
Ramya et al                                                                                                                                Journal of Drug Delivery & Therapeutics. 2022; 12(2-s):96-109 

ISSN: 2250-1177                                                                                             [96]                                                                                           CODEN (USA): JDDTAO 

Available online on 15.04.2022 at http://jddtonline.info 

Journal of Drug Delivery and Therapeutics 
Open Access to Pharmaceutical and Medical Research 

Copyright  © 2011-2022 The  Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 
which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the 

original author and source are credited 

Open  Access  Full Text Article                                                                                                                                               Research Article  

Artificial Intelligence and Machine Learning approach based in-silico ADME-
Tox and Pharmacokinetic Profile of α-Linolenic acid from Catharanthus roseus 
(L.) G. Don. 

Ramya S.1, Soorya C.2, Sundari A.2, Grace Lydial Pushpalatha G.3, Aruna Devaraj4, Loganathan T.5, 
Balamurugan S.6, Abraham GC.7, Ponrathy T.8, Kandeepan C9, Jayakumararaj R.2* 

1 PG Department of Zoology, Yadava College (Men), Thiruppalai – 625014, Madurai, TN, India 
2 Department of Botany, Government Arts College, Melur – 625106, Madurai District, TN, India 
3 PG Department of Botany, Sri Meenakshi Government Arts College, Madurai – 625002, TN, India 
4 Rajendra Herbal Research Centre, NRMC, Periyakulam Theni District, TamilNadu, India 
5 Department of Plant Biology & Plant Biotechnology, LN Government College (A), Ponneri, TN, India 
6 Department of Mathematics, Government Arts College, Melur – 625106, TamilNadu, India 
7 PG Department of Botany, The American College, Madurai – 625002, TamilNadu, India 
8 Department of Botany, Kamaraj College, Thoothukudi – 628 003, TamilNadu, India 
9 PG&Research Department of Zoology, APCAC, Palani – 624601, Dindigul District, TN, India 

Article Info: 
___________________________________________ 

Article History: 

Received 16 March 2022       
Reviewed 29 March 2022 
Accepted 02 April 2022   
Published 15 April 2022   

___________________________________________ 
Cite this article as:  

Ramya S, Soorya C, Sundari A, Grace Lydial 
Pushpalatha G, Aruna D, Loganathan T, 
Balamurugan S, Abraham GC, Ponrathy T, 
Kandeepan C, Jayakumararaj R, Artificial 
Intelligence and Machine Learning approach 
based in-silico ADME-Tox and Pharmacokinetic 
Profile of α-Linolenic acid from Catharanthus 
roseus (L.) G. Don., Journal of Drug Delivery and 
Therapeutics. 2022; 12(2-s):96-109 

DOI: http://dx.doi.org/10.22270/jddt.v12i2-s.5274                               

________________________________________ 
*Address for Correspondence:   

Jayakumararaj R., Department of Botany, 
Government Arts College, Melur – 625106, Madurai 
District, TN, India 

Abstract 
____________________________________________________________________________________________________________ 

Current craze and concomitant rise of Artificial Intelligence and Machine Learning (AI&ML) in the 
post-COVID-era holds significant contribution to Drug Design and Development. Along with IoT, 
AI&ML has reduced human interface and improved the Quality of Life though Quality-Health-Care 
products. AI&ML approaches driven Rational Drug Design along with customised molecular modelling 
techniques such as in-silico simulation, pharmacophore modelling, molecular dynamics, virtual 
screening, and molecular docking aims to elucidate unforeseen bioactivity of natural products 
confined to limited timeframe with at-most perfection. Besides, it also defines the molecular 
determinants that partake in the interface with in the drug and the target to design more proficient 
drug leads. α-Linolenic acid (ALA), a carboxylic acid with 18 carbons and three cis double bonds, is an 
essential fatty acid required for normal human health and can be acquired through regular dietary 
supplementation of food. During the metabolic process, ALA is bio-transformed into EPA and DHA. 
ALA decreases the risk of heart disease by maintaining normal heart rhythm and pumping. Studies 
suggest that ALA is associated with reduced risk of fatal ischemic heart disease further higher intake 
may reduce the risk of sudden death among prevalent myocardial infarction patients consistent with 
induced antiarrhythmic effect. It reduces blood clots, besides, cardiovascular-protective, anti-cancer, 
neuro-protective, anti-osteoporotic, anti-inflammatory, and anti-oxidative effects. However, data on 
pharmacological and toxicological aspects of ALA is limited; on the other hand, no serious adverse 
effects of ALA have been reported yet. In the present study AI&ML approach based in-silico ADME-Tox 
and pharmacokinetic profile of ALA from Catharanthus roseus is envisaged.  

Keywords: IoT; AI&ML; ADME-Tox; α-Linolenic Acid (ALA); EPA; DHA Pharmacokinetics; 
Catharanthus roseus. 

 

INTRODUCTION 

The ripple effect of COVID-19 outbreak has brought major 
changes and challenges to worldwide healthcare systems1. 
Since the outbreak of novel coronavirus disease – COVID – 19, 
celebrity of pharmaceutical drug development as intractable 
hot area of research and development (R&D) in the environs 
of pharma-industries is on the raise. Drug development in the 
post COVID era is a high-risk - high-return business that 
guarantees huge profit as returns upon success, paradoxically 
the success rate is extremely low2. Drug development requires 
extensive R&D program that includes clinical trials and 
investment-cost-returns approach for the successful 
development of a single drug from the industry into the 
market3. For these reasons, pharmaceutical companies sought 

for alternative strategies to increase the probability of success 
in their drug development project4. One of the possible 
solutions is to exploit AI&ML approach that has undergone 
tremendous ad-interim exponential growth5. As of now, multi-
national pharmaceutical companies are adopting data mining 
and AI&ML technologies to reduce time and cost required for 
R&D program6.  

