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Abstract

Current craze and concomitant rise of Artificial Intelligence and Machine Learning (AI&ML) in the
post-COVID-era holds significant contribution to Drug Design and Development. Along with IoT,
AI&ML has reduced human interface and improved the Quality of Life though Quality-Health-Care
products. AI&ML approaches driven Rational Drug Design along with customised molecular modelling
techniques such as in-silico simulation, pharmacophore modelling, molecular dynamics, virtual
screening, and molecular docking aims to elucidate unforeseen bioactivity of natural products
confined to limited timeframe with at-most perfection. Besides, it also defines the molecular
determinants that partake in the interface with in the drug and the target to design more proficient
drug leads. a-Linolenic acid (ALA), a carboxylic acid with 18 carbons and three cis double bonds, is an
essential fatty acid required for normal human health and can be acquired through regular dietary
supplementation of food. During the metabolic process, ALA is bio-transformed into EPA and DHA.
ALA decreases the risk of heart disease by maintaining normal heart rhythm and pumping. Studies
suggest that ALA is associated with reduced risk of fatal ischemic heart disease further higher intake
may reduce the risk of sudden death among prevalent myocardial infarction patients consistent with
induced antiarrhythmic effect. It reduces blood clots, besides, cardiovascular-protective, anti-cancer,
neuro-protective, anti-osteoporotic, anti-inflammatory, and anti-oxidative effects. However, data on
pharmacological and toxicological aspects of ALA is limited; on the other hand, no serious adverse
effects of ALA have been reported yet. In the present study AI&ML approach based in-silico ADME-Tox
and pharmacokinetic profile of ALA from Catharanthus roseus is envisaged.

Keywords: [oT; AI&ML; ADME-Tox; o-Linolenic Acid (ALA); EPA; DHA Pharmacokinetics;
Catharanthus roseus.

INTRODUCTION

for alternative strategies to increase the probability of success
in their drug development project*. One of the possible

The ripple effect of COVID-19 outbreak has brought major
changes and challenges to worldwide healthcare systems!.
Since the outbreak of novel coronavirus disease - COVID - 19,
celebrity of pharmaceutical drug development as intractable
hot area of research and development (R&D) in the environs
of pharma-industries is on the raise. Drug development in the
post COVID era is a high-risk - high-return business that
guarantees huge profit as returns upon success, paradoxically
the success rate is extremely low?2. Drug development requires
extensive R&D program that includes clinical trials and
investment-cost-returns approach for the successful
development of a single drug from the industry into the
market3. For these reasons, pharmaceutical companies sought
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solutions is to exploit AI&ML approach that has undergone
tremendous ad-interim exponential growths. As of now, multi-
national pharmaceutical companies are adopting data mining
and AI&ML technologies to reduce time and cost required for
R&D programé.

Since antiquity, medicinal plants have been a valuable source
of therapeutic agents, and even today most of the drugs
available in the market are either obtained from plant based
natural products or their derivative? biomolecules with
therapeutic potential. Medicinal plants remain a vital
storehouse for the discovery of novel drug leads8-11. Plant
Based Natural Products (PBNPs) offer unique features in
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comparison with their synthetic counterparts. PBNPs confer
both advantages and challenges for the drug discovery process
as they are characterized by structural scaffold diversity,
functional specificity and molecular complexity8. In the past,
pharmaceutical industry focused on libraries of synthetic
compounds as a source for drug discovery® however, this
cumbersome process has been given up for their unwanted
side effects. On the other hand, PBNPs leads with GRAS
standards are easy to produce for resupply with good

compatibility on high throughput screening (HTS) platformss-
11,

Catharanthus roseus (L) G. Don (Family - Apocynaceae), is
native to Madagascar, but grown elsewhere as an ornamental
plant in gardens, farms and landscape. In India, in Ayurvedic
system of medicine, different parts of C. roseus have been
reported for their use in the treatment of cancer, diabetes,
stomach disorders, kidney, liver and cardiovascular diseases.
Apart from India, this plant is used in traditional system of
medicine in South Africa, China, Mexico and Malaysia, as
remedy for diabetics1213.

Significance of C. roseus in modern system of medicine has
gained prominence after the characterization of anticancer
indole alkaloids - vincristine and vinblastine. As isolation and
purification process of vincristine and vinblastine from the
leaves is a time-consuming and costly affair due to the low
content of these compounds, Mekky et al.14 potentiated the
biosynthesis of anticancer alkaloids vincristine and vinblastine
in callus cultures of C. roseus. As of now, advanced and high-
throughput separation/ analytical techniques have been used
for isolation, purification, identification, characterization and
quantitation of other alkaloids from the crude extract
prepared from C. roseus13.15,

