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Abstract 
____________________________________________________________________________________________________________ 

Cuminum cyminum L (Family: Apiaceae) is a small multipurpose herb. Seeds of cumin are widely used 
as a spice for its distinctive aroma, and more commonly in various indigenous traditional systems of 
medicine. Access through web literature provides ample evidence for biomedical activities of 
Cuminum cyminum seeds (CCS). CCS has been used in traditional medicine to treat variety of diseases, 
including hypolipidemia, cancer, and diabetes. Biomedical properties of CCS is attributed to its 
phytochemical class of compounds viz., terpenes, phenols and flavonoids. Health effects of CCS have 
been experimentally validated through phytochemical screening deciphering the fact that it contains a 
large number of bioactive secondary metabolites (BASMs) viz., alkaloid, coumarin, anthraquinones, 
flavonoid, glycoside, protein, resin, saponin, tannin and steroid. Furthermore, pharmacological studies 
indicate that BASMs in CCS exert antimicrobial, insecticidal, anti-inflammatory, analgesic, antioxidant, 
anticancer, antidiabetic, anti-platelet-aggregation, hypotensive, bronchodilatory, immunological, 
contraceptive, anti-amyloidogenic, anti-osteoporotic, aldose reductase, α-glucosidase and tyrosinase 
inhibitory effects. Cuminaldehyde is one of the major bioactive compounds in CCS that holds 
significant pharmacological prominence. However, in-depth studies are lacking henceforth warranted 
to elucidate and fill the gaps, particularly on phytocompound isolation, pre-clinical, clinical 
characterization, and evaluation of structure–activity relationship. The present study prospects 
ADMETox perspectives of cuminaldehyde (4-Isopropylbenzaldehyde).  

Keywords: Cuminaldehyde; Isopropylbenzaldehyde; Cuminum cyminum; ADMETox; Natural Product 
(NP) 

 

INTRODUCTION  

Drug development is a lengthy, complex, and costly process, 
entrenched with a high degree of uncertainty that a drug will 
actually succeed to reach the market or not. Drug development 
process can be divided into several stages, including disease-
related genomics, target identification/ validation, lead 
discovery/ optimization, preclinical/ clinical trials1. During 
early stages of drug discovery and development, activities and 
specificities of candidate drug lead molecule is assessed at an 
early stage pharmacokinetics and late stage toxicity2. 
Practically, most of the time, withdrawal of a proven candidate 
drug lead in the final stage is ascribed to some undesirable 
efficacy/ safety in absorption, distribution, metabolism, 
excretion and toxicity (ADMET)3-6.  

Cook et al.7 comprehensively reviewed the results of 
AstraZeneca's small-molecule drug projects from 2005 to 
2010 based on a longitudinal study and pointed out that 
unacceptable safety and toxicity were the most important 

reasons for the failure of more than half of all projects 
undertaken. Potential compounds, for example, can be 
generated through binding/ functional, biochemical, and 
cellular or cytotoxicity assays. High-throughput screening 
through a large compound library can identify multiple 
compounds. Progressing to a lead compound(s) can involve 
complex cellular assays, toxicological surrogate assays, bio-
pharmacological surrogates, and surrogates for absorption, 
distribution, metabolism, and excretion (ADME)3,5,6. As with 
the development of drug discovery, it was realized that it is 
important to filter and optimize the properties for drugs at an 
early stage, which has been accepted and widely used to 
reduce the attrition rate in drug research and development. A 
Fail-Early-Fail-Cheap strategy is employed by many of the 
pharmaceutical companies8. Pharmacokinetics and toxicity 
assessments of preclinical drugs are of significant value in 
reducing the failure rate of new chemical entities in clinical 
trials.6,9,10  

http://jddtonline.info/
http://dx.doi.org/10.22270/jddt.v12i2-s.5286


Ramya et al                                                                                                                             Journal of Drug Delivery & Therapeutics. 2022; 12(2-s):127-141 

ISSN: 2250-1177                                                                                             [128]                                                                                           CODEN (USA): JDDTAO 

In recent years, in vitro and in vivo ADMET prediction methods 
have been widely used5,6,11-17, but it is almost impractical to 
perform complex/ expensive experiments on a large number 
of compounds5,18. Thus, in silico ADMET predict has turn out to 
be an attractive Cost-Saving High-Throughput alternative to 
conventional methods.14,16,18 