Since antiquity, medicinal plants have been a valuable source 
of therapeutic agents, and even today most of the drugs 
available in the market are either obtained from plant based 
natural products or their derivative7 biomolecules with 
therapeutic potential. Medicinal plants remain a vital 
storehouse for the discovery of novel drug leads8-11. Plant 
Based Natural Products (PBNPs) offer unique features in 
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comparison with their synthetic counterparts. PBNPs confer 
both advantages and challenges for the drug discovery process 
as they are characterized by structural scaffold diversity, 
functional specificity and molecular complexity8. In the past, 
pharmaceutical industry focused on libraries of synthetic 
compounds as a source for drug discovery9 however, this 
cumbersome process has been given up for their unwanted 
side effects. On the other hand, PBNPs leads with GRAS 
standards are easy to produce for resupply with good 
compatibility on high throughput screening (HTS) platforms8-

11. 

Catharanthus roseus (L) G. Don (Family – Apocynaceae), is 
native to Madagascar, but grown elsewhere as an ornamental 
plant in gardens, farms and landscape. In India, in Ayurvedic 
system of medicine, different parts of C. roseus have been 
reported for their use in the treatment of cancer, diabetes, 
stomach disorders, kidney, liver and cardiovascular diseases. 
Apart from India, this plant is used in traditional system of 
medicine in South Africa, China, Mexico and Malaysia, as 
remedy for diabetics12,13.  

Significance of C. roseus in modern system of medicine has 
gained prominence after the characterization of anticancer 
indole alkaloids - vincristine and vinblastine. As isolation and 
purification process of vincristine and vinblastine from the 
leaves is a time-consuming and costly affair due to the low 
content of these compounds, Mekky et al.14 potentiated the 
biosynthesis of anticancer alkaloids vincristine and vinblastine 
in callus cultures of C. roseus. As of now, advanced and high-
throughput separation/ analytical techniques have been used 
for isolation, purification, identification, characterization and 
quantitation of other alkaloids from the crude extract 
prepared from C. roseus13,15.  

Alkaloids of C. roseus possess hypotensive, sedative, 
tranquilizing, and anticancer properties12. C. roseus is 
recommended for the treatment of nose bleeding, gum 
bleeding, mouth ulcers, and sore throats, hypertension, 
cystitis, gastritis, enteritis, and diarrhea and memory loss13. 
Alkaloids including vinblastine, vincristine, vinorelbine, and 
vinflunine isolated from this plant have proven antitumor 
activity15,16. Apart from biomedical application C. roseus is 
exploited for its antibacterial, biopesticidal activities17,18. 
Recent phytochemical investigation has revealed a total of 344 
compounds including monoterpene indole alkaloids (MIAs) 
(110), bis-indole alkaloids (35), flavonoids (34), phenolic acids 
(9) and volatile constituents (156) have been reported in the 
various extracts and fractions of different plant parts of C. 
roseus13. Similarly aerial parts of C. roseus contain vindoline, 
vindolidine, vindolicine, roseadine, leurosine-N′b-oxide, 
leurocolombine, catharanthamine, pleuroside, 
dimethylvinblastin, 5′-oxoleurosine, leurosidineN′b-oxide, 
vinorelbine, vinzolidine, vineamine, raubasin, 16-epi-19S-
vindolinine, and vindolinine16. 

ALA (18:3n-3) is essential ω-3 fatty acid found in nuts19. It is 
necessary for normal growth and development thus an aspect 
of the human diet, probably because it is the main substrate 
for the synthesis of longer-chain fatty acids. ALA is the 
precursor of two long chain ω-3 fatty acids viz., EPA 
(eicosapentaenoic acid, 20:3n-5) and DHA (docosahexaenoic 
acid, 22:3n-6), both of them have vital roles in brain 
development, cardio-vascular health, inflammatory response, 
etc.20  

The metabolic pathways of ALA have been reported by Fekete 
and Decsi, 201021. During the metabolic process, ALA is bio-
transformed into EPA and DHA. ALA is readily converted to 
EPA has been reported to be 8%, while conversion rates of 
ALA to DHA has been reported to be 4%, no direct link 

between DHA concentration and increase in rate of intake has 
been reported yet. Burdge et al.22 reported that in humans, 
enzymes desaturase and elongase are involved in the 
bioconversion of ALA to EPA and DHA22,23 respectively. 
Pawlosky et al.24 reported that coefficient constant of EPA to 
DHA was about 4-fold higher in women than in men. 
Invariably, it has been reported that women have a higher 
concentration of DHA than men25. Further, high conversion 
rate of ALA to EPA/ DHA in women has been related to the 
level of estrogen26. In human system, ALA possesses hypo-
cholesterolemic, nematicide, anti-arthritic, hepatoprotective 
anti-androgenic, hypo-cholesterolemic, 5-α reductase 
inhibitor, antihistaminic, anti-coronary, anti-eczemic, anti-
acne properties25. Pharmacological studies show that ALA has 
the anti-metabolic syndrome, anticancer, anti-inflammatory, 
anti-oxidant, anti-obesity, neuro-protection properties25-28. 
Recently, it has been proved that ALA plays a major role in the 
functional regulation of gut microflora28. 

