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Abstract

Cuminum cyminum L (Family: Apiaceae) is a small multipurpose herb. Seeds of cumin are widely used
as a spice for its distinctive aroma, and more commonly in various indigenous traditional systems of
medicine. Access through web literature provides ample evidence for biomedical activities of
Cuminum cyminum seeds (CCS). CCS has been used in traditional medicine to treat variety of diseases,
including hypolipidemia, cancer, and diabetes. Biomedical properties of CCS is attributed to its
phytochemical class of compounds viz., terpenes, phenols and flavonoids. Health effects of CCS have
been experimentally validated through phytochemical screening deciphering the fact that it contains a
large number of bioactive secondary metabolites (BASMs) viz., alkaloid, coumarin, anthraquinones,
flavonoid, glycoside, protein, resin, saponin, tannin and steroid. Furthermore, pharmacological studies
indicate that BASMs in CCS exert antimicrobial, insecticidal, anti-inflammatory, analgesic, antioxidant,
anticancer, antidiabetic, anti-platelet-aggregation, hypotensive, bronchodilatory, immunological,
contraceptive, anti-amyloidogenic, anti-osteoporotic, aldose reductase, a-glucosidase and tyrosinase
inhibitory effects. Cuminaldehyde is one of the major bioactive compounds in CCS that holds
significant pharmacological prominence. However, in-depth studies are lacking henceforth warranted
to elucidate and fill the gaps, particularly on phytocompound isolation, pre-clinical, clinical
characterization, and evaluation of structure-activity relationship. The present study prospects
ADMETox perspectives of cuminaldehyde (4-Isopropylbenzaldehyde).

Keywords: Cuminaldehyde; Isopropylbenzaldehyde; Cuminum cyminum; ADMETox; Natural Product
(NP)

INTRODUCTION

reasons for the failure of more than half of all projects
undertaken. Potential compounds, for example, can be

Drug development is a lengthy, complex, and costly process,
entrenched with a high degree of uncertainty that a drug will
actually succeed to reach the market or not. Drug development
process can be divided into several stages, including disease-
related genomics, target identification/ validation, lead
discovery/ optimization, preclinical/ clinical trials!. During
early stages of drug discovery and development, activities and
specificities of candidate drug lead molecule is assessed at an
early stage pharmacokinetics and late stage toxicity?.
Practically, most of the time, withdrawal of a proven candidate
drug lead in the final stage is ascribed to some undesirable
efficacy/ safety in absorption, distribution, metabolism,
excretion and toxicity (ADMET)3-6.

Cook et al? comprehensively reviewed the results of
AstraZeneca's small-molecule drug projects from 2005 to
2010 based on a longitudinal study and pointed out that
unacceptable safety and toxicity were the most important
ISSN: 2250-1177
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generated through binding/ functional, biochemical, and
cellular or cytotoxicity assays. High-throughput screening
through a large compound library can identify multiple
compounds. Progressing to a lead compound(s) can involve
complex cellular assays, toxicological surrogate assays, bio-
pharmacological surrogates, and surrogates for absorption,
distribution, metabolism, and excretion (ADME)35¢. As with
the development of drug discovery, it was realized that it is
important to filter and optimize the properties for drugs at an
early stage, which has been accepted and widely used to
reduce the attrition rate in drug research and development. A
Fail-Early-Fail-Cheap strategy is employed by many of the
pharmaceutical companies8. Pharmacokinetics and toxicity
assessments of preclinical drugs are of significant value in
reducing the failure rate of new chemical entities in clinical
trials.6.9.10
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In recent years, in vitro and in vivo ADMET prediction methods
have been widely useds611-17, but it is almost impractical to
perform complex/ expensive experiments on a large number
of compounds518. Thus, in silico ADMET predict has turn out to
be an attractive Cost-Saving High-Throughput alternative to
conventional methods.141618

Natural products (NPs) from medicinal plants and their
structural analogues have made significant contribution to
pharmacotherapy, especially for the treatment of cancer and
infectious diseases.19-2¢ Nevertheless, NPs present challenges
for drug discovery, such as technical barriers to screening,
isolation, characterization and optimization, with a decline in
their pursuit by pharma-industries since 1990s.22