Alkaloids of C. roseus possess hypotensive, sedative,
tranquilizing, and anticancer propertiesi2. C. roseus is
recommended for the treatment of nose bleeding, gum
bleeding, mouth ulcers, and sore throats, hypertension,
cystitis, gastritis, enteritis, and diarrhea and memory loss!3.
Alkaloids including vinblastine, vincristine, vinorelbine, and
vinflunine isolated from this plant have proven antitumor
activity15.16. Apart from biomedical application C. roseus is
exploited for its antibacterial, biopesticidal activities7.18.
Recent phytochemical investigation has revealed a total of 344
compounds including monoterpene indole alkaloids (MIAs)
(110), bis-indole alkaloids (35), flavonoids (34), phenolic acids
(9) and volatile constituents (156) have been reported in the
various extracts and fractions of different plant parts of C.
roseus!3. Similarly aerial parts of C. roseus contain vindoline,
vindolidine, vindolicine, roseadine, leurosine-N'b-oxide,
leurocolombine, catharanthamine, pleuroside,
dimethylvinblastin, 5’-oxoleurosine, leurosidineN’b-oxide,
vinorelbine, vinzolidine, vineamine, raubasin, 16-epi-19S-
vindolinine, and vindolininel6,

ALA (18:3n-3) is essential w-3 fatty acid found in nuts?!9. It is
necessary for normal growth and development thus an aspect
of the human diet, probably because it is the main substrate
for the synthesis of longer-chain fatty acids. ALA is the
precursor of two long chain w-3 fatty acids viz, EPA
(eicosapentaenoic acid, 20:3n-5) and DHA (docosahexaenoic
acid, 22:3n-6), both of them have vital roles in brain
development, cardio-vascular health, inflammatory response,
etc.20

The metabolic pathways of ALA have been reported by Fekete
and Decsi, 201021, During the metabolic process, ALA is bio-
transformed into EPA and DHA. ALA is readily converted to
EPA has been reported to be 8%, while conversion rates of
ALA to DHA has been reported to be 4%, no direct link
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between DHA concentration and increase in rate of intake has
been reported yet. Burdge et al.22 reported that in humans,
enzymes desaturase and elongase are involved in the
bioconversion of ALA to EPA and DHAZ223 respectively.
Pawlosky et al.24 reported that coefficient constant of EPA to
DHA was about 4-fold higher in women than in men.
Invariably, it has been reported that women have a higher
concentration of DHA than men?25. Further, high conversion
rate of ALA to EPA/ DHA in women has been related to the
level of estrogen?6. In human system, ALA possesses hypo-
cholesterolemic, nematicide, anti-arthritic, hepatoprotective
anti-androgenic,  hypo-cholesterolemic, 5-a  reductase
inhibitor, antihistaminic, anti-coronary, anti-eczemic, anti-
acne properties?5. Pharmacological studies show that ALA has
the anti-metabolic syndrome, anticancer, anti-inflammatory,
anti-oxidant, anti-obesity, neuro-protection properties25-28,
Recently, it has been proved that ALA plays a major role in the
functional regulation of gut microflora2s.

MATERIALS AND METHODS

Botanical Description of the plant

Catharanthus roseus (L) G. Don (Family - Apocynaceae)

Habit: Suffrutex up to 1 m high, perennial, woody at the base,
herbaceous above; Stem: glabrous or thinly pubescent;
Leaves: opposite, obovate, oblong or oblanceolate, apex
rounded or, rarely, sub-acute, apiculate, base cuneate, 4-8 cm
long 1-3 cm broad, membranous to thinly coriaceous, glabrous
or finely pubescent; Petiole 2-5 mm long; axillary glands
forming a fringe, outer longer than inner; Stipules: absent;
Flowers: axillary, solitary/ paired, subsessile, pink or white,
or white with pink centre; Calyx: divided at base; sepals - 5,
linear-subulate, 4-6 mm long, glabrous or pubescent; Corolla:
salver-shaped; tube slender cylindrical, 2.3-2.6 cm long and 2-
2.5 mm in dia, mouth constricted, thickened, pubescent; lobes
broadly obovate, apiculate, 1.6-2.0 cm long; Stamens: 5,
pentamerous, inserted near the mouth; anthers 2 mm long,
subsessile. Disc replaced by 2 linear-subulate glands 2 mm
long alternating with the carpels; Ovary: bicarpelary, 2
carpels, free; style filiform, stigma at the level of the anthers,
capitate with a reflexed hyaline frill at the base; Ovules:
numerous, 2-seriate. Fruit: two follicular mericarps erect,
slightly spreading; follicles 2.5-3.5 cm long, cylindric, striate.
Seeds: numerous, oblong, 2 mm long, black, rugose, grooved
on one face; Cotyledons: flat, slightly shorter than the radicle;
Endosperm: scanty; Fl1 & Fr: round the year.