MATERIALS AND METHODS 

Botanical Description of the plant  

 

Catharanthus roseus (L) G. Don (Family – Apocynaceae) 

Habit: Suffrutex up to 1 m high, perennial, woody at the base, 
herbaceous above; Stem: glabrous or thinly pubescent; 
Leaves: opposite, obovate, oblong or oblanceolate, apex 
rounded or, rarely, sub-acute, apiculate, base cuneate, 4-8 cm 
long 1-3 cm broad, membranous to thinly coriaceous, glabrous 
or finely pubescent; Petiole 2-5 mm long; axillary glands 
forming a fringe, outer longer than inner; Stipules: absent; 
Flowers: axillary, solitary/ paired, subsessile, pink or white, 
or white with pink centre; Calyx: divided at base; sepals - 5, 
linear-subulate, 4-6 mm long, glabrous or pubescent; Corolla: 
salver-shaped; tube slender cylindrical, 2.3-2.6 cm long and 2-
2.5 mm in dia, mouth constricted, thickened, pubescent; lobes 
broadly obovate, apiculate, 1.6-2.0 cm long; Stamens: 5, 
pentamerous, inserted near the mouth; anthers 2 mm long, 
subsessile. Disc replaced by 2 linear-subulate glands 2 mm 
long alternating with the carpels; Ovary: bicarpelary, 2 
carpels, free; style filiform, stigma at the level of the anthers, 
capitate with a reflexed hyaline frill at the base; Ovules: 
numerous, 2-seriate. Fruit: two follicular mericarps erect, 
slightly spreading; follicles 2.5-3.5 cm long, cylindric, striate. 
Seeds: numerous, oblong, 2 mm long, black, rugose, grooved 
on one face; Cotyledons: flat, slightly shorter than the radicle; 
Endosperm: scanty; Fl & Fr: round the year.  

Plant materials were collected from the College Campus, 
Identified and authenticated by Department of Botany, 
Government Arts College, Melur, Madurai, TamilNadu using 
Flora29.30. The plant material was shade dried, pulverized at 
room temperature, sieved and stored in vials until used. Dried 
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powder was dissolved in double distilled water and the 
aqueous leaf extract of C. roseus was analyzed for 
phytochemicals using standard protocols. GCMS analysis was 
performed as described previously31-33.      

ADMET predications  

Phyto-components of AqLE of C. roseus were subjected to 
ADME prediction using  ikProp   chro dinger,   C, N ) and 
toxicity prediction using TOPKAT (Accelrys, Inc., USA, 2015). 
QikProp develops and employs QSAR/QSPR models using 
partial least squares, principal component analysis and 
multiple linear regression to predict physicochemical 
significant descriptors and pharmaco-kinetically relevant 
properties that are essential for rational drug design. The 
computational toxicity was assessed using TOPKAT (TOxicity 
Prediction by Komputer Assisted Technology). TOPKAT 
calculates the toxicity on the basis of the quantitative 
structure-toxicity relationship (QSTR) model using linear 
regression on the structural descriptor and it considers 4 
nearest neighbours with a similarity distance of <0.25 to 
assign probabilities of the toxicity such as carcinogenicity, 
mutagenicity, rat oral LD50, skin irritation, aerobic 
biodegradability34-38. 

RESULTS  

Isolation, purification and characterization of PBNPs 
(secondary metabolites) remains the key aspect of 
phytochemical screening39-49. In the present study ALA among 
the phyto-components of AqLE of Catharanthus roseus were 
ADMET predicted in-silico.      

Chemical 
kingdom 

: Organic compounds 

Super class : Lipids and lipid-like molecules 

 Class : Fatty Acyls 

Subclass : Lineolic acids derivatives 

PubChem 
Identifier 

: 5280934 

ChEBI Identifier : 25048 

CAS Identifier : 28290-79-1 

Synonyms : α-LINOLENIC ACID; 

Canonical SMILES : CC/C=CC/C=CC/C=CCCCCCCCC(=O)O 

InChI Key : DTOSIQBPPRVQHS-PDBXOOCHSA-N 

Physicochemical Properties  

Molecular weight of ALA was calculated as 278.44 g/mol; LogP 
value was predicted as 5.66; LogD value was predicted as 3.68; 
LogSw value was predicted as -4.78. Number of stereo-centers 
was predicted as 0; Stereo-chemical complexity was predicted 
as 0.000; Fsp3 was predicted as 0.611; Topological polar 
surface area was calculated as 37.30Å2; Number of hydrogen 
bond donors was calculated as 1; Number of hydrogen bond 
acceptors was calculated as 1; Number of smallest set of 
smallest rings (SSSR) was calculated as 0; Size of the biggest 
system ring was calculated as 0; Number of rotatable bond 
was calculated as 13; Number of rigid bond was calculated as 
4; Number of charged group was calculated as 1; Total charge 
of the compound was calculated as -1; Number of carbon 
atoms was ascertained as 18; Number of heteroatoms was 
ascertained as 2; Number of heavy atoms was ascertained as 
20; Ratio between the number of non-carbon atoms and the 
number of carbon atoms was ascertained as 0.11 (Table 
1). TPSA of ALA was calculated as 37.30; natoms in ALA was 

20; MW of ALA was calculated as 278.44; nON was calculated 
as 2; nOHNH value was calculated as 1; nviolations value for 
ALA was calculated as 1; number of rotatable bonds in ALA 
was 13; and the theoretical volume of ALA was calculated as 
306.47. The 3D structure of ALA is illustrated in Fig. 1. 

