Network) known as Deep
Learning (DL), which is multilayered by design. After the input
layer (which takes in the data to be processed), the following
layers of a DL network are trained by each preceding layers’
results; as a result this network can process large amounts of
data that it can use to conduct complex computational
modeling and extrapolate to predict the structure of more
complex molecules through the non-linearity function. Other
examples of ANN are CNN(Convolutional Neural Networks)

and SNN (Self-Normalizing Neural Networks)3las shown in
Figure 5. Nowadays, the combination of Perturbation Theory
with ML which results in PTML, is being used for modeling
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toxicity of drugs in varying cellular environments as well as in
varying experimental animal models. PTML modelling, can
help drug developers to understand why a drug may have
failed in in-vivo studies, but also could help to remodel the
chemical structure of the drug to reduce toxicity during the
preclinical trials; PTML modeling could also help to increase
the small number of drugs that are screened and progress to
Phase 1 trials. Most of the hits in early drug discovery are
excluded during the hit to lead optimization, as well as
pharmacokinetics and toxicity assessments, and PTML
modeling could help to identity the best drug candidates
sooner and more efficiently. Initially withdrawn hits can now

/

FDA Approved
Drug

|essnern
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be structurally modified via ML modeling, in which the
changes in toxicity can be predicted as a result of structural
modification, also providing insights such as organ specificity,
carcinogenicity, genotoxicity, and LDso quantification.
Computational modeling also increases the chance that novel
drugs that may be toxic to animal models do not proceed to
animal studies making the drug development process one that
is more humane. Furthermore, computational modeling such
as PTML modeling allows for the development of drugs with
higher efficacy and lower toxicity in a time efficient and

resource efficient manners L.
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* Research
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* Hospital Management
* Diagnostics

Machine Learning(ML)
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Figure 5: Application of Al and ML in the generation of FDA approved drugs

4. Impact of Al and ML in Resource Utilization

Recent years have witnessed cloud data centers (DCs) gaining
significant prominence when it comes to performing data
management and shared computing. The high utilization of
shared resources has already exhibited several advantages, but
it needs to be acknowledged that data often comes in an
unstructured format, and this is where the application of
machine learning algorithms steps in. Performing reliable
resource provisioning which can operate across multiple
platforms is not an easy accomplishment. Despite the presence
of conflicting conjectures regarding the resource efficiency of
machine learning, it is hard to ignore the impressive attributes
of machine learning algorithms when it comes to performing

prediction, classification, and forecastinggz. As has been
identified by Hussain et al,, traditional resource management
techniques have become outdated and now possess a wide

range of limitations33.With the continual growth in the
implementation of IoT devices, a plethora of data is being
generated on a regular basis; the application of proper
machine learning techniques can harness the growing supply
of information associated with IoT data to more effectively
allocate resources and generate predicti0n534.

According to Murali et al., several attempts have been made
over the years to integrate automation in the task of resource
allocation and it has been deduced that machine learning isone

of the optimum solutions3>. It has also been acknowledged
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that DNN (Distributed Neural Networks) are the future of
automation and that it is the area which possesses the
potential to perform computation on large databases

effortlessly36. Additionally, it has also been observed that the
resource utilization system of vehicular networks has grown
dynamically with the advent of Al based resource allocation
systems; the application of machine learning techniques has
also resulted in improvements in vehicular resource allocation

strategy over time3’. The operations involving resource
allocation have supplementally become much less volatile due
to the presence of historical data and the rapid nature of
machine learning algorithms, which simplifies the assortment
of resources3S.

5. Impact of Al and ML in Drug Formulation

Big data within healthcare has introduced the usual aspects of
volume, velocity, and veracity in maintenance and

management of patient data3?. Machine Learning tools
generally harvest the accumulated data which are generally
structured, thus neural networks or naive Bayesian
approaches have been implemented within the field of data
science to accumulate the most probable outcomes of queries

that are posed to the dataset40(as shown in Figure 4 and

Figure 5).

Machine learning techniques have increasingly implicated in

drug formulation in the pharmaceutical industry and can help
CODEN (USA): JDDTAO
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synthesize medical drugs according to Elbadawi et al 41,
M3DISEEN is an example of such an application and has been a
web-based pharmaceutical application that initiates the FDM
3D printing process for developed drugs through formulations
stocks. The modern advent of ML data harvesting techniques
also allows the use of machine learning techniques that can
improve drug discovery probabilities for CNS-related diseases;
this machine learning technique has also helped in the drug
actuation process where designing and activity measurement

can be performed as well*2. The application of machine
learning can also improve the acceptability of 3D-printed
drugs further enhancing the quality control standards of
traditionally manufactured drugs as well43,