Plant materials were collected from the College Campus,
Identified and authenticated by Department of Botany,
Government Arts College, Melur, Madurai, TamilNadu using
Flora2930, The plant material was shade dried, pulverized at
room temperature, sieved and stored in vials until used. Dried
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powder was dissolved in double distilled water and the
aqueous leaf extract of C. roseus was analyzed for
phytochemicals using standard protocols. GCMS analysis was
performed as described previously31-33,

ADMET predications

Phyto-components of AqLE of C. roseus were subjected to
ADME prediction using QikProp (Schrodinger, LLC, NY) and
toxicity prediction using TOPKAT (Accelrys, Inc., USA, 2015).
QikProp develops and employs QSAR/QSPR models using
partial least squares, principal component analysis and
multiple linear regression to predict physicochemical
significant descriptors and pharmaco-kinetically relevant
properties that are essential for rational drug design. The
computational toxicity was assessed using TOPKAT (TOxicity
Prediction by Komputer Assisted Technology). TOPKAT
calculates the toxicity on the basis of the quantitative
structure-toxicity relationship (QSTR) model using linear
regression on the structural descriptor and it considers 4
nearest neighbours with a similarity distance of <0.25 to
assign probabilities of the toxicity such as carcinogenicity,
mutagenicity, rat oral LDso, skin irritation, aerobic
biodegradability34-38.

RESULTS

Isolation, purification and characterization of PBNPs
(secondary metabolites) remains the Kkey aspect of
phytochemical screening39-49. In the present study ALA among
the phyto-components of AqLE of Catharanthus roseus were
ADMET predicted in-silico.

Chemical Organic compounds

kingdom

Super class Lipids and lipid-like molecules

Class :  Fatty Acyls

Subclass Lineolic acids derivatives

PubChem 5280934

Identifier

ChEBI Identifier : 25048

CAS Identifier 28290-79-1

Synonyms o-LINOLENIC ACID;

Canonical SMILES CC/C=CC/C=CC/C=Ccceeceec(=0)o
InChl Key DTOSIQBPPRVQHS-PDBXOOCHSA-N

Physicochemical Properties

Molecular weight of ALA was calculated as 278.44 g/mol; LogP
value was predicted as 5.66; LogD value was predicted as 3.68;
LogSw value was predicted as -4.78. Number of stereo-centers
was predicted as 0; Stereo-chemical complexity was predicted
as 0.000; Fsp3 was predicted as 0.611; Topological polar
surface area was calculated as 37.30A2; Number of hydrogen
bond donors was calculated as 1; Number of hydrogen bond
acceptors was calculated as 1; Number of smallest set of
smallest rings (SSSR) was calculated as 0; Size of the biggest
system ring was calculated as 0; Number of rotatable bond
was calculated as 13; Number of rigid bond was calculated as
4; Number of charged group was calculated as 1; Total charge
of the compound was calculated as -1; Number of carbon
atoms was ascertained as 18; Number of heteroatoms was
ascertained as 2; Number of heavy atoms was ascertained as
20; Ratio between the number of non-carbon atoms and the
number of carbon atoms was ascertained as 0.11 (Table
1). TPSA of ALA was calculated as 37.30; natoms in ALA was
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20; MW of ALA was calculated as 278.44; nON was calculated
as 2; nOHNH value was calculated as 1; nviolations value for
ALA was calculated as 1; number of rotatable bonds in ALA
was 13; and the theoretical volume of ALA was calculated as
306.47. The 3D structure of ALA is illustrated in Fig. 1.

Druggability Properties

In-silico studies are expected to reduce the risk of late-stage
attrition of drug development and to optimize screening/
testing by looking at Druggability Properties, Lipinski's rule of
5 violations was predicted as 1; Veber rule was predicted as
Good; Egan rule was predicted as Good; Oral PhysChem score
(Traffic Lights) was predicted as 4; GSK's 4/400 score was
predicted as Good; Pfizer's 3/75 score was predicted as BAD;
Weighted quantitative estimate of drug-likeness (QEDw) score
was predicted as 0.31; Solubility of EA was predicted as
2342.23; Solubility Forecast Index of EA was predicted as
Good (Table 2).

ADMET Properties

Experimental evaluation of small-molecule is both time-
consuming and expensive. On the other hand evolution of
computational approaches to optimize pharmacokinetic and
toxicity properties is said to drive the progression of drug
discovery. Prediction of ADMET-associated properties of new
chemicals, however, is a challenging task with only tenuous
links between many physicochemical characteristics and
pharmacokinetic and toxicity properties. This has led to a need
for novel approaches to understand, explore, and predict
ADMET properties of small molecules as a way to improve
compound quality and success rate. ADMET prediction
models, including performance measures for the selected
candidate molecule ALA were performed online (Table 3).