Druggability Properties  

In-silico studies are expected to reduce the risk of late-stage 
attrition of drug development and to optimize screening/ 
testing by looking at Druggability Properties, Lipinski's rule of 
5 violations was predicted as 1; Veber rule was predicted as 
Good; Egan rule was predicted as Good; Oral PhysChem score 
(Traffic Lights) was predicted as 4; GSK's 4/400 score was 
predicted as Good; Pfizer's 3/75 score was predicted as BAD; 
Weighted quantitative estimate of drug-likeness (QEDw) score 
was predicted as 0.31; Solubility of EA was predicted as 
2342.23; Solubility Forecast Index of EA was predicted as 
Good (Table 2).  

ADMET Properties   

Experimental evaluation of small-molecule is both time-
consuming and expensive. On the other hand evolution of 
computational approaches to optimize pharmacokinetic and 
toxicity properties is said to drive the progression of drug 
discovery. Prediction of ADMET-associated properties of new 
chemicals, however, is a challenging task with only tenuous 
links between many physicochemical characteristics and 
pharmacokinetic and toxicity properties. This has led to a need 
for novel approaches to understand, explore, and predict 
ADMET properties of small molecules as a way to improve 
compound quality and success rate. ADMET prediction 
models, including performance measures for the selected 
candidate molecule ALA were performed online (Table 3).  

Human Intestinal Absorption (HIA+) for ALA had a calculated 
probability value of 0.990; Blood Brain Barrier (BBB+) had a 
calculated probability value of 0.931; Caco-2 permeable 
(Caco2+) for ALA had a calculated probability value of 0.774; 
P-glycoprotein substrate that served as Non-substrate for ALA 
had a calculated probability value of 0.677; P-glycoprotein 
inhibitor I that served as Non-inhibitor for ALA had a 
calculated probability value of 0.950; P-glycoprotein inhibitor 
II for ALA served as Non-inhibitor and had a predicted 
probability value of 0.903 (Table 3). 

CYP450 2C9 substrate for ALA served as Non-substrate with a 
predicted probability value of 0.774; CYP450 2D6 substrate 
for ALA served as Non-substrate with a predicted probability 
value of 0.908; CYP450 3A4 substrate for ALA served as Non-
substrate with a predicted probability value of 0.688; CYP450 
1A2 inhibitor for ALA worked as Inhibitor with a predicted 
probability value of 0.692; CYP450 2C9 inhibitor for ALA 
functioned as Non-inhibitor with a predicted probability value 
of 0.880; CYP450 2D6 inhibitor for ALA served as Non-
inhibitor with a predicted probability value of 0.963; CYP450 
2C19 inhibitor for ALA remained as Non-inhibitor with a 
predicted probability value of 0.964; CYP450 3A4 inhibitor for 
ALA was as Non-inhibitor with a predicted probability value of 
0.947; CYP450 inhibitory promiscuity for ALA had Low CYP 
Inhibitory Promiscuity with a predicted probability value of 
0.943 respectively (Table 3). 

ADMET Ames test for ALA served as Non AMES toxic with a 
predicted probability value of 0.913; Carcinogenicity for ALA 
served as Non-carcinogens with a predicted probability value 
of 0.650; Biodegradation potential for ALA served as Ready 
biodegradable with a predicted probability value of 0.781; Rat 
acute toxicity 1.450 LD50, mol/kg for ALA was Not applicable; 
hERG inhibition (predictor I) for ALA served as Weak inhibitor 
with a predicted probability value of 0.882; hERG inhibition 
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(predictor II) for ALA served as Non-inhibitor with a predicted 
probability value of 0.932 respectively (Table 3). In the 
present study 15 models covered a diverse set of ADMET 
endpoints including Maximum Recommended Therapeutic 
Dose (MRTD), chemical mutagenicity, human liver microsomal 
(HLM), Pgp inhibitor/ substrates. ADMET data for 
performance measures of vNN models in 10-fold cross 
validation using a restricted/ unrestricted applicability 
domain is given in Table 4a,b. 

Liver Toxicity - DILI 

Drug-induced liver injury (DILI) is one of the most commonly 
cited reasons for drug withdrawals from the market. This 
application predicts whether a compound could cause DILI. A 
dataset of 1,431 compounds was obtained from online 
sources.  The dataset contained both pharmaceuticals and 
non-pharmaceuticals compounds; compounds were classified 
as causing DILI if it was associated with a high risk and non 
DILI if there was no such risk with the compound. 

Cytotoxicity (HepG2) 

Cytotoxicity is the degree to which a chemical causes damage 
to cells. A cytotoxicity prediction model was developed using 
in-vitro data on toxicity against HepG2 cells for 6,000 
structurally diverse compounds, collected from ChEMBL. In 
developing model, compounds with IC50 ≤ 10 μM in in-vitro 
assay as cytotoxic was considered. 

Metabolism - HLM 

Human Liver Microsomal (HLM) stability assay is commonly 
used to identify and exclude compounds that are too rapidly 
metabolized. For a drug to achieve effective therapeutic 
concentrations in the body, it cannot be metabolized too 
rapidly by the liver. Compounds with a half-life of 30 min or 
longer in an HLM assay were considered as stable; otherwise 
considered unstable. HLM data was retrieved from ChEMBL 
database, manually curated and classified as stable or unstable 
based on the reported half-life (T1/2 > 30 min was considered 
stable, and T1/2 < 30 min unstable). The final dataset contained 
3,654 compounds. Of these, 2,313 compounds were stable and 
1,341 were unstable. 

