of Delivery and Therabe

Available online on 15.08.2022 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

Copyright © 2011-2022 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Review Article

Advancement of Near Infrared techniques in diagnosis and treatment of cancer

Nikhil Sharma*, Amar Deep Ankalgi, Upasana Thakur, Mahendra Singh Ashawat, Neha Sharma

Department of Pharmaceutical Analysis and Quality Assurance, Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, HP-176031

Article Info:

Article History:

Received 18 June 2022 Reviewed 26 July 2022 Accepted 02 August 2022 Published 15 August 2022

Cite this article as:

Sharma N, Ankalgi AD, Thakur U, Ashawat MS, Sharma N, Advancement of Near Infrared techniques in diagnosis and treatment of cancer, Journal of Drug Delivery and Therapeutics. 2022; 12(4-S):192-198

DOI: http://dx.doi.org/10.22270/jddt.v12i4-s.5599

*Address for Correspondence:

Nikhil Sharma, Department of Pharmaceutical Analysis and Quality Assurance, Laureate Institute of Pharmacy, Kathog, HP-176031, India

Abstract

Near-Infrared photoimmunotheraphy (NIR-PIT) is newly developed therapy for cancer treatment, by using a specific monoclonal antibody (mAb) conjugated to a photoactive agent i.e. IRDye 700DX. In this technique, the conjugate of specific monoclonal antibody - photoactive agent is administered intravenously to cancer patient. When NIR light is applied, the monoclonal antibody - photoactive agent conjugate (APC) is excited and selectively kill the cancer cell without harming neighbouring normal cell. NIR light alters the chemical structure of APC and damages the cancer cell membrane. For the diagnosis of tumor, it is possible to observe the movements of erythrocyte in tissues by using diffuse correlation spectroscopy (DCS). DCS flow measurements are carried out by observing photon speckle variations induced by moving tissue scattering. Another diagnostic tool is Near-infrared spectroscopy (NIRS), which is based on endogenous chromophores difference between healthy tissue and cancer by using diagnostic indicator i.e. oxy-haemoglobin or deoxyhaemoglobin, lipid or water bands. NIRS is being used in a variety of biological and pharmaceutical research fields, including brain imaging, cardiovascular radiology, formulation and quality/process control, and even clinical trial. In this review article, we describe the Near-Infrared photoimmunotheraphy (NIR-PIT) with its mechanism, role of DCS & NIRS in cancer diagnosis and various application of NIR-PIT.

Keyword: Near-infrared immunotherapy (NIR-PIT); diffuse correlation spectroscopy (DCS); Near-infrared spectroscopy (NIRS); Cancer treatment; Cancer diagnosis.

Introduction:

Cancer is major public health problem globally and is 2nd leading cause of death in United State¹. It's a disease of genes that regulates proliferation, differentiation and cell death2. According to the study in United State, there will be approximate 1,918,030 cases of cancer identified in 20223. In case of male, there will be high occurrence of prostate cancer, lung and bronchus cancer, urinary bladder cancer, colon and rectum cancer, but in case of female, there will be more chances of breast cancer, lung and bronchus cancer, colon and rectum cancer, uterine corpus and thyroid cancer, respectively4. The main and challenging task in cancer research is to develop a method which is accurate, fast, inexpensive and suitable for improving the health of cancer patient⁵. Nowadays, cancer is diagnosed by different techniques such as include nonionizing or ionizing radiological techniques such as X-ray mammography, ultrasound imaging, computed tomography (CT), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI)6. The computed tomography and ultrasound technique only provides the morphological information about tumors, and other techniques like PET and fMRI gives the functional information.

In recent years, Near-Infrared spectroscopy (NIRS) is commonly used for the diagnosis and monitoring of cancer because this is a fast, simple, inexpensive and convenient technique². Due to its important feature, it is a better technique than other expensive diagnostic techniques (like fMRI, PET, CT etc.) for measurement the optical properties of tissue⁷⁻¹⁰. Near-Infrared Diffuse correlation spectroscopy (DCS) is another important technique for the diagnosis of cancer. DCS directly detect the RBCs motion and speckle fluctuation of NIR light in biological tissue^{11,12}.