Human Intestinal Absorption (HIA+) for ALA had a calculated
probability value of 0.990; Blood Brain Barrier (BBB+) had a
calculated probability value of 0.931; Caco-2 permeable
(Caco2+) for ALA had a calculated probability value of 0.774;
P-glycoprotein substrate that served as Non-substrate for ALA
had a calculated probability value of 0.677; P-glycoprotein
inhibitor I that served as Non-inhibitor for ALA had a
calculated probability value of 0.950; P-glycoprotein inhibitor
I for ALA served as Non-inhibitor and had a predicted
probability value of 0.903 (Table 3).

CYP450 2C9 substrate for ALA served as Non-substrate with a
predicted probability value of 0.774; CYP450 2D6 substrate
for ALA served as Non-substrate with a predicted probability
value of 0.908; CYP450 3A4 substrate for ALA served as Non-
substrate with a predicted probability value of 0.688; CYP450
1A2 inhibitor for ALA worked as Inhibitor with a predicted
probability value of 0.692; CYP450 2C9 inhibitor for ALA
functioned as Non-inhibitor with a predicted probability value
of 0.880; CYP450 2D6 inhibitor for ALA served as Non-
inhibitor with a predicted probability value of 0.963; CYP450
2C19 inhibitor for ALA remained as Non-inhibitor with a
predicted probability value of 0.964; CYP450 3A4 inhibitor for
ALA was as Non-inhibitor with a predicted probability value of
0.947; CYP450 inhibitory promiscuity for ALA had Low CYP
Inhibitory Promiscuity with a predicted probability value of
0.943 respectively (Table 3).

ADMET Ames test for ALA served as Non AMES toxic with a
predicted probability value of 0.913; Carcinogenicity for ALA
served as Non-carcinogens with a predicted probability value
of 0.650; Biodegradation potential for ALA served as Ready
biodegradable with a predicted probability value of 0.781; Rat
acute toxicity 1.450 LDso, mol/kg for ALA was Not applicable;
hERG inhibition (predictor I) for ALA served as Weak inhibitor
with a predicted probability value of 0.882; hERG inhibition
CODEN (USA): JDDTAO
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(predictor II) for ALA served as Non-inhibitor with a predicted
probability value of 0.932 respectively (Table 3). In the
present study 15 models covered a diverse set of ADMET
endpoints including Maximum Recommended Therapeutic
Dose (MRTD), chemical mutagenicity, human liver microsomal
(HLM), Pgp  inhibitor/ substrates. ADMET data for
performance measures of VNN models in 10-fold cross
validation using a restricted/ unrestricted applicability
domain is given in Table 4a,b.

Liver Toxicity - DILI

Drug-induced liver injury (DILI) is one of the most commonly
cited reasons for drug withdrawals from the market. This
application predicts whether a compound could cause DILL A
dataset of 1,431 compounds was obtained from online
sources. The dataset contained both pharmaceuticals and
non-pharmaceuticals compounds; compounds were classified
as causing DILI if it was associated with a high risk and non
DILI if there was no such risk with the compound.

Cytotoxicity (HepG2)

Cytotoxicity is the degree to which a chemical causes damage
to cells. A cytotoxicity prediction model was developed using
in-vitro data on toxicity against HepG2 cells for 6,000
structurally diverse compounds, collected from ChEMBL. In
developing model, compounds with ICso < 10 uM in in-vitro
assay as cytotoxic was considered.

Metabolism - HLM

Human Liver Microsomal (HLM) stability assay is commonly
used to identify and exclude compounds that are too rapidly
metabolized. For a drug to achieve effective therapeutic
concentrations in the body, it cannot be metabolized too
rapidly by the liver. Compounds with a half-life of 30 min or
longer in an HLM assay were considered as stable; otherwise
considered unstable. HLM data was retrieved from ChEMBL
database, manually curated and classified as stable or unstable
based on the reported half-life (T1/2 > 30 min was considered
stable, and T1/2 < 30 min unstable). The final dataset contained
3,654 compounds. Of these, 2,313 compounds were stable and
1,341 were unstable.

Metabolism - Cytochrome P450 enzyme (CYP) inhibition

CYPs constitute a superfamily of proteins that play an
important role in the metabolism and detoxification of
xenobiotics. In-vitro data was derived from five main drug-
metabolizing CYPs - 1A2, 3A4, 2D6, 2C9, and 2C19 was used to
develop CYP inhibition models. CYP inhibitors were retrieved
from PubChem and classified, a compound with an ICso < 10
UM for an enzyme as an inhibitor of the enzyme. Prediction
values for CYP1A2, CYP3A4, CYP2D6, CYP2C9, and CYP2C19 is
given in Table 4.

Membrane Transporters - BBB

The blood-brain barrier (BBB) is a highly selective barrier that
separates the circulating blood from the central nervous
system. A vNN-based BBB model was developed, using 352
compounds, their corresponding BBB permeability values
(logBB) were obtained from online sources. The compounds
were further classified with logBB values of less than -0.3 and
greater than +0.3 as BBB non-permeable and permeable
respectively.