Metabolism - Cytochrome P450 enzyme (CYP) inhibition 

CYPs constitute a superfamily of proteins that play an 
important role in the metabolism and detoxification of 
xenobiotics. In-vitro data was derived from five main drug-
metabolizing CYPs - 1A2, 3A4, 2D6, 2C9, and 2C19 was used to 
develop CYP inhibition models. CYP inhibitors were retrieved 
from PubChem and classified, a compound with an IC50 ≤ 10 
μM for an enzyme as an inhibitor of the enzyme. Prediction 
values for CYP1A2, CYP3A4, CYP2D6, CYP2C9, and CYP2C19 is 
given in Table 4. 

Membrane Transporters - BBB  

The blood-brain barrier (BBB) is a highly selective barrier that 
separates the circulating blood from the central nervous 
system. A vNN-based BBB model was developed, using 352 
compounds, their corresponding BBB permeability values 
(logBB) were obtained from online sources. The compounds 
were further classified with logBB values of less than –0.3 and 
greater than +0.3 as BBB non-permeable and permeable 
respectively. 

Membrane Transporters - Pgp Substrates and Inhibitors  

P-glycoprotein (Pgp) is an essential cell membrane protein 
that extracts many foreign substances from the cell. Cancer 
cells often overexpress Pgp, which increases the efflux of 
chemotherapeutic agents from the cell and prevents treatment 

by reducing the effective intracellular concentrations of such 
agents through a phenomenon known as multidrug resistance. 
For this reason, identifying compounds that can either be 
transported out of the cell by Pgp (substrates) or impair Pgp 
function (inhibitors) is of great interest. In the present study, 
models were developed to predict both Pgp substrates and 
Pgp inhibitors. The dataset contained 422 substrates and 400 
non-substrates. To generate a large Pgp inhibitor dataset, two 
datasets were combined and duplicates were removed to form 
a combined dataset consisting of a training set of 1,319 
inhibitors and 937 non-inhibitors. Results are given in Table 4. 

hERG (Cardiotoxicity) 

Human ether-à-go-go-related gene (hERG) codes for a 
potassium ion channel involved in the normal cardiac 
repolarization activity of the heart. Drug-induced blockade of 
hERG function can cause long term QT syndrome, which may 
result in arrhythmia which may ultimately lead to death. A 
data set of 282 known hERG blockers were retrieved from the 
literature and classified compounds with an IC50 cut-off value 
of 10 μM or less as blockers. A set of 404 compounds with 
IC50 values greater than 10 μM were collected 
from ChEMBL and classified as non-blockers. Results are 
provided in Table 4. 

MMP (Mitochondrial Toxicity) 

Given the fundamental role of mitochondria in cellular 
energetics and oxidative stress, mitochondrial dysfunction has 
been implicated in cancer, diabetes, neurodegenerative 
disorders, and cardiovascular diseases. In the present study a 
largest dataset of chemical-induced changes in mitochondrial 
membrane potential (MMP) were used based on the 
assumption that a compound that causes mitochondrial 
dysfunction is also likely to reduce the MMP. vNN based MMP 
prediction model was developed using 6,261 compounds 
collected from a screened library of 10,000 compounds at 15 
concentrations, each in triplicate, to measure changes in the 
MMP in HepG2 cells. Data indicate that 913 compounds 
decreased the MMP, whereas 5,395 compounds had no or 
insignificant effect (Table 4). 

Mutagenicity (AMES Test) 

Mutagens are chemicals that cause abnormal genetic 
mutations leading to cancer. A common way to assess a 
chemical’s mutagenicity is the Ames test. In the present study, 
a prediction model was developed using a dataset of 6,512 
compounds. Data indicate that 3,503 compounds were Ames-
positive.  

Maximum Recommended Therapeutic Dose (MRTD) 

MRTD is an estimated upper daily dose that is safe. In the 
present study a prediction model was built based on a dataset 
of MRTD values publically disclosed by the FDA, mostly of 
single-day oral doses for an average adult with a body weight 
of 60 kg, for 1,220 compounds (small organic drugs) however 
organometallics, high-molecular weight polymers (>5,000 Da), 
nonorganic chemicals, mixtures of chemicals, and very small 
molecules (<100 Da) were excluded. An external test set of 
160 compounds were used that were collected by the FDA for 
validation. The total dataset for the model contained 1,185 
compounds. The predicted MRTD value is reported in mg/day 
unit based upon an average adult weighing 60 kg (Table 4). 

Biological properties - G-PCRs (GPCRs)  

GPCRs are the largest family of signalling proteins. 
Structurally, GPCRs are similar: extracellular N-terminus, 
seven membrane-spanning α-helices (TM), and intracellular C-
terminus, with variable extracellular and intracellular 

https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
https://www.fda.gov/
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elements. These cell surface receptors act like an inbox for 
messages in the form of light energy, peptides, lipids, sugars, 
and proteins. Calculated distribution of activity scores 
(version 2011.06) for GPCR ligands for the molecule was 0.33; 
kinase inhibitors, ion channel modulators, nuclear receptor 
ligands, protease inhibitors and other enzyme targets 
compared with scores for about 100'000 average drug-like 
molecules. The calculated value for Ion channel modulator 
(0.23); Kinase inhibitor (-0.19); Nuclear receptor ligand 
(0.35); Protease inhibitor (0.13); Enzyme inhibitor (0.42) 
respectively, the score allows efficient separation of active and 
inactive molecules. Further, cytoscape network of predicted 
human targets of ALA- human target proteins were predicted 
using STITCH (26590256), a database of chemical-protein 
interaction networks is provided in Fig 2. Further, predicted 
bioactivity target classes for ALA from Catharanthus roseus 
with probability score provided in Fig. 3.   