Now days, some available method used for the cancer treatment in clinics are chemotherapy, radiotherapy and surgery. But various newly developed therapies like immunotherapy, targeted therapy, gene therapy, magnetic hyperthermia therapy and phototherapy i.e. photothermal therapy (PTT) and photodynamic therapy (PDT) commonly adopted or used in clinical trials. PTT and PDT both are responsible for killing tumor cells by heat in PTT or through reactive oxygen species under irradiation on light in PDT. The external stimuli helpful in destruction of tumor but the side effects from this is quite strong. NIR light has greater penetration ability in deep tissue therefore, it is good source of light for treating cancer. When the NIR light is applied, the photoactive agents changes the conformation and destroy cancer cell without harming surrounding healthy tissue¹³.

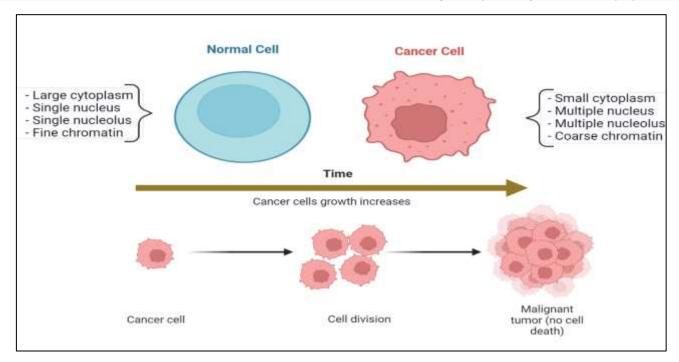


Figure 1: Difference between Normal and Cancer Cell

Near-Infrared Photo-immunotherapy:

Near-Infrared photoimmunotheraphy (NIR-PIT) is newly developed therapy for cancer treatment, by using a specific monoclonal antibody (mAb) conjugated to a photoactive agent i.e. IRDye 700DX. (Fig.2)14. The monoclonal antibody (mAb) used in this NIR-PIT has specific property to bind to cancer cell antigen, and this characteristic make it more specific than other techniques. In this technique, the conjugate of specific monoclonal antibody - photoactive agent is administered intravenously to cancer patient. This conjugate after administration reaches to the cancer site and bind to the antigen, which is present on the surface of cancer cell (Fig.3).

In NIR-PIT, Near-infrared (NIR) is used as source of light at the range 690nm. This NIR light penetrates the body tissue around few centimetres, and cause no harm to normal cell. When NIR light is applied, the monoclonal antibody - photoactive agent conjugate (APC) is excited and selectively kill the cancer cell without harming neighbouring normal cell. The photoactive agent (IRDye700DX) is water soluble dye and has no biotoxic or phototoxic property. The unbound IRDye700DX, which detaches from APC is not toxic and is freely eliminated from body in urine. Therefore, this NIR-PIT technique of using specific monoclonal antibody - photoactive conjugate and NIR light at range 690nm helpful in killing cancer cell without damaging normal cells^{15,16}.

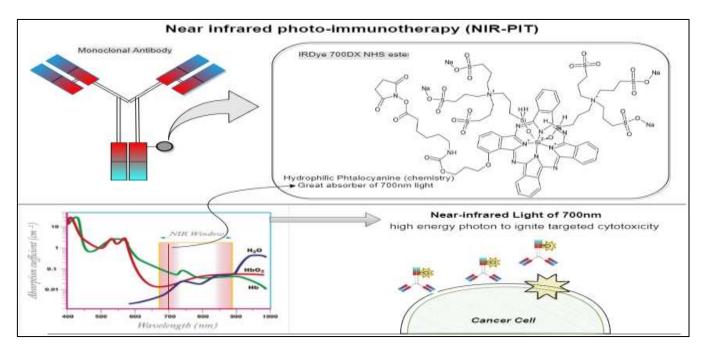


Figure 2: Near-Infrared Immunotherapy

(Fig.2 a framework for describing NIRPIT-based targeted cancer treatment. Monoclonal antibody are used as targeted molecules because to their high binding selectivity. A hydrophilic phthalocyanine dye (IRDye 700) is used as a "Nano-dynamite" reagent because it absorbs near-infrared light at a wavelength of 700 nm and only produces high cytotoxicity when linked to cell membranes. Because IR700 dye absorbs near-infrared light at 700 nm, it is used as a cytotoxicity initiator)

ISSN: 2250-1177 [193] CODEN (USA): JDDTAO

In NIR-PIT, light can penetrates the body tissue only few centimetre (approx. 2cm). So, it's a better technique for treating superficial tumor¹⁷. In case of lungs and pleural cavity tumor, NIR light is passed much further through air in lungs¹⁸-

 21 . But in solid tissue, NIR light source must be placed near to the tumor because NIR light is rapidly diminished in more solid tissue 22 .