Membrane Transporters - Pgp Substrates and Inhibitors

P-glycoprotein (Pgp) is an essential cell membrane protein
that extracts many foreign substances from the cell. Cancer
cells often overexpress Pgp, which increases the efflux of
chemotherapeutic agents from the cell and prevents treatment
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by reducing the effective intracellular concentrations of such
agents through a phenomenon known as multidrug resistance.
For this reason, identifying compounds that can either be
transported out of the cell by Pgp (substrates) or impair Pgp
function (inhibitors) is of great interest. In the present study,
models were developed to predict both Pgp substrates and
Pgp inhibitors. The dataset contained 422 substrates and 400
non-substrates. To generate a large Pgp inhibitor dataset, two
datasets were combined and duplicates were removed to form
a combined dataset consisting of a training set of 1,319
inhibitors and 937 non-inhibitors. Results are given in Table 4.

hERG (Cardiotoxicity)

Human ether-a-go-go-related gene (hERG) codes for a
potassium ion channel involved in the normal cardiac
repolarization activity of the heart. Drug-induced blockade of
hERG function can cause long term QT syndrome, which may
result in arrhythmia which may ultimately lead to death. A
data set of 282 known hERG blockers were retrieved from the
literature and classified compounds with an ICso cut-off value
of 10 uM or less as blockers. A set of 404 compounds with
ICso values greater than 10 uM were collected
from ChEMBL and classified as non-blockers. Results are
provided in Table 4.

MMP (Mitochondrial Toxicity)

Given the fundamental role of mitochondria in cellular
energetics and oxidative stress, mitochondrial dysfunction has
been implicated in cancer, diabetes, neurodegenerative
disorders, and cardiovascular diseases. In the present study a
largest dataset of chemical-induced changes in mitochondrial
membrane potential (MMP) were used based on the
assumption that a compound that causes mitochondrial
dysfunction is also likely to reduce the MMP. vNN based MMP
prediction model was developed using 6,261 compounds
collected from a screened library of 10,000 compounds at 15
concentrations, each in triplicate, to measure changes in the
MMP in HepG2 cells. Data indicate that 913 compounds
decreased the MMP, whereas 5,395 compounds had no or
insignificant effect (Table 4).

Mutagenicity (AMES Test)

Mutagens are chemicals that cause abnormal genetic
mutations leading to cancer. A common way to assess a
chemical’s mutagenicity is the Ames test. In the present study,
a prediction model was developed using a dataset of 6,512
compounds. Data indicate that 3,503 compounds were Ames-
positive.

Maximum Recommended Therapeutic Dose (MRTD)

MRTD is an estimated upper daily dose that is safe. In the
present study a prediction model was built based on a dataset
of MRTD values publically disclosed by the FDA, mostly of
single-day oral doses for an average adult with a body weight
of 60 kg, for 1,220 compounds (small organic drugs) however
organometallics, high-molecular weight polymers (>5,000 Da),
nonorganic chemicals, mixtures of chemicals, and very small
molecules (<100 Da) were excluded. An external test set of
160 compounds were used that were collected by the FDA for
validation. The total dataset for the model contained 1,185
compounds. The predicted MRTD value is reported in mg/day
unit based upon an average adult weighing 60 kg (Table 4).

Biological properties - G-PCRs (GPCRs)

GPCRs are the largest family of signalling proteins.
Structurally, GPCRs are similar: extracellular N-terminus,
seven membrane-spanning a-helices (TM), and intracellular C-
terminus, with variable extracellular and intracellular
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elements. These cell surface receptors act like an inbox for
messages in the form of light energy, peptides, lipids, sugars,
and proteins. Calculated distribution of activity scores
(version 2011.06) for GPCR ligands for the molecule was 0.33;
kinase inhibitors, ion channel modulators, nuclear receptor
ligands, protease inhibitors and other enzyme targets
compared with scores for about 100'000 average drug-like
molecules. The calculated value for Ion channel modulator
(0.23); Kinase inhibitor (-0.19); Nuclear receptor ligand
(0.35); Protease inhibitor (0.13); Enzyme inhibitor (0.42)
respectively, the score allows efficient separation of active and
inactive molecules. Further, cytoscape network of predicted
human targets of ALA- human target proteins were predicted
using STITCH (26590256), a database of chemical-protein
interaction networks is provided in Fig 2. Further, predicted
bioactivity target classes for ALA from Catharanthus roseus
with probability score provided in Fig. 3.

pkCSM - pharmacokinetic properties of ALA using graph-
based signatures

Drug development is a fine balance of optimizing drug like
properties to maximize efficacy, safety, and pharmacokinetics.
Many early stage drug discovery programs focus on
identifying molecules that bind to a target of interest. While
potency is a driving factor in these early stages, ultimately the
pharmacokinetic and toxicity properties dictate whether it
will ever advance its effectiveness and success therapeutically.
Mathematical calculation and graph-theory based Graph
modelling is an intuitive and well established mathematical
representation of chemical entities, from where the
descriptors encompassing both molecule structure and
chemistry can be extracted for rational drug design. The
pharmacokinetic properties of ALA predicted using graph-
based signatures is given in Table 5.