Natural products (NPs) from medicinal plants and their 
structural analogues have made significant contribution to 
pharmacotherapy, especially for the treatment of cancer and 
infectious diseases.19-24 Nevertheless, NPs present challenges 
for drug discovery, such as technical barriers to screening, 
isolation, characterization and optimization, with a decline in 
their pursuit by pharma-industries since 1990s.22  

Cuminum cyminum a small herbaceous medicinal plant, it has 
tropical distribution, however, more common to Egypt, the 
Mediterranean, and SEA countries with culinary and 
traditional pharmacological uses.25 In traditional medicine, 
cumin seeds were used to treat hoarseness, jaundice, 
dyspepsia and diarrhoea. Traditionally the seeds were used 
for stomachic, diuretic, carminative, stimulant, astringent and 
abortifacient properties.25 In Unani system of medicine, fruits 
of C. cyminum are used as an astringent, carminative, 
emmenagogue, for the treatment of corneal opacities, ulcers, 
boils, relieve cough and metabolic inflammation.26 
Furthermore, cumin oil is used in perfumery and as a 
seasoning agent in food preparations.25,26 Bioactive natural 
products in the CCS extracts exhibit a wide range of 
pharmacological activities.25,27  

Phytochemical analysis of C. cyminum revealed that it contains 
alkaloid, coumarin, anthraquinone, flavonoid, glycoside, 
protein, resin, saponin, tannin and steroid28. Pharmacological 
studies have proven that CCS exerts antimicrobial, insecticidal, 
anti-inflammatory, analgesic, antioxidant, anticancer, 
antidiabetic, antiplatelet aggregation, hypotensive, 
bronchodilatory, immunological, contraceptive, anti-
amyloidogenic, anti-osteoporotic, aldose reductase , α-
glucosidase and tyrosinase inhibitory effects. GCMS analysis 
revealed the presence of several bioactive compounds, of 
which cuminaldehyde was identified as the principle 
compound. Cuminaldehyde (CA) (Fig. 1) is an aromatic 
monoterpenoid volatile compound, a natural p-isopropyl-
benzaldehyde, activate compound of essential oil from 
eucalyptus29, myrrh29, caraway30, Chinese cinnamon30. 
Structurally, CA is a benzaldehyde substituted at the 4th 
position with an isopropyl group. Commercially CA is used in 
perfumes and cosmetics due to its pleasant aroma. CA has 
antidiabetic31, antitumor32, anti-inflammatory33, 
antimicrobial34, and antifungal35 effects. Studies depict that CA 
exerts protective effect against neuro-degenerative diseases 
(Parkinson’s disease).36 Recently, it has been demonstrated 
that dietary administration of cumin-derived-CA induce 
neuroprotective, learning and memory enhancement effects in 
the experimental model.37 

MATERIALS AND METHODS 

vNN method rests on the concept that compounds with similar 
structures have similar activities. It is therefore reasonable to 
weight the contributions of neighbours so that closer 
neighbours contribute more to the predicted value. The vNN 
method calculates the similarity distance between molecules 
in terms of their structure, and uses a distance threshold to 
define a domain of applicability (i.e., all nearest neighbors that 
meet a minimum similarity threshold constraint). This 
applicability domain ensures that the predictions generated 
are reliable. vNN models can be built within minutes and 
require no re-training when new assay information becomes 

available—an important feature when keeping quantitative 
structure–activity relationship (QSAR) models up-to-date to 
maintain their performance levels. The performance 
characteristics of vNN-based models are comparable, and 
often superior to, those of other more elaborate model 
constructs. One of the most widely used measures of the 
similarity distance between two small molecules is the 
Tanimoto distance, d, which is defined as: 

  

where η(P∩Q) is the number of features common to molecules 
p and q, and η(P) and η(Q) are the total numbers of features 
for molecules p and q, respectively. The predicted biological 
activity y is then given by a weighted average across 
structurally similar neighbours: 

 

where di denotes the Tanimoto distance between a query 
molecule for which a prediction is made and a molecule i of 
the training set; d0 is a Tanimoto-distance threshold, beyond 
which two molecules are no longer considered to be 
sufficiently similar to be included in the average; yi is the 
experimentally measured activity of molecule i; v denotes the 
total number of molecules in the training set that satisfies the 
condition di≤d0; and h is a smoothing factor, which dampens 
the distance penalty. The values of h and d0 are determined 
from cross-validation studies. To identify structurally similar 
compounds, were used Accelrys extended-connectivity 
fingerprints with a diameter of four chemical bonds 
(ECFP4), which have previously been reported to show good 
overall performance. 