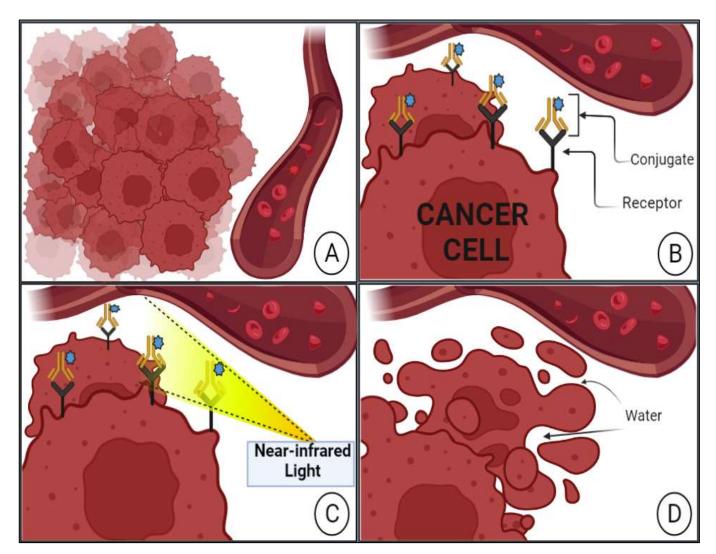


Figure 3: Successive microscopic pictures for cellular cytotoxicity caused by NIR-PIT

Preparation of Antibody-photoactive conjugate:

For preparing antibody-photoactive conjugate, Incubate the monoclonal antibody with IRDye 700DX and 0.1 mol./L Na_2HPO_4 (maintain pH-8.5) at room temperature (20-25°C) for one hour. After that, mixture is passed through gel filtration column, and then antibody – photoactive conjugate

(APC) is injected into body by intravenous route. This leads to binding of antibody-photoactive conjugate to the cancer cells. When NIR light is exposed, photochemical ligand reaction occurs by which hydrophilic side chain of IRDye 700DX releases and this makes a remaining molecule hydrophobic. The unbound IRDye700DX from antibody – photoactive conjugate, easily eliminated from body by urine^{23,24}.

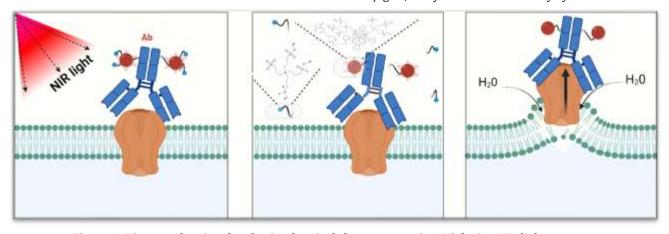


Figure 4: Diagram showing the physicochemical changes occur in APC during NIR light exposure

ISSN: 2250-1177 [194] CODEN (USA): JDDTAO

Role of Diffuse Correlation Spectroscopy for Cancer Diagnosis:

It is possible to observer the movements of erythrocyte in tissues using diffuse correlation spectroscopy (DCS) while yet retaining the benefits of near-infrared spectroscopy^{25,26}. Diffuse correlation spectroscopy is carried out by determining photon fleck oscillations brought on by scatters movement in body tissues. The primary cause of these oscillations in nonmuscular tissues is movement of erythrocytes within blood arteries; however, complications, particularly in muscular tissues, might include shifting artefacts and fibre shearing^{27,28}. Other benchmarks, such as power laser Doppler²⁹, Doppler ultrasound^{30,31}, Fluorescent microsphere flow measurements, Xenon-CT32, Xenon-CT33, are also used for measurements of blood flow variations in tissues. In order to detect the optical characteristics of deep tissues using NIRS, a pair of source and detector fibres are positioned close together along the tissue surface (Fig.). Through the source fibre, a laser transmits NIR light into the tissues, which is then detected by a photodetector through the detector fibre. It is well known that photon migration in tissue has the characteristics of a diffusive process, during which photons undergo absorption and scattering processes. Blood oxygen saturation, total haemoglobin concentration, oxygenated haemoglobin haemoglobin concentrations and deoxygenated

concentrations may all be measured using the differences in NIR absorption spectra between the main tissue chromophores 25,28 .