Cuminum cyminum a small herbaceous medicinal plant, it has
tropical distribution, however, more common to Egypt, the
Mediterranean, and SEA countries with culinary and
traditional pharmacological uses.25 In traditional medicine,
cumin seeds were used to treat hoarseness, jaundice,
dyspepsia and diarrhoea. Traditionally the seeds were used
for stomachic, diuretic, carminative, stimulant, astringent and
abortifacient properties.25> In Unani system of medicine, fruits
of C. cyminum are used as an astringent, carminative,
emmenagogue, for the treatment of corneal opacities, ulcers,
boils, relieve cough and metabolic inflammation.2é
Furthermore, cumin oil is used in perfumery and as a
seasoning agent in food preparations.2526 Bioactive natural
products in the CCS extracts exhibit a wide range of
pharmacological activities.2527

Phytochemical analysis of C. cyminum revealed that it contains
alkaloid, coumarin, anthraquinone, flavonoid, glycoside,
protein, resin, saponin, tannin and steroid28. Pharmacological
studies have proven that CCS exerts antimicrobial, insecticidal,
anti-inflammatory,  analgesic, antioxidant,  anticancer,
antidiabetic, antiplatelet aggregation, hypotensive,
bronchodilatory, immunological, contraceptive, anti-
amyloidogenic, anti-osteoporotic, aldose reductase , a-
glucosidase and tyrosinase inhibitory effects. GCMS analysis
revealed the presence of several bioactive compounds, of
which cuminaldehyde was identified as the principle
compound. Cuminaldehyde (CA) (Fig. 1) is an aromatic
monoterpenoid volatile compound, a natural p-isopropyl-
benzaldehyde, activate compound of essential oil from
eucalyptus?®, myrrh?9, caraway3?, Chinese cinnamons30.
Structurally, CA is a benzaldehyde substituted at the 4th
position with an isopropyl group. Commercially CA is used in
perfumes and cosmetics due to its pleasant aroma. CA has
antidiabetic3?, antitumor3z?, anti-inflammatorys33,
antimicrobial34, and antifungal3s effects. Studies depict that CA
exerts protective effect against neuro-degenerative diseases
(Parkinson’s disease).3¢ Recently, it has been demonstrated
that dietary administration of cumin-derived-CA induce
neuroprotective, learning and memory enhancement effects in
the experimental model.37

MATERIALS AND METHODS

vNN method rests on the concept that compounds with similar
structures have similar activities. It is therefore reasonable to
weight the contributions of neighbours so that closer
neighbours contribute more to the predicted value. The vNN
method calculates the similarity distance between molecules
in terms of their structure, and uses a distance threshold to
define a domain of applicability (i.e., all nearest neighbors that
meet a minimum similarity threshold constraint). This
applicability domain ensures that the predictions generated
are reliable. vNN models can be built within minutes and
require no re-training when new assay information becomes
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available—an important feature when keeping quantitative
structure-activity relationship (QSAR) models up-to-date to
maintain their performance levels. The performance
characteristics of vNN-based models are comparable, and
often superior to, those of other more elaborate model
constructs. One of the most widely used measures of the
similarity distance between two small molecules is the
Tanimoto distance, d, which is defined as:

afi*n g

n(Pl+nld)—=n(P Q)

where n(PNQ) is the number of features common to molecules
p and q, and n(P) and n(Q) are the total numbers of features
for molecules p and q, respectively. The predicted biological
activity y is then given by a weighted average across
structurally similar neighbours:

s
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where didenotes the Tanimoto distance between a query
molecule for which a prediction is made and a molecule i of
the training set; do is a Tanimoto-distance threshold, beyond
which two molecules are no longer considered to be
sufficiently similar to be included in the average; yiis the
experimentally measured activity of molecule i; v denotes the
total number of molecules in the training set that satisfies the
condition disdo; and h is a smoothing factor, which dampens
the distance penalty. The values of h and do are determined
from cross-validation studies. To identify structurally similar
compounds, were used Accelrys extended-connectivity
fingerprints with a diameter of four chemical bonds
(ECFP4), which have previously been reported to show good
overall performance.