DISCUSSION

Absorption: There is very limited information on the
absorption of ALA in the human gut. However, absorption of
ALA in humans is assumed to be efficient. Absorption can be
determined through the difference between intake levels of
ALA in foods and excretion in the feces. Absorption efficiency
of ALA through the human gut and carrier-mediated
transporters involved in the absorption is assumed to be quite
highso,

Distribution: Available information on the distribution of ALA
is limited. Lin and Salem5?, reported whole body distribution
of ALA in rats. Through inter conversion of EPA and DHA, DHA
was deposited in brain, spinal cord, heart, testes, and eye over
time. About 16-18% of ALA was deposited in adipose tissue,
skin, and muscle. About 6% of ALA was elongated and
desaturated, and stored, in muscle, adipose tissue, and carcass.
Remaining 78% of ALA was eventually excreted.

Metabolism: Metabolic conversion of ALA to EPA and DHA is
relatively poor because ALA absorbed in the system
undergoes b-oxidation52. Although 67% of ALA undergoes b-
oxidation in brain, only 30% of fatty acids, such as arachidonic
acid, undergo b-oxidation in brain®3. In the brain, small
percentage of fatty acids undergoes b-oxidation. However, the
rapidity of the process is difficult to measure owing to the
pace of lipid metabolism occurs within seconds/ minutes,
rather than hours.

Toxicity: It has been suggested that EDF containing enriched
ALA is safe when orally administered to rats. Furthermore,
EDF could reduce the increase of triglyceride levels in plasma.
Prospective meta-analysis studies concluded that there exists
no association between dietary intake of ALA and prostate
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cancer risk54. Therefore, overall evidence of prostate cancer
risk with ALA remains inconclusive. Association of ALA with
the risk of macular degeneration has been reportedss,
however, more research is required before any conclusion is
drawn. Flaxseed/ oil is rich dietary sources of ALA is
prospected to induce adverse gastrointestinal effects, such as
flatulence, bloating and stomach aches/crampssé. Further it
has been pointed out that ALA can induce lipid peroxidation
when exposed to UV radiation, which may produce have
adverse effects if not monitoreds?. ALA is well-known for its
anti-inflammatory activity. Recently, it has been pointed out
that ALA rich diet influences microbiota composition and
villus morphology of the mouse small intestine.

CONCLUSION

ALA from AqLE of C. roseus was screened and ADMET
predicted for the functional properties. It has been well
established that in the human body, ALA is converted to EPA
and DHA, which is protective against cardiovascular, neuronal,
osteoporotic inflammatory diseases. In addition, EPA and DHA
lower the blood cholesterol level that reduces the risk of heart
disease. However, the conversion rates of ALA to EPA/ DHA is
very low. With limited toxicological data, it is concluded that
ALA is safe as a dietary ingredient because it doesn’t produce
serious health problems, this essential fatty acid could be used
as nutraceutical and pharmacological food ingredient.
However, overall evidence on the association of ALA with risks
remains inconclusive at this point of time. The data and
mathematical calculation based in-silico predication models
presented in the paper is hopefully is expected to facilitate the
drug development process by enabling the rapid design,
evaluation, and prioritization of ALA owing to its
overwhelming biomedical applications.
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Table 1: Physicochemical Properties of Linolenic acid from Catharanthus roseus

PROPERTY VALUE
Molecular weight 278.44 g/mol
LogP 5.66
LogD 3.68
LogSw -4.78
Number of stereocenters 0
Stereochemical complexity 0.000
Fsp3 0.611
Topological polar surface area 37.30 A2
Number of hydrogen bond donors 1
Number of hydrogen bond acceptors 1
Number of smallest set of smallest rings (SSSR) 0
Size of the biggest system ring 0
Number of rotatable bonds 13
Number of rigid bonds 4
Number of charged groups 1
Total charge of the compound -1
Number of carbon atoms 18
Number of heteroatoms 2
Number of heavy atoms 20
Ratio between the number of non-carbon atoms and the number of carbon atoms 0.11

Physicochemical properties were computed using FAF-Drugs4 (28961788) and RDKit open-source cheminformatics platform

Table 2: Druggability Properties of Linolenic acid from Catharanthus roseus

PROPERTY VALUE
Lipinski's rule of 5 violations 1

Veber rule Good
Egan rule Good

Oral PhysChem score (Traffic Lights) 4

GSK's 4/400 score Good
Pfizer's 3/75 score Bad
Weighted quantitative estimate of drug-likeness (QEDw) score 0.31
Solubility 2342.23
Solubility Forecast Index Good Solubility