Different probe designs are needed for the various circumstances that DCS might be employed in. Three sample probes are shown in Figures 5 (B) through (D). In investigations of tumour that are near to the body surface, the first probe [Fig. (B)] with straight or 90-degree bent fibres is employed (e.g. breast cancer, head and neck cancer). The second probe [Fig. (C)] is a non - contact probe positioned on the image plane of a mechanical camera that is set at a specific distance from the tumour surface. By allowing unhindered illumination from the treatment light through to the tumour during photodynamic therapy, this innovative noncontact configuration enables ongoing monitoring of tumour hemodynamic changes. The 3rd probe [see Fig. (D)] has several side-firing fibres placed in a tiny catheter that may be introduced into tissues or tumor with the least amount of tissue damage. Different boundary conditions [for example, semi-infinite geometry in Figures (B) and (C) or infinite geometry in Figure (D)] should be utilised for various probetissue interactions. Practically every advancement in NIRS probe design is transferable to DCS usage, and it is simple to construct hybrid NIRS and DCS probes by adding additional detector and source fibres34-38.

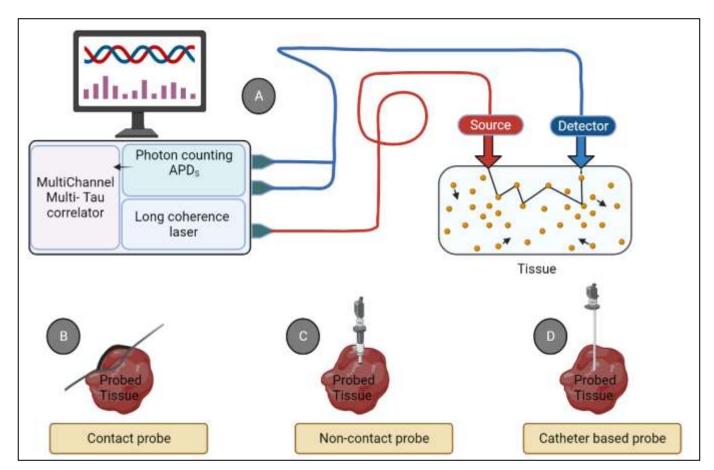


Figure 5: Diffusion Correlation Spectroscopy Instrumentation and probes type.

Role of Near-infrared Spectroscopy in Cancer Diagnosis

The development of diagnostic techniques to improve the ability to distinguish between cancerous and healthy tissues has received a lot of attention in recent years. Oncologists have used a variety of molecular techniques as effective tools

for examining chemical changes at the molecular spectroscope level^{39,41}. For instance, infrared spectroscopy (IR) methods are frequently used to examine biological tissues; the resultant spectra are made up of distinct bands arising from all vibration modes of bimolecular components present in the tissue, such as nucleic acids, proteins, and lipids. Each biomolecule generates a unique infrared spectrum that carries

ISSN: 2250-1177 [195] CODEN (USA): JDDTA0

information about several functional groups inside the molecule. The spectral bands' strength and frequency depend on the relative concentration, vibration frequencies, and polar characteristics. A whole tissue spectrum can communicate distinctive details about the molecular structure and composition that precede the transition from a normal to a malignant state. Near-infrared (NIR) spectroscopy has received interest recently for the biological investigation of numerous disorders, including malignancies⁴²⁻⁴⁵.

A potential use of NIR technology to non-invasive and minimally invasive methods of diagnosis is made possible, in particular, by the development of fibre optic probes. NIR spectroscopy may be divided into long-wave and short-wave NIR intervals46. Due to the dominance of hem proteins and cytochromes in the short-wave NIR range, this region primarily offers data on tissue blood flow, oxygen saturation, and consumption. The combination and overtone vibrations of O-H, C-H, and N-H groups in the long-wave NIR range provide information on the chemical makeup of tissues. The structure and concentration of different components are truly reflected in a tissue's NIR spectrum. The biochemistry, composition and physiology of cancerous tissues are different from normal tissues. Any change in the tissues' chemical makeup can be found and used for diagnostic reasons. NIR spectroscopy has been used by certain researchers in investigations on breast, gastric, pancreatic, prostate and colorectal tissues. A tissue sample frequently results in a complex NIR spectrum, which is made up of several wide, weak, non-specific, and overlapping bands, in contrast to the IR spectrum, which corresponds to the overtone combinations of different chemicals⁴⁷. An InGaAs detector and FT-NIR spectrometer (Thermo Fisher, USA) were used to conduct the NIR spectroscopy research⁴⁸.

In the range of 5500-7000 cm⁻¹, the variations between cancer and normal samples may be more readily seen; these variations include peak shape and intensity. The initial overtones of N-H, O-H bonds, and C-H combinations, as well as the first overtone of C-H stretching (5500–6000 cm1), are responsible for these peaks in this area. Such findings make sense because DNA, protein, lipids, and water make up the majority of the differences in the composition of cancer and healthy tissues. The majority of the bands in the NIR range really came from the vibration modes of various functional groups in the molecules of biological components in tissues and cells. A NIR spectrum is basically a combination of the fingerprints of several substances, including proteins, carbohydrates, lipids and water^{45,46}.