Model Validation

A 10-fold cross-validation (CV) procedure was used to validate
new models and to determine the values of the smoothing
factor h and Tanimoto distance do. In this procedure, the data
was randomly divided into 10 sets, and used 9 to develop the
model and the 10th to validate it. This process was repeated
10 times, leaving each set of molecules out once. When
building new models, averages of the 10-fold CV was reported
as the performance measures.

Performance Measures

Metrics to assess model performance were (1) sensitivity
measures a model’s ability to correctly detect true positives,
(2) specificity measures a model’s ability to detect true
negatives, (3) accuracy measures a model’s ability to make
correct predictions , and (4) kappa compares the probability
of correct predictions to the probability of correct predictions
by chance (its value ranges from +1 (perfect agreement
between model prediction and experiment) to -1 (complete
disagreement), with 0 indicating no agreement beyond that
expected by chance).
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where TP, TN, FP, and FN denote the numbers of true
positives, true negatives, false positives, and false negatives,
respectively. Kappa is a metric for assessing the quality of
binary classifiers. Pr(e) is an estimate of the probability of a
correct prediction by chance. It is calculated as:

(TP « FN)(TP + FP) + (FP « TNXTN + FN)
(TP +FN + FP + IN)

Prie)

The calculated coverage is the proportion of test molecules
with at least one nearest neighbour that meets the similarity
criterion. The coverage is a measure of how many test
compounds are within the applicability domain of a prediction
model.

RESULTS AND DISCUSSION

Studies indicate that hunt, identification and biomolecular
characterisation of the plant derived natural products remains
the mainstay prerequisite for use of NPs in the pharma-

industries.39-49
Chemical kingdom Organic compounds

Super class Lipids and lipid-like molecules

Class :  Prenol lipids

Subclass Monoterpenoids
PubChem Identifier : 326

ChEBI Identifier 1 28671

CAS Identifier 122-03-2

Synonyms LEUCOPELARGONIDIN
Canonical SMILES 0=CC1CCc(cc1)c(e)ce
InChI Key WTWBUQJHJGUZCY-

UHFFFAOYSA-N
Liver Toxicity DILI

Drug-induced liver injury (DILI) is considered as one of the
most commonly cited reasons for drug withdrawals from the
markets0. A vNN-based LT-DILI prediction model indicates
whether a compound could cause DILI. The dataset of 1,431
compounds was obtained from online sources containing
dataset both pharmaceuticals and non-pharmaceuticals and
classified a compound as causing DILI if it was associated with
a high risk of DILI and not if there was no such risk. Prediction
report obtained for the LT-DILI prediction model has been
provided (Fig.3a; Table 2b).

Cytotoxicity (HepG2)

Cytotoxicity is the degree to which a chemical causes damage
to cells.51 A cytotoxicity prediction model was developed,
using in vitro data on toxicity against HepG2 cells for 6,000
structurally diverse compounds, which were collected from
ChEMBL. In developing our model, compounds with an IC50 <
10 pM in the in vitro assay were considered as cytotoxic
(Fig.3b; Table 2b).

Metabolism HLM

Human liver microsomal (HLM) stability assay is commonly
used to identify and exclude compounds that are too rapidly
metabolized. For a drug to achieve effective therapeutic
concentrations in the body, it cannot be metabolized too
rapidly by the liver.52 Compounds with a half-life of 30
minutes or longer in an HLM assay are considered as stable;
otherwise they are considered unstable. HLM data was
retrieved from the ChEMBL database, manually curated the
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data, and classified compounds as stable or unstable based on
the reported half-life (T1/2> 30 min was considered stable, and
T1/2 < 30 min unstable.53 The final dataset contained 3,654
compounds. Of these, 2,313 compounds were classified as
stable and 1,341 as unstable (Fig.3c; Table 2b).

Cytochrome P450 enzyme (CYP) inhibition

CYPs constitute a superfamily of proteins that play an
important role in the metabolism and detoxification of
xenobiotics. In vitro data derived from five main drug-
metabolizing CYPs—1A2, 3A4, 2D6, 2C9, and 2C19 were used
to develop CYP inhibition models. We retrieved CYP inhibitors
from PubChem and classified a compound with an IC50 < 10
uM for an enzyme as an inhibitor of the enzyme. Data provides
predictions for the following enzymes: CYP1A2, CYP3A4,
CYP2D6, CYP2C9, and CYP2C19 (Fig.3d; Table 2b).