Model Validation 

A 10-fold cross-validation (CV) procedure was used to validate 
new models and to determine the values of the smoothing 
factor h and Tanimoto distance d0. In this procedure, the data 
was randomly divided into 10 sets, and used 9 to develop the 
model and the 10th to validate it. This process was repeated 
10 times, leaving each set of molecules out once. When 
building new models, averages of the 10-fold CV was reported 
as the performance measures. 

Performance Measures 

Metrics to assess model performance were (1) sensitivity 
measures a model’s ability to correctly detect true positives, 
(2) specificity measures a model’s ability to detect true 
negatives, (3) accuracy measures a model’s ability to make 
correct predictions , and (4) kappa compares the probability 
of correct predictions to the probability of correct predictions 
by chance (its value ranges from +1 (perfect agreement 
between model prediction and experiment) to –1 (complete 
disagreement), with 0 indicating no agreement beyond that 
expected by chance). 
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where TP, TN, FP, and FN denote the numbers of true 
positives, true negatives, false positives, and false negatives, 
respectively. Kappa is a metric for assessing the quality of 
binary classifiers. Pr(e) is an estimate of the probability of a 
correct prediction by chance. It is calculated as: 

 

The calculated coverage is the proportion of test molecules 
with at least one nearest neighbour that meets the similarity 
criterion. The coverage is a measure of how many test 
compounds are within the applicability domain of a prediction 
model. 

RESULTS AND DISCUSSION  

Studies indicate that hunt, identification and biomolecular 
characterisation of the plant derived natural products remains 
the mainstay prerequisite for use of NPs in the pharma-
industries.39-49   

Chemical kingdom : Organic compounds 

Super class : Lipids and lipid-like molecules 

Class : Prenol lipids 

Subclass : Monoterpenoids 

PubChem Identifier : 326 

ChEBI Identifier : 28671 

CAS Identifier : 122-03-2 

Synonyms : LEUCOPELARGONIDIN 

Canonical SMILES : O=CC1CCC(CC1)C(C)C 

InChI Key : WTWBUQJHJGUZCY-
UHFFFAOYSA-N 

Liver Toxicity DILI 

Drug-induced liver injury (DILI) is considered as one of the 
most commonly cited reasons for drug withdrawals from the 
market50. A vNN-based LT-DILI prediction model indicates 
whether a compound could cause DILI. The dataset of 1,431 
compounds was obtained from online sources containing 
dataset both pharmaceuticals and non-pharmaceuticals and 
classified a compound as causing DILI if it was associated with 
a high risk of DILI and not if there was no such risk. Prediction 
report obtained for the LT-DILI prediction model has been 
provided (Fig.3a; Table 2b). 

Cytotoxicity (HepG2) 

Cytotoxicity is the degree to which a chemical causes damage 
to cells.51 A cytotoxicity prediction model was developed, 
using in vitro data on toxicity against HepG2 cells for 6,000 
structurally diverse compounds, which were collected from 
ChEMBL. In developing our model, compounds with an IC50 ≤ 
10 μM in the in vitro assay were considered as cytotoxic 
(Fig.3b; Table 2b). 

Metabolism HLM 

Human liver microsomal (HLM) stability assay is commonly 
used to identify and exclude compounds that are too rapidly 
metabolized. For a drug to achieve effective therapeutic 
concentrations in the body, it cannot be metabolized too 
rapidly by the liver.52 Compounds with a half-life of 30 
minutes or longer in an HLM assay are considered as stable; 
otherwise they are considered unstable. HLM data was 
retrieved from the ChEMBL database, manually curated the 

data, and classified compounds as stable or unstable based on 
the reported half-life (T1/2 > 30 min was considered stable, and 
T1/2 < 30 min unstable.53 The final dataset contained 3,654 
compounds. Of these, 2,313 compounds were classified as 
stable and 1,341 as unstable (Fig.3c; Table 2b). 

Cytochrome P450 enzyme (CYP) inhibition 

CYPs constitute a superfamily of proteins that play an 
important role in the metabolism and detoxification of 
xenobiotics. In vitro data derived from five main drug-
metabolizing CYPs—1A2, 3A4, 2D6, 2C9, and 2C19 were used 
to develop CYP inhibition models. We retrieved CYP inhibitors 
from PubChem and classified a compound with an IC50 ≤ 10 
μM for an enzyme as an inhibitor of the enzyme. Data provides 
predictions for the following enzymes: CYP1A2, CYP3A4, 
CYP2D6, CYP2C9, and CYP2C19 (Fig.3d; Table 2b). 