Applications of NIR-PIT

NIRS is being used in a variety of biological and pharmaceutical research fields, including brain imaging, cardiovascular radiology, formulation and quality/process control, and even clinical trial. A computer, an NIR spectrometer, a fiber-optic accessory with NIR illumination, and sensing fibres make up the conventional NIR measuring system. Radiation-emitting fibres are used to deliver the radiation to the tissue from an LED, broad-band thermal, or laser source. The photons that are transmitted or reflected back from the tissue are gathered by the detecting fibres and will be sent to the spectrometer for examination. The chromophores (DNA, proteins, haemoglobin, water, cytochromes, and lipids) absorb light at various wavelengths².

The NIR-PIT treatment has been carried out effectively using APCs that target a variety of antigens, including EGFR in the cases of lung²⁰, skin⁴⁹, and breast cancer; human epidermal growth factor receptor-2 in the cases of gastric cancer⁵⁰; mesothelin in the cases of mesothelioma, pancreatic, and ovarian cancer;⁽⁵¹⁾ prostate specific membrane antigen in the cases of prostate cancer⁵², in hepatocellular carcinoma,

glipican 3 (GPC3) is used, and in malignant lymphoma, CD20 is used⁵³. Deeply sitting tumours are treated with NIR light exposure using fibro-optical diffusers that introduced through endoscopes⁵⁴, or catheter needles techniques that could be readily adaptable to medical practice.

Conclusion

NIR-PIT is a novel cancer treatment with several use. This technique is highly specific for cancer treatment by using monoclonal antibody i.e. IRDye 700DX. The antibodyphotoactive conjugate attaches to cancer cell. When NIR light is applied, the monoclonal antibody - photoactive agent conjugate (APC) is excited and selectively kill the cancer cell without harming neighbouring normal cell. A wide variety of cancers might be treated with little to no adverse effects by employing different light delivery techniques. DCS and NIRS are two important technique for the diagnosis of cancer. In DCS, flow measurements are carried out by observing photon speckle variations induced by moving tissue scattering. NIRS is based on endogenous chromophores difference between healthy tissue and cancer by using diagnostic indicator i.e. oxy-haemoglobin or deoxyhaemoglobin, lipid or water bands. In several animal models, the NIR-PIT not only cures the local tumors but also reduces or prevents systemic metastasis and recurrence. In the future, NIR-PIT has a strong potential to become a widely used cancer therapy.

Acknowledgement

The authors are thankful to the laureate Institute of pharmacy, Kathog, Jawalamukhi, Himachal Pradesh 176031, India. We are also grateful to the principal and management for providing the necessary facilities for completing this review article successfully.

References

- 1. Yabroff KR, Wu XC, Negoita S, Stevens J, Coyle L, Zhao J, Mumphrey BJ, Jemal A, Ward KC. Association of the COVID-19 pandemic with patterns of statewide cancer services. JNCI: Journal of the National Cancer Institute. 2021 Jun 28. https://doi.org/10.1093/jnci/djab122
- Kondepati VR, Heise HM, Backhaus J. Recent applications of nearinfrared spectroscopy in cancer diagnosis and therapy. Analytical and bioanalytical chemistry. 2008 Jan; 390(1):125-39. https://doi.org/10.1007/s00216-007-1651-y
- 3. DeSantis CE, Miller KD, Dale W, Mohile SG, Cohen HJ, Leach CR, Goding Sauer A, Jemal A, Siegel RL. Cancer statistics for adults aged 85 years and older, 2019. CA: a cancer journal for clinicians. 2019 Nov; 69(6):452-67. https://doi.org/10.3322/caac.21577
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016 CA Cancer J Clin 2016; 66: 7-30. DOI: https://doi.org/10.3322/caac. 2020; 21332. https://doi.org/10.3322/caac.21332
- Kendall C, Isabelle M, Bazant-Hegemark F, Hutchings J, Orr L, Babrah J, Baker R, Stone N. Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst. 2009; 134(6):1029-45. https://doi.org/10.1039/b822130h
- 6. Van Dort ME, Rehemtulla A, Ross BD. PET and SPECT imaging of tumor biology: new approaches towards oncology drug discovery and development. Current computer-aided drug design. 2008 Mar 1; 4(1):46-53. https://doi.org/10.2174/157340908783769265
- 7. Pogue BW, Poplack SD, McBride TO, Jiang S, Osterberg UL, Paulsen KD. Breast tissue and tumor hemoglobin and oxygen saturation imaging with multi-spectral near infrared computed tomography. Advances in Experimental Medicine and Biology Series. 2001.
- Choe R, Konecky SD, Corlu A, Lee K, Durduran T, Busch Jr DR, Pathak S, Czerniecki BJ, Tchou JC, Fraker DL, DeMichele A. Differentiation of benign and malignant breast tumors by in-vivo threedimensional parallel-plate diffuse optical tomography. Journal of biomedical optics. 2009 Mar; 14(2):024020. https://doi.org/10.1117/1.3103325