A new paradigm of genetic data collection has enabled early
cancer risk detection withinnon- diseased individuals, and the
detection of antigens from the cancerous individuals has
helped researchers to develop combinatorial antibodies to

fight against the disease onset as well*4. Gut microbiomes
provide a levy of genetic databases which can later be tallied
according to the geographical variables with the help of
machine learning techniques. Thus in-silico preparation of
microbiome-specific drugs can help patients to recover from

their ailments?>. Specific gut microbiome combinations have

Journal of Drug Delivery & Therapeutics. 2023; 13(1):151-158

been tallied using artificial intelligence and drugs are
suggested accordingly. Finally, it can be said that the
application opportunities for these machine learning
techniques in the formulation of drugs have been immensely
diverse, but these techniques along with fuzzy logic and
genetic algorithms will continue to streamline both drug

design and drug formulation and manufacturing46.
6. Conclusion

Drug discovery and development continues to be a long and
arduous road that begins with billions of compounds that are
narrowed down based on their target engagement, binding
affinities and ADMET/pharmacokinetic properties. The
integration of Al and ML into the drug discovery allows for
further investigation of withdrawn drug candidates may have
either violated the Lipinski rule of 5(as shown in Figure 6) or
failed toxicity screening and ML modeling makes it possible to
modify compounds’ structure to reduce their toxicity.
Modified drug candidates can then be easily assessed for their
efficacy and ADMET properties (as shown in Figure 3) through
DL. Not only does Al enabled computational modeling allow
for more efficient drug discovery and development but also
could make preclinical studies in animal studies more humane
by helping to withdraw toxic drug candidates.
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Figure 6: Lipinski rule of 5

QSAR modeling continues to evolve and develop but currently
falls short of being able to supplant SAR entirely due to its
declining accuracy with increasing compound complexity.

Nonetheless, QSAR methods have developed to move past
receptor independent models into receptor-dependent
QSAR(RD-QSAR) which uses the multiple 3D structures of the
ligand- receptor conformations to allow for the prediction of
the conformations of other ligand-receptor interactions (RD-
4D-QSAR) allowing for more detailed predictions of how a
drug of interest may interact with the target of interest; both
receptor dependent and receptor independent QSAR has
recently been reinvigorated and has been successfully applied
in drug discovery due to the continuing growth in

computational and graphical processing power47'48. There
has also been an increased interest in the use of deep learning
QSAR, which would suit the multi parametric nature of drug
optimization, but it suffers from low robustness due to the
massive computational power and large amounts of data that
are necessary for accurate prediction generation; however the
rise in the incorporation of uncertainty estimation into neural
networks may provide correction factors to incorrect property
predictions that are a symptom low data based prediction

models*?. Alphafold has also gained a new rival in the protein
structure prediction space in the form of Meta Al's ESMFold
which has characterized the structure of about 600 million
proteins derived from microorganisms that have not been

previously characterized>°. Despite being faster at predicting
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protein structures than Alphafold in certain cases, ESMFold is
not as accurate as Alphafold but distinguishes itself in its more
structurally unique and rich metagenomic protein prediction
database as well as having a prediction model that is better
suited for more easily determining the structural impact of
mutations.

The utilization of Al and ML in drug discovery and
development (especially in the development of oncological
and psychiatric drug) in FDA submissions has been on the rise
since the 2010s and as such the FDA has had to explore how
this nascent form of therapeutics development, administration

and selection is to be regulatedSl.The FDA released a
discussion paper titled, “Proposed Regulatory Framework for
Modifications to Artificial Intelligence /Machine
Learning(Al/ML)-Based Software as a Medical Device(SaMD)-
Discussion Paper and Request for Feedback”, in 2019 which
primarily aimed to ensure that users were made aware of self-
learning and machine learning based modifications and
developments and that risk- assessment of these modifications
was administered throughout the FDA approval process and

beyondsz. The 2019 discussion paper addressed the use of Al
and ML as a medical device which limits the regulation
discussion to its use in the clinic (when it may be used in
treatment and in aiding diagnostics) and there does not seem
to be any existing regulatory advisement on the use of Al and

ML in drug discovery and development53. Such regulatory
advisements may not have been introduced by the FDA as
CODEN (USA): JDDTAO
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findings that direct the course of drug discovery and drug
development as Al and ML are always validated by
biochemical assays and invitro studies prior to progressing in
the pipeline. However, the FDA has been promoting the use
Real-World Data (RWD) since the mid 2010s, in an effort to
encourage the collection and analysis of extensive clinical
medical information from clinical study patients to better
inform drug development and has resulted in the employment
of Al for tracking the adverse effects of drugs in the clinic (also
known as pharmacovigilance) as well as in investigating a

drug’s potential for repurposing54'55.
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