Membrane Transporters BBB 

Blood-brain barrier (BBB) is a highly selective barrier that 
separates the circulating blood from the central nervous 
system.54,55 A vNN-based BBB model was developed, using 352 
compounds whose BBB permeability values (log BB) were 
obtained from the literature respectively. Compounds with log 
BB values of less than –0.3 and greater than +0.3 were 
classified as BBB non-permeable and permeable (Fig.3e; Table 
2b). 

Pgp Substrates and Inhibitors 

P-glycoprotein (Pgp) is an essential cell membrane protein 
that extracts many foreign substances from the cell.56 Cancer 
cells often overexpress Pgp, which increases the efflux of 
chemotherapeutic agents from the cell and prevents treatment 
by reducing the effective intracellular concentrations of such 
agents - a phenomenon known as multidrug resistance. For 
this reason, identifying compounds that can either be 
transported out of the cell by Pgp (substrates) or impair Pgp 
function (inhibitors) is of great interest. In the present study 
models were developed to predict both Pgp substrates and 
Pgp inhibitors. This dataset consists of measurements of 422 
substrates and 400 non-substrates. To generate a large Pgp 
inhibitor dataset, two datasets were combined and duplicates 
were removed to form a combined dataset consisting of a 
training set of 1,319 inhibitors and 937 non-inhibitors (Fig.3f; 
Table 2b). 

hERG (Cardiotoxicity) 

Human ether-à-go-go-related gene (hERG) codes for a 
potassium ion channel involved in the normal cardiac 
repolarization activity of the heart.57 Drug-induced blockade 
of hERG function can cause long QT syndrome that may result 
in arrhythmia and death. As much as 282 known hERG 
blockers retrieved from the literature and classified 
compounds with an IC50 cut-off value of 10 μM or less as 
blockers. This study used a set of 404 compounds with IC50 
values greater than 10 μM from ChEMBL and classified them 
as non-blockers (Fig.3g; Table 2b). 

MMP (Mitochondrial Toxicity) 

Fundamental role of mitochondria in cellular energetics and 
oxidative stress, mitochondrial dysfunction has been 
implicated in cancer, diabetes, neurodegenerative disorders, 
and cardiovascular diseases. Largest dataset of chemical-
induced changes has been used to understand the 
mitochondrial membrane potential (MMP), based on the 
assumption that a compound that causes mitochondrial 
dysfunction is also likely to reduce the MMP. vNN-based MMP 
prediction model was developed using 6,261 compounds 
collected from a previous study that screened a library of 
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10,000 compounds (~8,300 unique chemicals) at 15 
concentrations, each in triplicate, to measure changes in the 
MMP in HepG2 cells. Prediction analysis data obtained indicate 
that 913 compounds decreased the MMP, whereas 5,395 
compounds had no effect (Fig.3h; Table 2b). 

Mutagenicity (Ames test) 

It has been well established that mutagens cause abnormal 
genetic mutations leading to cancer. A common way to assess 
a chemical’s mutagenicity is the Ames test. Prediction model 
has been developed, using a literature dataset of 6,512 
compounds, of which 3,503 were Ames-positive (Fig.3i; Table 
2b). 

Maximum Recommended Therapeutic Dose (MRTD)  

MRTD is an estimated upper daily dose that is safe. The model 
built as a prediction model based on a dataset of MRTD values 
58publically disclosed by the FDA, mostly of single-day oral 
doses for an average adult with a body weight of 60 kg, for 
1,220 compounds (most of which are small organic drugs). In 
theis model organometallics were excluded, high-molecular 
weight polymers (>5,000 Da), nonorganic chemicals, mixtures 
of chemicals, and very small molecules (<100 Da). An external 
test set of 160 compounds that were used were collected by 
the FDA for validation. The total dataset for our model 
contained 1,185 compounds. Predicted MRTD value is 
reported in mg/day unit based upon an average adult 
weighing 60 kg (Fig.3j; Table 2b). The summary of 
physiochemical and biomolecular properties of CA is given in 
table 3.  