Druggabiity scoring schemes were computed using FAF-Drugs4 (28961788) and FAF-QED (28961788) open-source

cheminformatics platform
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Table 3: ADMET Properties of Linolenic acid from Catharanthus roseus

PROPERTY VALUE PROBABILITY
Human Intestinal Absorption HIA+ 0.990
Blood Brain Barrier BBB+ 0.931
Caco-2 permeable Caco2+ 0.774
P-glycoprotein substrate Non-substrate 0.677
P-glycoprotein inhibitor I Non-inhibitor 0.950
P-glycoprotein inhibitor II Non-inhibitor 0.903
CYP450 2C9 substrate Non-substrate 0.774
CYP450 2D6 substrate Non-substrate 0.908
CYP450 3A4 substrate Non-substrate 0.688
CYP450 1A2 inhibitor Inhibitor 0.692
CYP450 2C9 inhibitor Non-inhibitor 0.880
CYP450 2D6 inhibitor Non-inhibitor 0.963
CYP450 2C19 inhibitor Non-inhibitor 0.964
CYP450 3A4 inhibitor Non-inhibitor 0.947
CYP450 inhibitory promiscuity Low CYP Inhibitory Promiscuity 0.943
Ames test Non AMES toxic 0913
Carcinogenicity Non-carcinogens 0.650
Biodegradation Ready biodegradable 0.781

Rat acute toxicity 1.450 LD50, mol/kg NA

hERG inhibition (predictor I) Weak inhibitor 0.882
hERG inhibition (predictor II) Non-inhibitor 0.932

ADMET features were predicted using admetSAR (23092397) open-source tool.

Table 4a: ADMET Predictions for Linolenic acid from Catharanthus roseus results based on restricted/ unrestricted

applicability domain
Liver Toxicity
Query
Cyto-
oI 10xCRY Him ALY
No Tur Yus Na
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Table 4b: Performance measures of vNN models in 10-fold cross validation using a restricted or unrestricted applicability
domain

Model Data2 dob he Accuracy Sensitivity Specificity kappa Rd Coverage
DILI 0.60 0.50 0.71 0.70 0.73 0.42 0.00 0.66
17 1.00 0.20 0.67 0.62 0.72 0.34 0.00 1.00
Cytotox (hep2g) 0.40 0.20 0.84 0.88 0.76 0.64 0.00 0.89
0097 1.00 0.20 0.84 0.73 0.89 0.62 0.00 1.00
HLM 0.40 0.20 0.81 0.72 0.87 0.59 0.00 0.91
21 1.00 0.20 0.81 0.70 0.87 0.57 0.00 1.00
CYP1A2 0.50 0.20 0.90 0.70 0.95 0.66 0.00 0.75
7558 1.00 0.20 0.89 0.61 0.95 0.60 0.00 1.00
CYP2C9 0.50 0.20 0.91 0.55 0.96 0.54 0.00 0.76
0072 1.00 0.20 0.90 0.44 0.96 0.46 0.00 1.00
CYP2C19 0.55 0.20 0.87 0.64 0.93 0.58 0.00 0.76
o159 1.00 0.20 0.86 0.52 0.94 0.50 0.00 1.00
CYP2D6 0.50 0.20 0.89 0.61 0.94 0.57 0.00 0.75
7805 1.00 0.20 0.88 0.52 0.95 0.51 0.00 1.00
CYP3A4 0.50 0.20 0.88 0.76 0.92 0.68 0.00 0.78
10973 1.00 0.20 0.88 0.69 0.93 0.64 0.00 1.00
BBB 0.60 0.20 0.90 0.94 0.86 0.80 0.00 0.61
33 1.00 0.10 0.82 0.88 0.75 0.64 0.00 1.00
Pgp Substrate 0.60 0.20 0.79 0.80 0.79 0.58 0.00 0.66
022 1.00 0.20 0.73 0.73 0.74 0.47 0.00 1.00
Pgp Inhibitor 0.50 0.20 0.85 0.91 0.73 0.66 0.00 0.76
2304 1.00 0.10 0.81 0.86 0.74 0.61 0.00 1.00
hERG 0.70 0.70 0.84 0.84 0.83 0.68 0.00 0.80
08 1.00 0.20 0.82 0.82 0.83 0.64 0.00 1.00
MMP 0.50 0.40 0.89 0.64 0.94 0.61 0.00 0.69
o201 1.00 0.20 0.87 0.52 0.94 0.50 0.00 1.00
AMES 0.50 0.40 0.82 0.86 0.75 0.62 0.00 0.79
oot 1.00 0.20 0.79 0.82 0.75 0.57 0.00 1.00
MRTD 0.60 0.20 0.00 0.00 0.00 0.00 0.79 0.69
1ok 1.00 0.20 0.00 0.00 0.00 0.00 0.74 1.00

