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Abstract 
______________________________________________________________________________________________________ 
Plant engineering technology has been working effectively since last 30 years. 
Commercialization of different product using plant engineering is encouraging us to 
develop effective treatment and this progress takes too much effort and time, but still 
many candidate vaccines for use in humans are in clinical trials. Virus-like particles (VLPs) 
are basically self-constructed structures departed from viral antigens which copy the 
organization of similar viruses but without viral genome. This technology offers several 
pros in terms of safety, immunogenicity and stability in production over vaccines derived 
from pathogen formulation. Now, many pharmaceutical companies are working in this 
technology to develop effective treatment against various diseases. This review discusses 
how plant engineering technology works for diseases and regulations relevant to the 
development of plant-based vaccines in the treatment of viruses like Hepatitis B, Ebola, 
Papilloma, Norwalk, Influenza, HIV and Covid-19. 
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INTRODUCTION 

Virus-like particles (VLPs) are basically self-constructed 
structures departed from viral antigens which copy the 
organization of similar viruses but without viral genome. 
They offer several merits in terms of safety, immunogenicity 
and stability in production over vaccines derived from 
pathogen formulation or subunit antigens and hence, have 
earned huge momentum as a premier vaccine platform.1 
While attenuated or killed pathogens promote powerful 
immune responses and are still the key source of protection 
from several infectious diseases, significant reversion of 
attenuated pathogens or restricted inactivation of killed 
pathogens in the vaccine has remained a considerable safety 
concern. Furthermore, for a great number of pathogens 
either a safe attenuated strain is not yet obtained or no 
tissue culture system is available to permit its sufficient 
propagation and production. The development of subunit 
vaccines via genetic engineering has efficiency to overtake 
whole pathogen vaccines and associated risks. Notably, 
vaccines made up of individual proteins hardly possess 
antigenic determinant sites in their native conformation and 
hence, are significantly less effective than whole pathogen 
preparations. As a result subunit vaccines often need larger 
and more frequent administrations of antigen along with 

adjuvants to stimulate the desirable immune responses. 
VLPs possess the best traits of whole-virus as well as subunit 
antigens for the development of vaccine. VLPs are deficit of 
viral nucleic acid and are noninfectious. Hence, are safer 
alternatives of vaccine than attenuated or inactivated 
viruses. Additionally, the potency of VLPs can be 
considerably increased over the native virus when 
immunosuppressive viral proteins are exempted from VLP 
composition. Also, any undesirable epitope modification by 
the inactivation of live virus can be eluded for VLP 
manufacturing that further confirms the VLP’s 
immunogenicity. Given that VLPs act as an infectious virus 
structurally, they can generate humoral immune and 
effective cellular responses even without adjuvants, which 
are more effective than other recombinant antigens. In 
addition to this, VLPs are highly stable than subunit vaccines 
and that can be formulated with help of recombinant 
technology in expression systems with no requirement of 
the capability to aid viral replication 1-3. 

Plants as Production System for VLPs 

Plants offer a great substitute for VLP vaccine manufacture 
due to their ability of producing huge quantities of 
recombinant protein at cheaper costs. Their eukaryotic 
processing mechanism for the post- translational 
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modification and appropriate set-up of proteins, and the 
low-risk of introducing fortuitous human pathogens 4,5. 
Plants do not need costly fermentation facilities for biomass 
production or the generation of duplicate facilities to 
scale-up production. Therefore, plant biomass generation 
and upstream processing capacity can be controlled and 
scaled-up in a desirable, capital-efficient way which cannot be 
easily compared by recent fermentation-based technologies 
6,7. Certain VLPs were primarily expressed in plants and they 
gave appreciable results, however, these earlier trials had to 
suffer from several demerits including less VLP expression, 
plant-specific glycosylation of glycoproteins, and the lack of 
ability to produce VLPs with multiple proteins 8. Despite the 
fact, these challenges have all been overcome by latest 
development of new plant expression systems and 
improvement in plant glycoengineering. For instance, the 
initial production of VLPs in plants was quite slow and it 
yielded very low product. This issue demonstrates the 
intrinsic boundaries of early expression systems based upon 
stable transgenic plants, involving the lack of powerful 
regulatory elements to operate adequate amounts of target 
protein accumulation and also undesirable position effects 
emerged by the uncertainty of transgene integration in plant 
genome 9,10. Because of low production yield, VLP production 
became impractical and it considerably reduced the cost-
saving merit of plants 11. The challenges involved in VLP 
production speed and yield have been overcome by the 
development of plant virus-based transient plant expression 
systems 12,13. The cloning and high-level transient expression 
of plant-derived VLPs is quite easy and can be acquired 
rapidly in 1–2 weeks of vector infiltration with a tobacco 
mosaic virus (TMV) RNA replicon (the MagnICON) system or 
a gemini viral DNA replicon system based upon bean yellow 
dwarf virus (BeYDV) 14-16. These new technologies in the 
rate and quantity of yield of VLP production also offer the 
plant-expression system an important feature of high 
versatility in producing VLP vaccines in opposition to the 
viruses which mutate their surface antigens rapidly, hence 
fulfilling a specific advantage over other production systems 
in producing vaccines to cope with unavoidable pandemics 
(e.g., influenza A) in a timely manner. Likewise, the problem 
of plant-specific glycans has been satisfyingly overcome by 
the evolution of transgenic plant lines with “humanized” 
glycosylation pathways (see glycosylation section below). 
Additionally, effective production and fabrication of VLPs 
with up to three different kinds of proteins have also been 
obtained in plants 17, 18. 