CONCLUSION 

In-silico data supports the traditional claims towards CCS - 
cuminaldehyde at the same time warrants experimental proof 
to enhance the untapped market potential of this NP. 
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Table 1: Physicochemical, druggability, ADMET properties of Cuminaldehyde 

PHYSICOCHEMICAL PROPERTIES VALUE 

Molecular weight 148.21 g/mol 

LogP 2.62 

LogD 2.93 

LogSw -2.48 

Number of stereocenters 0 

Stereochemical complexity 0.000 

Fsp3 0.300 

Topological polar surface area 17.07 Å2 

Number of hydrogen bond donors 0 

Number of hydrogen bond acceptors 1 

Number of smallest set of smallest rings (SSSR) 1 

Size of the biggest system ring 6 

Number of rotatable bonds 2 

Number of rigid bonds 7 

Number of charged groups 0 

Total charge of the compound 0 

Number of carbon atoms 10 

Number of heteroatoms 1 

Number of heavy atoms 11 

Ratio between the number of non-carbon atoms and carbon atoms 0.1 

DRUGGABILITY PROPERTIES  VALUE 

Lipinski's rule of 5 violations 0 

Veber rule Good 

Egan rule Good 

Oral PhysChem score (Traffic Lights) 0 

GSK's 4/400 score Good 

Pfizer's 3/75 score Warning 

Weighted quantitative estimate of drug-likeness (QEDw) score 0.589 

Solubility 12450.74 

Solubility Forecast Index Good  

ADMET PROPERTIES  DESCRIPTION  PROBABILITY 

Human Intestinal Absorption HIA+ 1.000 

Blood Brain Barrier BBB+ 0.976 

Caco-2 permeable Caco2+ 0.916 

P-glycoprotein substrate Non-substrate 0.736 

P-glycoprotein inhibitor I Non-inhibitor 0.963 

P-glycoprotein inhibitor II Non-inhibitor 0.989 

CYP450 2C9 substrate Non-substrate 0.798 

CYP450 2D6 substrate Non-substrate 0.930 

CYP450 3A4 substrate Non-substrate 0.721 

CYP450 1A2 inhibitor Non-inhibitor 0.679 

CYP450 2C9 inhibitor Non-inhibitor 0.946 

CYP450 2D6 inhibitor Non-inhibitor 0.952 

CYP450 2C19 inhibitor Non-inhibitor 0.965 

CYP450 3A4 inhibitor Non-inhibitor 0.975 

CYP450 inhibitory promiscuity Low CYP Inhibitory Promiscuity 0.892 

Ames test Non AMES toxic 0.981 

Carcinogenicity Non-carcinogens 0.510 

Biodegradation Ready biodegradable 0.587 

Rat acute toxicity 1.901 LD50, mol/kg NA 

hERG inhibition (predictor I) Weak inhibitor 0.963 

hERG inhibition (predictor II) Non-inhibitor 0.965 
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Table 2a: Color coded matrix of vNN models in 10-fold cross validation using a restricted/ unrestricted applicability 
domain 

 

Note: Prediction was conducted in conjunction with the Telemedicine and Advanced Technology Research Center (TATRC) and US Army 
Medical Research and Development Command (USAMRDC). 

Table 2b: Summary of performance analysis of vNN models in 10-fold cross validation using a restricted/ unrestricted 
applicability domain 