Membrane Transporters BBB

Blood-brain barrier (BBB) is a highly selective barrier that
separates the circulating blood from the central nervous
system.>455 A vNN-based BBB model was developed, using 352
compounds whose BBB permeability values (log BB) were
obtained from the literature respectively. Compounds with log
BB values of less than -0.3 and greater than +0.3 were
classified as BBB non-permeable and permeable (Fig.3e; Table
2b).

Pgp Substrates and Inhibitors

P-glycoprotein (Pgp) is an essential cell membrane protein
that extracts many foreign substances from the cell.5¢ Cancer
cells often overexpress Pgp, which increases the efflux of
chemotherapeutic agents from the cell and prevents treatment
by reducing the effective intracellular concentrations of such
agents - a phenomenon known as multidrug resistance. For
this reason, identifying compounds that can either be
transported out of the cell by Pgp (substrates) or impair Pgp
function (inhibitors) is of great interest. In the present study
models were developed to predict both Pgp substrates and
Pgp inhibitors. This dataset consists of measurements of 422
substrates and 400 non-substrates. To generate a large Pgp
inhibitor dataset, two datasets were combined and duplicates
were removed to form a combined dataset consisting of a
training set of 1,319 inhibitors and 937 non-inhibitors (Fig.3f;
Table 2b).

hERG (Cardiotoxicity)

Human ether-a-go-go-related gene (hERG) codes for a
potassium ion channel involved in the normal cardiac
repolarization activity of the heart.5’7 Drug-induced blockade
of hERG function can cause long QT syndrome that may result
in arrhythmia and death. As much as 282 known hERG
blockers retrieved from the literature and classified
compounds with an ICso cut-off value of 10 uM or less as
blockers. This study used a set of 404 compounds with ICso
values greater than 10 uM from ChEMBL and classified them
as non-blockers (Fig.3g; Table 2b).

MMP (Mitochondrial Toxicity)

Fundamental role of mitochondria in cellular energetics and
oxidative stress, mitochondrial dysfunction has been
implicated in cancer, diabetes, neurodegenerative disorders,
and cardiovascular diseases. Largest dataset of chemical-
induced changes has been wused to understand the
mitochondrial membrane potential (MMP), based on the
assumption that a compound that causes mitochondrial
dysfunction is also likely to reduce the MMP. vNN-based MMP
prediction model was developed using 6,261 compounds
collected from a previous study that screened a library of
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10,000 compounds (~8,300 unique chemicals) at 15
concentrations, each in triplicate, to measure changes in the
MMP in HepG2 cells. Prediction analysis data obtained indicate
that 913 compounds decreased the MMP, whereas 5,395
compounds had no effect (Fig.3h; Table 2b).

Mutagenicity (Ames test)

It has been well established that mutagens cause abnormal
genetic mutations leading to cancer. A common way to assess
a chemical’s mutagenicity is the Ames test. Prediction model
has been developed, using a literature dataset of 6,512
compounds, of which 3,503 were Ames-positive (Fig.3i; Table
2b).

Maximum Recommended Therapeutic Dose (MRTD)

MRTD is an estimated upper daily dose that is safe. The model
built as a prediction model based on a dataset of MRTD values
58publically disclosed by the FDA, mostly of single-day oral
doses for an average adult with a body weight of 60 kg, for
1,220 compounds (most of which are small organic drugs). In
theis model organometallics were excluded, high-molecular
weight polymers (>5,000 Da), nonorganic chemicals, mixtures
of chemicals, and very small molecules (<100 Da). An external
test set of 160 compounds that were used were collected by
the FDA for validation. The total dataset for our model
contained 1,185 compounds. Predicted MRTD value is
reported in mg/day unit based upon an average adult
weighing 60 kg (Fig.3j; Table 2b). The summary of
physiochemical and biomolecular properties of CA is given in
table 3.