pkCSM - pharmacokinetic properties of ALA using graph-
based signatures 

Drug development is a fine balance of optimizing drug like 
properties to maximize efficacy, safety, and pharmacokinetics. 
Many early stage drug discovery programs focus on 
identifying molecules that bind to a target of interest. While 
potency is a driving factor in these early stages, ultimately the 
pharmacokinetic and toxicity properties dictate whether it 
will ever advance its effectiveness and success therapeutically. 
Mathematical calculation and graph-theory based Graph 
modelling is an intuitive and well established mathematical 
representation of chemical entities, from where the 
descriptors encompassing both molecule structure and 
chemistry can be extracted for rational drug design. The 
pharmacokinetic properties of ALA predicted using graph-
based signatures is given in Table 5.  

DISCUSSION 

Absorption: There is very limited information on the 
absorption of ALA in the human gut. However, absorption of 
ALA in humans is assumed to be efficient. Absorption can be 
determined through the difference between intake levels of 
ALA in foods and excretion in the feces. Absorption efficiency 
of ALA through the human gut and carrier-mediated 
transporters involved in the absorption is assumed to be quite 
high50. 

Distribution: Available information on the distribution of ALA 
is limited. Lin and Salem51, reported whole body distribution 
of ALA in rats. Through inter conversion of EPA and DHA, DHA 
was deposited in brain, spinal cord, heart, testes, and eye over 
time. About 16–18% of ALA was deposited in adipose tissue, 
skin, and muscle. About 6% of ALA was elongated and 
desaturated, and stored, in muscle, adipose tissue, and carcass. 
Remaining 78% of ALA was eventually excreted. 

Metabolism: Metabolic conversion of ALA to EPA and DHA is 
relatively poor because ALA absorbed in the system 
undergoes b-oxidation52. Although 67% of ALA undergoes b-
oxidation in brain, only 30% of fatty acids, such as arachidonic 
acid, undergo b-oxidation in brain53. In the brain, small 
percentage of fatty acids undergoes b-oxidation. However, the 
rapidity of the process is difficult to measure owing to the 
pace of lipid metabolism occurs within seconds/ minutes, 
rather than hours. 

Toxicity: It has been suggested that EDF containing enriched 
ALA is safe when orally administered to rats. Furthermore, 
EDF could reduce the increase of triglyceride levels in plasma. 
Prospective meta-analysis studies concluded that there exists 
no association between dietary intake of ALA and prostate 

cancer risk54. Therefore, overall evidence of prostate cancer 
risk with ALA remains inconclusive. Association of ALA with 
the risk of macular degeneration has been reported55, 
however, more research is required before any conclusion is 
drawn. Flaxseed/ oil is rich dietary sources of ALA is 
prospected to induce adverse gastrointestinal effects, such as 
flatulence, bloating and stomach aches/cramps56. Further it 
has been pointed out that ALA can induce lipid peroxidation 
when exposed to UV radiation, which may produce have 
adverse effects if not monitored57. ALA is well-known for its 
anti-inflammatory activity. Recently, it has been pointed out 
that ALA rich diet influences microbiota composition and 
villus morphology of the mouse small intestine. 

CONCLUSION  

ALA from AqLE of C. roseus was screened and ADMET 
predicted for the functional properties. It has been well 
established that in the human body, ALA is converted to EPA 
and DHA, which is protective against cardiovascular, neuronal, 
osteoporotic inflammatory diseases. In addition, EPA and DHA 
lower the blood cholesterol level that reduces the risk of heart 
disease. However, the conversion rates of ALA to EPA/ DHA is 
very low. With limited toxicological data, it is concluded that 
ALA is safe as a dietary ingredient because it doesn’t produce 
serious health problems, this essential fatty acid could be used 
as nutraceutical and pharmacological food ingredient. 
However, overall evidence on the association of ALA with risks 
remains inconclusive at this point of time. The data and 
mathematical calculation based in-silico predication models 
presented in the paper is hopefully is expected to facilitate the 
drug development process by enabling the rapid design, 
evaluation, and prioritization of ALA owing to its 
overwhelming biomedical applications.  
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Table 1: Physicochemical Properties of Linolenic acid from Catharanthus roseus 

PROPERTY VALUE 

Molecular weight 278.44 g/mol 

LogP 5.66 

LogD 3.68 

LogSw -4.78 

Number of stereocenters 0 

Stereochemical complexity 0.000 

Fsp3 0.611 

Topological polar surface area 37.30 Å2 

Number of hydrogen bond donors 1 

Number of hydrogen bond acceptors 1 

Number of smallest set of smallest rings (SSSR) 0 

Size of the biggest system ring 0 

Number of rotatable bonds 13 

Number of rigid bonds 4 

Number of charged groups 1 

Total charge of the compound -1 

Number of carbon atoms 18 

Number of heteroatoms 2 

Number of heavy atoms 20 

Ratio between the number of non-carbon atoms and the number of carbon atoms 0.11 

Physicochemical properties were computed using FAF-Drugs4 (28961788) and RDKit open-source cheminformatics platform 

 

Table 2: Druggability Properties of Linolenic acid from Catharanthus roseus 

PROPERTY VALUE 

Lipinski's rule of 5 violations 1 

Veber rule Good 

Egan rule Good 

Oral PhysChem score (Traffic Lights) 4 

GSK's 4/400 score Good 

Pfizer's 3/75 score Bad 

Weighted quantitative estimate of drug-likeness (QEDw) score 0.31 

Solubility 2342.23 

Solubility Forecast Index Good Solubility 

Druggabiity scoring schemes were computed using FAF-Drugs4 (28961788) and FAF-QED (28961788) open-source 
cheminformatics platform 