aNumber of compounds in the dataset; *Tanimoto-distance threshold value; <Smoothing factor; 4Pearson’s correlation
coefficient; eRegression model.
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Table 5: Pharmacokinetic properties of ALA
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PROPERTY MODEL NAME PR‘];:ADII‘([:J'II;ED UNIT
Water solubility -5.787 (log mol/L)
CACO2 permeability 1.577 (log Papp in 10-6 cm/s)
Intestinal absorption (human) 92.836 Numeric (% Absorbed)
Skin Permeability -2.722 Numeric (log Kp)
P-glycoprotein substrate No Categorical (Yes/No)
P-glycoprotein I inhibitor No Categorical (Yes/No)
P-glycoprotein Il inhibitor No Categorical (Yes/No)
VDss (human) -0.617 Numeric (log L/kg)
Fraction unbound (human) 0.056 Numeric (Fu)
BBB permeability -0.115 Numeric (log BB)
CNS permeability -1.547 Numeric (log PS)
CYP2D6 substrate No Categorical (Yes/No)
CYP3A4 substrate Yes Categorical (Yes/No)
CYP1A2 inhibitior Yes Categorical (Yes/No)
CYP2C19 inhibitior No Categorical (Yes/No)
CYP2C9 inhibitior No Categorical (Yes/No)
CYP2D6 inhibitior No Categorical (Yes/No)
CYP3A4 inhibitior Yes Categorical (Yes/No)
Excretion
Excretion
AMES toxicity No Categorical (Yes/No)
Max. tolerated dose (human) -0.84 Numeric (log mg/kg/day)
hERG I inhibitor No Categorical (Yes/No)
Toxicity] hERG II inhibitor No Categorical (Yes/No)
Oral Rat Acute Toxicity (LDso) 1.441 Numeric (mol/kg)
Oral Rat Toxicity (LOAEL) 3.115 (log mg/kg_bw/day)
Toxicity] Hepatotoxicity Yes Categorical (Yes/No)
Skin Sensitisation Yes Categorical (Yes/No)
T.pyriformis toxicity 0.722 Numeric (log ug/L)
Minnow toxicity -1.183 Numeric (log mM)
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Table 5: Prospected target for a-linolenic acid with predicted probability

COMMON TARGET
TARGET PROBABILITY
NAME CLASS
Peroxisome proliferator-activated receptor y PPARG Nuclear receptor 0.976
Peroxisome proliferator-activated receptor a PPARA Nuclear receptor 0.976
Peroxisome proliferator-activated receptor & PPARD Nuclear receptor 0.976
Fatty acid binding protein adipocyte FABP4 FABPF 0.723
Free fatty acid receptor 1 FFAR1 Family A G-PCR 0.690
Fatty acid binding protein muscle FABP3 FABPF 0.682
Cyclooxygenase-1 PTGS1 Oxidoreductase 0.658
Fatty acid binding protein epidermal FABP5 FABPF 0.281
Acyl-CoA desaturase SCD Enzyme 0.207
Anandamide amidohydrolase FAAH Enzyme 0.199
Telomerase reverse transcriptase TERT Enzyme 0.199
Fatty acid-binding protein, liver FABP1 FABPF 0.199
Cannabinoid receptor 1 CNR1 Family A G-PCR 0.166
Protein-tyrosine phosphatase 1B PTPN1 Phosphatase 0.133
Arachidonate 5-lipoxygenase ALOX5 Oxidoreductase 0.133
T-cell protein-tyrosine phosphatase PTPN2 Phosphatase 0.133
Prostaglandin E synthase PTGES Enzyme 0.117
Leukotriene B4 receptor 1 LTB4R Family A G-PCR 0.109
DNA polymerase 3 POLB Enzyme 0.109
Estrogen receptor f8 ESR2 Nuclear receptor 0.109
Protein-tyrosine phosphatase 1C PTPN6 Phosphatase 0.109
11-B-hydroxysteroid dehydrogenase 1 HSD11B1 Enzyme 0.101
Carboxylesterase 2 CES2 Enzyme 0.101
Nuclear receptor ROR-y RORC Nuclear receptor 0.101
DNA topoisomerase I TOP1 Isomerase 0.101
Prostanoid EP2 receptor PTGER2 Family A G-PCR 0.101
Arachidonate 12-lipoxygenase ALOX12 Enzyme 0.101
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Figure 1: 3D structure of a-Linolenic Acid
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Figure 2: Cytoscape network of predicted human targets of ALA- Human Target Proteins were predicted
using STITCH (26590256), Database of Chemical-Protein Interaction Networks.
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Figure 3: Predicted bioactivity target classes for a-linolenic acid from C. roseus with percentage probability
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