- Tromberg BJ, Pogue BW, Paulsen KD, Yodh AG, Boas DA, Cerussi AE. Assessing the future of diffuse optical imaging technologies for breast cancer management. Medical physics. 2008 Jun; 35(6Part1):2443-51. https://doi.org/10.1118/1.2919078
- 10. Fang Q, Selb J, Carp SA, Boverman G, Miller EL, Brooks DH, Moore RH, Kopans DB, Boas DA. Combined optical and X-ray tomosynthesis breast imaging. Radiology. 2011 Jan; 258(1):89. https://doi.org/10.1148/radiol.10082176
- 11. Boas DA, Yodh AG. Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. JOSA A. 1997 Jan 1; 14(1):192-215. https://doi.org/10.1364/JOSAA.14.000192
- Boas DA, Campbell LE, Yodh AG. Scattering and imaging with diffusing temporal field correlations. Physical review letters. 1995 Aug 28; 75(9):1855. https://doi.org/10.1103/PhysRevLett.75.1855
- 13. Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chemical reviews. 2014 Nov 12; 114(21):10869-939. https://doi.org/10.1021/cr400532z
- 14. Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nature medicine. 2011 Dec; 17(12):1685-91. https://doi.org/10.1038/nm.2554
- 15. Sato K, Ando K, Okuyama S, Moriguchi S, Ogura T, Totoki S, Hanaoka H, Nagaya T, Kokawa R, Takakura H, Nishimura M. Photoinduced ligand release from a silicon phthalocyanine dye conjugated with monoclonal antibodies: a mechanism of cancer cell cytotoxicity after near-infrared photoimmunotherapy. ACS central science. 2018 Nov 6; 4(11):1559-69. https://doi.org/10.1021/acscentsci.8b00565
- Kobayashi, Hisataka, and Peter L. Choyke. Near-infrared photoimmunotherapy of cancer. Accounts of chemical research 2019; 52.8: 2332-2339. https://doi.org/10.1021/acs.accounts.9b00273
- 17. Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain?. Neuropsychiatric disease and treatment. 2015; 11:2191. https://doi.org/10.2147/NDT.S78182
- 18. Nakamura Y, Ohler ZW, Householder D, Nagaya T, Sato K, Okuyama S, Ogata F, Daar D, Hoa T, Choyke PL, Kobayashi H. Near Infrared Photoimmunotherapy in a Transgenic Mouse Model of Spontaneous Epidermal Growth Factor Receptor (EGFR)-expressing Lung CancerNIR-PIT in a Transgenic Mouse Model of Lung Cancer. Molecular cancer therapeutics. 2017 Feb 1; 16(2):408-14. https://doi.org/10.1158/1535-7163.MCT-16-0663
- 19. Sato K, Nagaya T, Nakamura Y, Harada T, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model. Oncotarget. 2015 Aug 8; 6(23):19747. https://doi.org/10.18632/oncotarget.3850
- 20. Kazuhide Sato, Tadanobu Nagaya, Makoto Mitsunaga, Peter L Choyke, Hisataka Kobayashi. Near infrared photoimmunotherapy for lung metastases. Cancer letters 2015; 365(1): 112-121. https://doi.org/10.1016/j.canlet.2015.05.018
- Sato K, Nagaya T, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy in the treatment of pleural disseminated NSCLC: preclinical experience. Theranostics. 2015; 5(7):698. https://doi.org/10.7150/thno.11559
- Maruoka Y, Nagaya T, Sato K, Ogata F, Okuyama S, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy with combined exposure of external and interstitial light sources. Molecular pharmaceutics. 2018 Feb 16; 15(9):3634-41. https://doi.org/10.1021/acs.molpharmaceut.8b00002
- Kobayashi, Hisataka, and Peter L. Choyke. Near-infrared photoimmunotherapy of cancer. Accounts of chemical research 2019; 52.8: 2332-2339. https://doi.org/10.1021/acs.accounts.9b00273
- 24. Sato K, Ando K, Okuyama S, Moriguchi S, Ogura T, Totoki S, Hanaoka H, Nagaya T, Kokawa R, Takakura H, Nishimura M.