Plant-Derived VLPs May Provide a Novel 
Vehicle for Delivery of Vaccines in the 
treatment of Diseases 

Plant-derived hepatitis B surface antigen employed in 
oral immunization studies 

Eliciting an immune response in humans through oral 
delivery of slightly processed plant material expressing 
vaccine antigens is achievable. Both vaccines tested till date 
was aimed opposing to enteric pathogens, namely, Norwalk 
virus 19 and entero toxigenic Escherichia coli 20. Recently, 
this idea has been expanded to non-enteric pathogens with 
the satisfactory demonstration. Hepatitis B surface antigen 
(HBsAg), conveyed in transgenic potato tubers was 
immunogenic in animals when given orally 21, 22. 
Approximately 2 billion people have been contaminated by 
the hepatitis B virus (HBV) and 15–17% of the infected 
characteristic as active carriers, with the maximum 
endemicity happening among developing countries 23. A 
yeast-derived HBV subunit vaccine antigen has been 
successfully conveyed from plants. The HBsAg was found to 

gather intracellularly as tubules, with a complex size 
distribution, drastically varying from the VLP preparations 
of the current commercial vaccines. The present injectable 
vaccines possess the standard to compare. It has now been 
demonstrated that the plant-derived HBsAg was made up of 
long filaments packed within the Endoplasmic reticulum 
(ER) 24-29. Also, the antigen was linked with the ER 
membrane itself, from which the filaments are derived 30. 
This structure is fundamentally non-identical to the recent 
injectable vaccines, which comprise of VLPs with the 
uniform size of 20–22 nm 31, 32. However, recently 
undertaken animal trials have revealed that the tuber-
derived antigen was capable of eliciting a primary immune 
response signaling that a VLP structure was not critical for 
effectiveness of HBsAg as a vaccine. The extent of disulfide 
bonding would be more important, which is crucial for 
presentation of immunogenic epitope. Results have 
demonstrated that small HBV surface protein (SHBs) dimers 
predominate the plant-derived antigen acquired from all 
three recombinant systems. It has also been reported that 
the dimer form of SHBs possesses all the essential epitopes 
for immunogenicity 33. The degree of intermolecular 
disulfide bonding spotted was identical to a yeast-derived 
vaccine which is currently being marketed 34. Depending 
upon the expression system, from 21% to 37% of total SHBs 
were reactive to the Auszyme diagnostic kit, an immunoassay 
which is performed to determine the potency of any 
commercial vaccine 35. 

In the treatment of Ebola virus 

No counter measures available as of now for the 
management of the severe Filovirus (e.g., Ebola virus; EBOV) 
infection 36, 37. Specifically designed monoclonal antibodies 
(mAbs) which could be used in humans as immune 
protectants for EBOV to overcome this limitation, starting 
with a murine mAb (13F6) which identifies the heavily 
glycosylated mucin-like structure of the virion-attached 
glycoprotein (GP). Point mutations were administered into 
the variable region of the murine mAb to discard predicted 
human T-cell epitopes, and the variable regions linked to 
human constant regions to produce a mAb (h-13F6) suitable 
for human administration. The potency of three variants of 
h-13F6 having diverse glycosylation patterns in a lethal 
mouse EBOV challenge model was evaluated 38, 39. The flow 
of glycosylation of the various mAbs was established to 
compare to the degree of protection, with aglycosylated h- 
13F6 possessing the least potency (ED50 = 33 μg). A variant 
with typical heterogenous mammalian glycoforms (ED50 = 
11μg) had similar efficacy to the native murine mAb. 
Although, h-13F6 possessing complex N-glycosylation 
lacking fundamental fucose provided enhanced potency 
(ED50 = 3μg). Binding studies with use of Fcγ receptors 
demonstrated increased attachment of non-gucosylated h-
13F6 to human and mouse FcγRIII. Combinedly, the results 
confirm the existence of Fc N-glycans, which intensify the 
protective efficacy of h-13F6, and the mAbs produced with 
uniform glycosylation and greater potency of glycol form 
proposes a promising biodefense therapeutic 40. 