CONCLUSION

In-silico data supports the traditional claims towards CCS -
cuminaldehyde at the same time warrants experimental proof
to enhance the untapped market potential of this NP.
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Table 1: Physicochemical, druggability, ADMET properties of Cuminaldehyde

PHYSICOCHEMICAL PROPERTIES VALUE
Molecular weight 148.21 g/mol
LogP 2.62
LogD 2.93
LogSw -2.48
Number of stereocenters 0
Stereochemical complexity 0.000
Fsp3 0.300
Topological polar surface area 17.07 A2
Number of hydrogen bond donors 0
Number of hydrogen bond acceptors 1
Number of smallest set of smallest rings (SSSR) 1
Size of the biggest system ring 6
Number of rotatable bonds 2
Number of rigid bonds 7
Number of charged groups 0
Total charge of the compound 0
Number of carbon atoms 10
Number of heteroatoms 1
Number of heavy atoms 11
Ratio between the number of non-carbon atoms and carbon atoms 0.1
DRUGGABILITY PROPERTIES VALUE
Lipinski's rule of 5 violations 0
Veber rule Good
Egan rule Good
Oral PhysChem score (Traffic Lights) 0
GSK's 4/400 score Good
Pfizer's 3/75 score Warning
Weighted quantitative estimate of drug-likeness (QEDw) score 0.589
Solubility 12450.74
Solubility Forecast Index Good
ADMET PROPERTIES DESCRIPTION PROBABILITY
Human Intestinal Absorption HIA+ 1.000
Blood Brain Barrier BBB+ 0.976
Caco-2 permeable Caco2+ 0.916
P-glycoprotein substrate Non-substrate 0.736
P-glycoprotein inhibitor I Non-inhibitor 0.963
P-glycoprotein inhibitor I1 Non-inhibitor 0.989
CYP450 2C9 substrate Non-substrate 0.798
CYP450 2D6 substrate Non-substrate 0.930
CYP450 3A4 substrate Non-substrate 0.721
CYP450 1A2 inhibitor Non-inhibitor 0.679
CYP450 2C9 inhibitor Non-inhibitor 0.946
CYP450 2D6 inhibitor Non-inhibitor 0.952
CYP450 2C19 inhibitor Non-inhibitor 0.965
CYP450 3A4 inhibitor Non-inhibitor 0.975
CYP450 inhibitory promiscuity Low CYP Inhibitory Promiscuity 0.892
Ames test Non AMES toxic 0.981
Carcinogenicity Non-carcinogens 0.510
Biodegradation Ready biodegradable 0.587
Rat acute toxicity 1.901 LD50, mol/kg NA
hERG inhibition (predictor I) Weak inhibitor 0.963
hERG inhibition (predictor II) Non-inhibitor 0.965
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Table 2a: Color coded matrix of vNN models in 10-fold cross validation using a restricted/ unrestricted applicability
domain

Metabicllam
Liver Toxicity Vermtrane Transporters omers
= Cyp inhittors for
Ay
P0 P PERG WRTD
MM 1A2 144 106 9 20010 118 » ap S U AMES s
toxicity nhibitor Sobatrate Slocker (mgiday)

ol Cyto

Note: Prediction was conducted in conjunction with the Telemedicine and Advanced Technology Research Center (TATRC) and US Army

Medical Research and Development Command (USAMRDC).

Table 2b: Summary of performance analysis of vNN models in 10-fold cross validation using a restricted/ unrestricted
applicability domain