- Photoinduced ligand release from a silicon phthalocyanine dye conjugated with monoclonal antibodies: a mechanism of cancer cell cytotoxicity after near-infrared photoimmunotherapy. ACS central science. 2018 Nov 6; 4(11):1559-69. https://doi.org/10.1021/acscentsci.8b00565
- 25. Boas DA, Yodh AG. Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. JOSA A. 1997 Jan 1; 14(1):192-215. https://doi.org/10.1364/JOSAA.14.000192
- 26. Boas DA, Campbell LE, Yodh AG. Scattering and imaging with diffusing temporal field correlations. Physical review letters. 1995 Aug 28; 75(9):1855. https://doi.org/10.1103/PhysRevLett.75.1855
- Irwin D, Dong L, Shang Y, Cheng R, Kudrimoti M, Stevens SD, Yu G. Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements. Biomedical optics express. 2011 Jul 1; 2(7):1969-85. https://doi.org/10.1364/B0E.2.001969
- Belau M, Ninck M, Hering G, Spinelli L, Contini D, Torricelli A, Gisler T. Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy. Journal of Biomedical Optics. 2010 Sep; 15(5):057007. https://doi.org/10.1117/1.3503398
- 29. Mesquita RC, Skuli N, Kim MN, Liang J, Schenkel S, Majmundar AJ, Simon MC, Yodh AG. Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia. Biomedical optics express. 2010 Nov 1; 1(4):1173-87. https://doi.org/10.1364/BOE.1.001173
- 30. Roche-Labarbe N, Carp SA, Surova A, Patel M, Boas DA, Grant PE, Franceschini MA. Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates' brains in the first six weeks of life. Human brain mapping. 2010 Mar; 31(3):341-52. https://doi.org/10.1002/hbm.20868
- 31. Buckley EM, Cook NM, Durduran T, Kim MN, Zhou C, Choe R, Yu G, Shultz S, Sehgal CM, Licht DJ, Arger PH. Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound. Optics Express. 2009 Jul 20; 17(15):12571-81. https://doi.org/10.1364/OE.17.012571
- 32. Kim MN, Durduran T, Frangos S, Edlow BL, Buckley EM, Moss HE, Zhou C, Yu G, Choe R, Maloney-Wilensky E, Wolf RL. Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocritical care. 2010 Apr; 12(2):173-80. https://doi.org/10.1007/s12028-009-9305-x
- 33. Zhou C, Eucker SA, Durduran T, Yu G, Ralston J, Friess SH, Ichord RN, Margulies SS, Yodh AG. Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury. Journal of Biomedical Optics. 2009 May; 14(3):034015. https://doi.org/10.1117/1.3146814
- 34. Irwin D, Dong L, Shang Y, Cheng R, Kudrimoti M, Stevens SD, Yu G. Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements. Biomedical optics express. 2011 Jul 1; 2(7):1969-85. https://doi.org/10.1364/BOE.2.001969
- 35. Durduran T, Choe R, Yu G, Zhou C, Tchou JC, Czerniecki BJ, Yodh AG. Diffuse optical measurement of blood flow in breast tumors. Optics letters. 2005 Nov 1; 30(21):2915-7. https://doi.org/10.1364/OL.30.002915
- 36. Yu G, Durduran T, Zhou C, Zhu TC, Finlay JC, Busch TM, Malkowicz SB, Hahn SM, Yodh AG. Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light. Photochemistry and photobiology. 2006 Sep; 82(5):1279-84. https://doi.org/10.1562/2005-10-19-RA-721
- 37. Sunar U, Quon H, Durduran T, Zhang J, Du J, Zhou C, Yu G, Choe R, Kilger A, Lustig RA, Loevner LA. Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study. Journal of biomedical optics. 2006 Nov; 11(6):064021. https://doi.org/10.1117/1.2397548

- 38. Zhou C, Choe R, Shah NS, Durduran T, Yu G, Durkin A, Hsiang D, Mehta R, Butler JA, Cerussi AE, Tromberg BJ. Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy. Journal of biomedical optics. 2007 Sep; 12(5):051903. https://doi.org/10.1117/1.2798595
- Khanmohammadi M, Garmarudi AB. Infrared spectroscopy provides a green analytical chemistry tool for direct diagnosis of cancer. TrAC Trends in Analytical Chemistry. 2011 Jun 1; 30(6):864-74.