 

http://fafdrugs4.mti.univ-paris-diderot.fr/
https://www.ncbi.nlm.nih.gov/pubmed/28961788
http://www.rdkit.org/
http://fafdrugs4.mti.univ-paris-diderot.fr/
https://www.ncbi.nlm.nih.gov/pubmed/28961788
http://fafdrugs4.mti.univ-paris-diderot.fr/fafqed.html
https://www.ncbi.nlm.nih.gov/pubmed/28961788
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Table 3: ADMET Properties of Linolenic acid from Catharanthus roseus 

PROPERTY VALUE PROBABILITY 

Human Intestinal Absorption HIA+ 0.990 

Blood Brain Barrier BBB+ 0.931 

Caco-2 permeable Caco2+ 0.774 

P-glycoprotein substrate Non-substrate 0.677 

P-glycoprotein inhibitor I Non-inhibitor 0.950 

P-glycoprotein inhibitor II Non-inhibitor 0.903 

CYP450 2C9 substrate Non-substrate 0.774 

CYP450 2D6 substrate Non-substrate 0.908 

CYP450 3A4 substrate Non-substrate 0.688 

CYP450 1A2 inhibitor Inhibitor 0.692 

CYP450 2C9 inhibitor Non-inhibitor 0.880 

CYP450 2D6 inhibitor Non-inhibitor 0.963 

CYP450 2C19 inhibitor Non-inhibitor 0.964 

CYP450 3A4 inhibitor Non-inhibitor 0.947 

CYP450 inhibitory promiscuity Low CYP Inhibitory Promiscuity 0.943 

Ames test Non AMES toxic 0.913 

Carcinogenicity Non-carcinogens 0.650 

Biodegradation Ready biodegradable 0.781 

Rat acute toxicity 1.450 LD50, mol/kg NA 

hERG inhibition (predictor I) Weak inhibitor 0.882 

hERG inhibition (predictor II) Non-inhibitor 0.932 

ADMET features were predicted using admetSAR (23092397) open-source tool. 

 

Table 4a: ADMET Predictions for Linolenic acid from Catharanthus roseus results based on restricted/ unrestricted 
applicability domain 

 

 

 

 

 

 

 

http://lmmd.ecust.edu.cn/admetsar1
https://www.ncbi.nlm.nih.gov/pubmed/23092397
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Table 4b: Performance measures of vNN models in 10-fold cross validation using a restricted or unrestricted applicability 
domain 

Model Dataa d0b hc Accuracy Sensitivity Specificity kappa Rd Coverage 

DILI 
1427 

0.60 0.50 0.71 0.70 0.73 0.42 0.00 0.66 

1.00 0.20 0.67 0.62 0.72 0.34 0.00 1.00 

Cytotox (hep2g) 
6097 

0.40 0.20 0.84 0.88 0.76 0.64 0.00 0.89 

1.00 0.20 0.84 0.73 0.89 0.62 0.00 1.00 

HLM 
3219 

0.40 0.20 0.81 0.72 0.87 0.59 0.00 0.91 

1.00 0.20 0.81 0.70 0.87 0.57 0.00 1.00 

CYP1A2 
7558 

0.50 0.20 0.90 0.70 0.95 0.66 0.00 0.75 

1.00 0.20 0.89 0.61 0.95 0.60 0.00 1.00 

CYP2C9 
8072 

0.50 0.20 0.91 0.55 0.96 0.54 0.00 0.76 

1.00 0.20 0.90 0.44 0.96 0.46 0.00 1.00 

CYP2C19 
8155 

0.55 0.20 0.87 0.64 0.93 0.58 0.00 0.76 

1.00 0.20 0.86 0.52 0.94 0.50 0.00 1.00 

CYP2D6 
7805 

0.50 0.20 0.89 0.61 0.94 0.57 0.00 0.75 

1.00 0.20 0.88 0.52 0.95 0.51 0.00 1.00 

CYP3A4 
10373 

0.50 0.20 0.88 0.76 0.92 0.68 0.00 0.78 

1.00 0.20 0.88 0.69 0.93 0.64 0.00 1.00 

BBB 
353 

0.60 0.20 0.90 0.94 0.86 0.80 0.00 0.61 

1.00 0.10 0.82 0.88 0.75 0.64 0.00 1.00 

Pgp Substrate 
822 

0.60 0.20 0.79 0.80 0.79 0.58 0.00 0.66 

1.00 0.20 0.73 0.73 0.74 0.47 0.00 1.00 

Pgp Inhibitor 
2304 

0.50 0.20 0.85 0.91 0.73 0.66 0.00 0.76 

1.00 0.10 0.81 0.86 0.74 0.61 0.00 1.00 

hERG 
685 

0.70 0.70 0.84 0.84 0.83 0.68 0.00 0.80 

1.00 0.20 0.82 0.82 0.83 0.64 0.00 1.00 

MMP 
6261 

0.50 0.40 0.89 0.64 0.94 0.61 0.00 0.69 

1.00 0.20 0.87 0.52 0.94 0.50 0.00 1.00 

AMES 
6512 

0.50 0.40 0.82 0.86 0.75 0.62 0.00 0.79 

1.00 0.20 0.79 0.82 0.75 0.57 0.00 1.00 

MRTD 
1184 

0.60 0.20 0.00 0.00 0.00 0.00 0.79 0.69 

1.00 0.20 0.00 0.00 0.00 0.00 0.74 1.00 

aNumber of compounds in the dataset; bTanimoto-distance threshold value; cSmoothing factor; dPearson’s correlation 
coefficient; eRegression model. 
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Table 5: Pharmacokinetic properties of ALA 