MODEL Data2 dob he Accuracy Sensitivity Specificity kappa Rd Coverage
DILI 1427 06 | 05 0.71 0.7 0.73 0.42 0.00 0.66
1.0 | 0.2 0.67 0.62 0.72 0.34 0.00 1.00
Cytotox (hep2g) 6097 04 | 02 0.84 0.88 0.76 0.64 0.00 0.89
1.0 | 0.2 0.84 0.73 0.89 0.62 0.00 1.00
HLM 3219 04 | 0.2 0.81 0.72 0.87 0.59 0.00 0.91
1.0 | 0.2 0.81 0.7 0.87 0.57 0.00 1.00
CYP1A2 7558 05 | 02 0.9 0.7 0.95 0.66 0.00 0.75
1.0 | 0.2 0.89 0.61 0.95 0.6 0.00 1.00
CYP2C9 8072 05 | 02 091 0.55 0.96 0.54 0.00 0.76
1.0 | 0.2 0.9 0.44 0.96 0.46 0.00 1.00
CYP2C19 8155 0.55 | 0.2 0.87 0.64 0.93 0.58 0.00 0.76
1.0 | 0.2 0.86 0.52 0.94 0.5 0.00 1.00
CYP2D6 7805 0.5 | 0.2 0.89 0.61 0.94 0.57 0.00 0.75
1.0 | 0.2 0.88 0.52 0.95 0.51 0.00 1.00
CYP3A4 10373 05 | 02 0.88 0.76 0.92 0.68 0.00 0.78
1.0 | 0.2 0.88 0.69 0.93 0.64 0.00 1.00
BBB 353 06 | 02 0.9 0.94 0.86 0.8 0.00 0.61
1.0 | 01 0.82 0.88 0.75 0.64 0.00 1.00
Pgp Substrate 822 06 | 02 0.79 0.8 0.79 0.58 0.00 0.66
1.0 | 0.2 0.73 0.73 0.74 0.47 0.00 1.00
Pgp Inhibitor 2304 05 | 0.2 0.85 0.91 0.73 0.66 0.00 0.76
1.0 | 01 0.81 0.86 0.74 0.61 0.00 1.00
hERG 685 0.7 | 0.7 0.84 0.84 0.83 0.68 0.00 0.8
1.0 | 0.2 0.82 0.82 0.83 0.64 0.00 1.00
MMP 6261 05 | 04 0.89 0.64 0.94 0.61 0.00 0.69
1.0 | 0.2 0.87 0.52 0.94 0.5 0.00 1.00
AMES 6512 05 | 04 0.82 0.86 0.75 0.62 0.00 0.79
1.0 | 0.2 0.79 0.82 0.75 0.57 0.00 1.00
MRTDe 1184 0.6 | 0.2 0.00 0.00 0.00 0.00 0.79 0.69
1.0 | 0.2 0.00 0.00 0.00 0.00 0.74 1.00

aNumber of compounds in the dataset; *Tanimoto-distance threshold value; <Smoothing factor; 4Pearson’s correlation coefficient
; ¢Regression model.
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Table 3: Molecular and Biological properties of Cuminaldehyde
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Molecular Properties Calculated Values
miLogP 3.24
TPSA 17.07
Natoms 11
MW 148.21
nON 1
originalSMILES 0=CC1CCC(CC1)C(C)C N\:;ooll;llltvil:ns g
miSMILES: 0=CC1CCC(CC1)C(C)C
4-(Propan-2-yl)cyclohexane-1-carbaldehyde Nrotb 2
volume 152.98
Biological Properties Bioactivity Scores
GPCR ligand -1.15
Ion channel modulator -0.44
Kinase inhibitor -1.22
Nuclear receptor ligand -0.86
Protease inhibitor -1.48
Enzyme inhibitor -0.64

Figure 1: 3D Structure of Cuminaldehyde
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Figure 2: Predicted Bioactivity Target Chart for Cuminaldehyde
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Figure 3b: Accuracy, specificity, sensitivity and kappa measure of Cytotoxicity (HepG2) induced by CA
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Figure 3c: Accuracy, specificity, sensitivity and kappa measure of Metabolism HLM induced by CA

sk e v

happs

KAPPA

CYP1A2

Coverage
M Smoothing Factor (SF} = 0.1
WSF=0.2
WSF=03
WSF=04
WSF=05
WSF=046
BSF=07
BSF=0.8
WSF =09

_ WSF=1.0

Figure 3d: Accuracy, specificity, sensitivity and kappa measure of CYP inhibition induced by CA
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Figure 3e: Accuracy, specificity, sensitivity and kappa measure of BBB induced by CA
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Figure 3f1: Accuracy, specificity, sensitivity and kappa measure of Pgp Inhibitors induced by CA
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Figure 3f2: Accuracy, specificity, sensitivity and kappa measure of Pgp Substrates induced by CA
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Figure 3g: Accuracy, specificity, sensitivity and kappa measure of hERG (Cardiotoxicity) induced by CA
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Figure 3h: Accuracy, specificity, sensitivity and kappa measure of MMP (Mitochondrial Toxicity) induced by CA
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Figure 3i: Accuracy, specificity, sensitivity and kappa measure of Mutagenicity (Ames test) induced by CA
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Figure 3j: Accuracy, specificity, sensitivity and kappa measure of MRTD induced by CA
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