https://doi.org/10.1016/j.trac.2011.02.009

- Kaznowska E, Łach K, Depciuch J, Chaber R, Koziorowska A, Slobodian S, Kiper K, Chlebus A, Cebulski J. Application of infrared spectroscopy for the identification of squamous cell carcinoma (lung cancer). Preliminary study. Infrared Physics & Technology. 2018 Mar 1; 89:282-90. https://doi.org/10.1016/j.infrared.2018.01.021
- 41. Gajjar K, Trevisan J, Owens G, Keating PJ, Wood NJ, Stringfellow HF, Martin-Hirsch PL, Martin FL. Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer. Analyst. 2013; 138(14):3917-26. https://doi.org/10.1039/c3an36654e
- 42. Scheeren TW, Schober P, Schwarte LA. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. Journal of clinical monitoring and computing. 2012 Aug; 26(4):279-87. https://doi.org/10.1007/s10877-012-9348-y
- 43. Teh SK, Zheng W, Lau DP, Huang Z. Spectroscopic diagnosis of laryngeal carcinoma using near-infrared Raman spectroscopy and random recursive partitioning ensemble techniques. Analyst. 2009; 134(6):1232-9. https://doi.org/10.1039/b811008e
- 44. Chen H, Lin Z, Tan C. Cancer discrimination using fourier transform near-infrared spectroscopy with chemometric models. Journal of Chemistry. 2015 Jan 1; 2015. https://doi.org/10.1155/2015/619685
- 45. Chen H, Lin Z, Wu H, Wang L, Wu T, Tan C. Diagnosis of colorectal cancer by near-infrared optical fiber spectroscopy and random forest. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015 Jan 25; 135:185-91. https://doi.org/10.1016/j.saa.2014.07.005

- 46. Kondepati VR, Keese M, Mueller R, Manegold BC, Backhaus J. Application of near-infrared spectroscopy for the diagnosis of colorectal cancer in resected human tissue specimens. Vibrational Spectroscopy. 2007 Jul 17; 44(2):236-42. https://doi.org/10.1016/j.vibspec.2006.12.001
- 47. Chen H, Lin Z, Tan C. Cancer discrimination using fourier transform near-infrared spectroscopy with chemometric models. Journal of Chemistry. 2015 Jan 1; 2015. https://doi.org/10.1155/2015/619685
- 48. Galvao RK, Araujo MC, José GE, Pontes MJ, Silva EC, Saldanha TC. A method for calibration and validation subset partitioning. Talanta. 2005 Oct 15; 67(4):736-40. https://doi.org/10.1016/j.talanta.2005.03.025
- Mitsunaga, M., Nakajima, T., Sano, K., Choyke, P.L. and Kobayashi, H. Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate. Bioconjugate chemistry, 2012; 23(3):604-609. https://doi.org/10.1021/bc200648m
- Nagaya T, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Kobayashi H. Endoscopic near infrared photoimmunotherapy using a fiber optic diffuser for peritoneal dissemination of gastric cancer. Cancer science. 2018 Jun; 109(6):1902-8. https://doi.org/10.1111/cas.13621
- 51. Nagaya T, Nakamura Y, Sato K, Zhang YF, Ni M, Choyke PL, Ho M, Kobayashi H. Near infrared photoimmunotherapy with an antimesothelin antibody. Oncotarget. 2016 Apr 4; 7(17):23361. https://doi.org/10.18632/oncotarget.8025
- 52. Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy Targeting Prostate Cancer with Prostate-Specific Membrane Antigen (PSMA) AntibodyNear-Infrared Photoimmunotherapy Targeting PSMA. Molecular Cancer Research. 2017 Sep 1; 15(9):1153-62. https://doi.org/10.1158/1541-7786.MCR-17-0164
- 53. Nagaya T, Nakamura Y, Sato K, Harada T, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy of B-cell lymphoma. Molecular oncology. 2016 Nov 1; 10(9):1404-14. https://doi.org/10.1016/j.molonc.2016.07.010
- 54. Okuyama S, Nagaya T, Sato K, Ogata F, Maruoka Y, Choyke PL, Kobayashi H. Interstitial near-infrared photoimmunotherapy: effective treatment areas and light doses needed for use with fiber optic diffusers. Oncotarget. 2018 Feb 16; 9(13):11159. https://doi.org/10.18632/oncotarget.24329