MODEL Dataa d0b hc Accuracy Sensitivity Specificity kappa Rd Coverage 

DILI 1427 0.6 0.5 0.71 0.7 0.73 0.42 0.00 0.66 

  1.0 0.2 0.67 0.62 0.72 0.34 0.00 1.00 

Cytotox (hep2g) 6097 0.4 0.2 0.84 0.88 0.76 0.64 0.00 0.89 

  1.0 0.2 0.84 0.73 0.89 0.62 0.00 1.00 

HLM 3219 0.4 0.2 0.81 0.72 0.87 0.59 0.00 0.91 

  1.0 0.2 0.81 0.7 0.87 0.57 0.00 1.00 

CYP1A2 7558 0.5 0.2 0.9 0.7 0.95 0.66 0.00 0.75 

  1.0 0.2 0.89 0.61 0.95 0.6 0.00 1.00 

CYP2C9 8072 0.5 0.2 0.91 0.55 0.96 0.54 0.00 0.76 

  1.0 0.2 0.9 0.44 0.96 0.46 0.00 1.00 

CYP2C19 8155 0.55 0.2 0.87 0.64 0.93 0.58 0.00 0.76 

  1.0 0.2 0.86 0.52 0.94 0.5 0.00 1.00 

CYP2D6 7805 0.5 0.2 0.89 0.61 0.94 0.57 0.00 0.75 

  1.0 0.2 0.88 0.52 0.95 0.51 0.00 1.00 

CYP3A4 10373 0.5 0.2 0.88 0.76 0.92 0.68 0.00 0.78 

  1.0 0.2 0.88 0.69 0.93 0.64 0.00 1.00 

BBB 353 0.6 0.2 0.9 0.94 0.86 0.8 0.00 0.61 

  1.0 0.1 0.82 0.88 0.75 0.64 0.00 1.00 

Pgp Substrate 822 0.6 0.2 0.79 0.8 0.79 0.58 0.00 0.66 

  1.0 0.2 0.73 0.73 0.74 0.47 0.00 1.00 

Pgp Inhibitor 2304 0.5 0.2 0.85 0.91 0.73 0.66 0.00 0.76 

  1.0 0.1 0.81 0.86 0.74 0.61 0.00 1.00 

hERG 685 0.7 0.7 0.84 0.84 0.83 0.68 0.00 0.8 

  1.0 0.2 0.82 0.82 0.83 0.64 0.00 1.00 

MMP 6261 0.5 0.4 0.89 0.64 0.94 0.61 0.00 0.69 

  1.0 0.2 0.87 0.52 0.94 0.5 0.00 1.00 

AMES 6512 0.5 0.4 0.82 0.86 0.75 0.62 0.00 0.79 

  1.0 0.2 0.79 0.82 0.75 0.57 0.00 1.00 

MRTDe 1184 0.6 0.2 0.00 0.00 0.00 0.00 0.79 0.69 

  1.0 0.2 0.00 0.00 0.00 0.00 0.74 1.00 

aNumber of compounds in the dataset; bTanimoto-distance threshold value; cSmoothing factor; dPearson’s correlation coefficient 
; eRegression model. 
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Table 3: Molecular and Biological properties of Cuminaldehyde 

originalSMILES O=CC1CCC(CC1)C(C)C 
miSMILES: O=CC1CCC(CC1)C(C)C 

4-(Propan-2-yl)cyclohexane-1-carbaldehyde 
 

Molecular Properties Calculated Values 
miLogP 3.24 

TPSA 17.07 
Natoms 11 

MW 148.21 
nON 1 

nOHNH 0 
Nviolations 0 

Nrotb 2 
volume 152.98 

Biological Properties Bioactivity Scores 
GPCR ligand -1.15 

Ion channel modulator -0.44 
Kinase inhibitor -1.22 

Nuclear receptor ligand -0.86 
Protease inhibitor -1.48 
Enzyme inhibitor -0.64 

 

 

Figure 1: 3D Structure of Cuminaldehyde  

 

Figure 2: Predicted Bioactivity Target Chart for Cuminaldehyde 

https://www.molinspiration.com/services/logp.html
https://www.molinspiration.com/services/psa.html
https://www.molinspiration.com/services/volume.html
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Figure 3a: Accuracy, specificity, sensitivity and kappa measure of DILI induced by CA 

 

Figure 3b: Accuracy, specificity, sensitivity and kappa measure of Cytotoxicity (HepG2) induced by CA 
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Figure 3c: Accuracy, specificity, sensitivity and kappa measure of Metabolism HLM induced by CA 

 

Figure 3d: Accuracy, specificity, sensitivity and kappa measure of CYP inhibition induced by CA 
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Figure 3e: Accuracy, specificity, sensitivity and kappa measure of BBB induced by CA 

 

Figure 3f1: Accuracy, specificity, sensitivity and kappa measure of Pgp Inhibitors induced by CA 
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Figure 3f2: Accuracy, specificity, sensitivity and kappa measure of Pgp Substrates induced by CA 

 

Figure 3g: Accuracy, specificity, sensitivity and kappa measure of hERG (Cardiotoxicity) induced by CA 
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Figure 3h: Accuracy, specificity, sensitivity and kappa measure of MMP (Mitochondrial Toxicity) induced by CA 

 

Figure 3i: Accuracy, specificity, sensitivity and kappa measure of Mutagenicity (Ames test) induced by CA 
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Figure 3j: Accuracy, specificity, sensitivity and kappa measure of MRTD induced by CA 

 