PROPERTY MODEL NAME 
PREDICTED 

VALUE  
UNIT 

Absorption Water solubility -5.787 (log mol/L) 

Absorption CACO2 permeability 1.577 (log Papp in 10-6 cm/s) 

Absorption Intestinal absorption (human) 92.836 Numeric (% Absorbed) 

Absorption Skin Permeability -2.722 Numeric (log Kp) 

Absorption P-glycoprotein substrate No Categorical (Yes/No) 

Absorption P-glycoprotein I inhibitor No Categorical (Yes/No) 

Absorption P-glycoprotein II inhibitor No Categorical (Yes/No) 

Distribution VDss (human) -0.617 Numeric (log L/kg) 

Distribution Fraction unbound (human) 0.056 Numeric (Fu) 

Distribution BBB permeability -0.115 Numeric (log BB) 

Distribution CNS permeability -1.547 Numeric (log PS) 

Metabolism CYP2D6 substrate No Categorical (Yes/No) 

Metabolism CYP3A4 substrate Yes Categorical (Yes/No) 

Metabolism CYP1A2 inhibitior Yes Categorical (Yes/No) 

Metabolism CYP2C19 inhibitior No Categorical (Yes/No) 

Metabolism CYP2C9 inhibitior No Categorical (Yes/No) 

Metabolism CYP2D6 inhibitior No Categorical (Yes/No) 

Metabolism CYP3A4 inhibitior Yes Categorical (Yes/No) 

Excretion Total Clearance 1.991 Numeric (log ml/min/kg) 

Excretion Renal OCT2 substrate No Categorical (Yes/No) 

Toxicity AMES toxicity No Categorical (Yes/No) 

Toxicity Max. tolerated dose (human) -0.84 Numeric (log mg/kg/day) 

Toxicity hERG I inhibitor No Categorical (Yes/No) 

Toxicity hERG II inhibitor No Categorical (Yes/No) 

Toxicity Oral Rat Acute Toxicity (LD50) 1.441 Numeric (mol/kg) 

Toxicity Oral Rat Toxicity (LOAEL) 3.115 (log mg/kg_bw/day) 

Toxicity Hepatotoxicity Yes Categorical (Yes/No) 

Toxicity Skin Sensitisation Yes Categorical (Yes/No) 

Toxicity T.pyriformis toxicity 0.722 Numeric (log ug/L) 

Toxicity Minnow toxicity -1.183 Numeric (log mM) 
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Table 5: Prospected target for α-linolenic acid with predicted probability  

TARGET 
COMMON 

NAME 

TARGET 

CLASS 
PROBABILITY 

Peroxisome proliferator-activated receptor γ PPARG Nuclear receptor 0.976 

Peroxisome proliferator-activated receptor α PPARA Nuclear receptor 0.976 

Peroxisome proliferator-activated receptor δ PPARD Nuclear receptor 0.976 

Fatty acid binding protein adipocyte FABP4 FABPF 0.723 

Free fatty acid receptor 1 FFAR1 Family A G-PCR 0.690 

Fatty acid binding protein muscle FABP3 FABPF 0.682 

Cyclooxygenase-1 PTGS1 Oxidoreductase 0.658 

Fatty acid binding protein epidermal FABP5 FABPF 0.281 

Acyl-CoA desaturase SCD Enzyme 0.207 

Anandamide amidohydrolase FAAH Enzyme 0.199 

Telomerase reverse transcriptase TERT Enzyme 0.199 

Fatty acid-binding protein, liver FABP1 FABPF 0.199 

Cannabinoid receptor 1 CNR1 Family A G-PCR 0.166 

Protein-tyrosine phosphatase 1B PTPN1 Phosphatase 0.133 

Arachidonate 5-lipoxygenase ALOX5 Oxidoreductase 0.133 

T-cell protein-tyrosine phosphatase PTPN2 Phosphatase 0.133 

Prostaglandin E synthase PTGES Enzyme 0.117 

Leukotriene B4 receptor 1 LTB4R Family A G-PCR 0.109 

DNA polymerase β POLB Enzyme 0.109 

Estrogen receptor β ESR2 Nuclear receptor 0.109 

Protein-tyrosine phosphatase 1C PTPN6 Phosphatase 0.109 

11-β-hydroxysteroid dehydrogenase 1 HSD11B1 Enzyme 0.101 

Carboxylesterase 2 CES2 Enzyme 0.101 

Nuclear receptor ROR-γ RORC Nuclear receptor 0.101 

DNA topoisomerase I TOP1 Isomerase 0.101 

Prostanoid EP2 receptor    PTGER2 Family A G-PCR 0.101 

Arachidonate 12-lipoxygenase ALOX12 Enzyme 0.101 
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Figure 1: 3D structure of α-Linolenic Acid 

 

 

Figure 2: Cytoscape network of predicted human targets of ALA- Human Target Proteins were predicted 
using STITCH (26590256), Database of Chemical-Protein Interaction Networks. 

 

 

 

http://stitch.embl.de/
https://www.ncbi.nlm.nih.gov/pubmed/?term=26590256
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Figure 3: Predicted bioactivity target classes for α-linolenic acid from C. roseus with percentage probability 