In the treatment of Papillomavirus 

Vaccines used for Human papillomavirus (HPV), Cervarix® 
and Gardasil®, consist of virus like particles (VLP) according 
to the primary capsid protein, L1, HPV16 and HPV18. Both 
vaccines are greatly efficient at preventing persistent 
infection and more progressive conditions related to HPV16 
and HPV18 41, 42. Antibodies which are capable of containing 
pseudoviruses constituting HPV16 and HPV18 both can be 
observed in the serum and cervico-vaginal secretions of 
vaccines 43– 45. Passive transfer studies establishing that 
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immune sera, purified IgG or monoclonal antibodies (MAbs) 
can defend animals from papillomavirus challenge 46–48, have 
led to the belief that neutralizing antibodies can help to 
achieve vaccine-induced type-specific protection 49,50. The 
vaccines grant an extent of cross- protection against some 
genetically-related types from the alpha-9 (HPV16-like: 
HPV33, HPV31, HPV52, HPV35, HPV58) and alpha-7 
(HPV18-like: HPV45, HPV39, HPV68, HPV59) groups of 
species. Cross-protection is concurrent with the observation 
of low titer serum responses against non-vaccine types by 
vaccines. Those kind of antibodies may be the mediator of 
detection and  their cross protection may be helpful as a 
correlate or surrogate. Antibodies produced after Cervarix® 
were analyzed by pseudo virus neutralization after the vaccination 
on 13–14 year old girls, 51 VLP ELISA and by enrichment of 
target antigen specificity using VLP immobilized beads. Two-
dimensional serology data recommended that, antibody 
specificity profile generated by VLP ELISA was qualitatively 
as well as quantitatively non- identical from the 
neutralizing antibodies specificity profile 52,53. Target-
specific antibody enrichment showed that cross-
neutralization of non-vaccine types was because of minority 
of antibodies higher than by weak interactions of a 
predominantly type-restricted HPV16 antibody specificity. 
In addition to this, cross-neutralization of non-vaccine types 
appeared to be mediated by numerous antibody specificities, 
many non-vaccine types, recognizing single and whose 
specificities were not identifiable from examination of the 
serum neutralizing antibody profile. These data help to 
understand that the antibody specifications elicited after 
HPV vaccination and have remarkable implications for 
vaccine induced cross-protection. 

In the treatment of Rabies virus: 

Using engineered amino virus-based vectors is a novel 
approach to the manufacture and delivery of vaccine 

antigens. A chimeric peptide containing antigenic 
determinants from rabies virus glycoprotein (G protein) 
(amino acids 253–275) and nucleoprotein (N protein) 
(amino acids 404– 418) was PCR- amplified and cloned as a 
translational fusion product with the alfalfa mosaic virus 
(AlMV) coat protein (CP) 54-63. This recombinant CP was 
indicated in two plant virus-based expression systems. The 
first one utilized transgenic Nicotiana tabacum cv 64 Samsun 
NN plants offering replicative functions in trans for full-
length infectious RNA3 of AlMV (NF1-g24). The second one 
utilized Nicotiana benthamiana and spinach (Spinacia 
oleracea) plants using autonomously cloning tobacco mosaic 
virus (TMV) lacking fundamental CP (Av/A4-g24). 
Recombinant virus consisting of the chimeric rabies virus 
epitope was obtained from infected transgenic N. tabacum 
cv. Samsun NN plants and was utilized for parenteral 
immunization of mice. Mice immunized with recombinant 
virus were shielded against challenge infection. Depending 
upon the formerly demonstrated efficacy of this plant virus- 
based experimental rabies vaccine when administered orally 
into mice in virus-infected unprocessed raw spinach leaves, 
its efficacy in human volunteers was accessed. Three out of 
five volunteers who had formerly been immunized against 
rabies virus through a conventional vaccine specifically 
responded against the peptide antigen after consuming 
recombinant virus infected spinach leaves. When rabies 
virus non-immune volunteers were fed the same material, 
5/9 demonstrated strong antibody responses to either 
rabies virus or AlMV. Three of the individuals showed 
detectable levels of rabies virus- neutralizing antibodies 
following a single dose of conventional rabies virus vaccine, 
whereas none of five controls produced these antibodies. 
This data provides a clear indication of the potency of the 
plant virus-based expression systems as supplementary 
oral booster for rabies vaccinations. 

 

 

Table 1: Results of generation of antibodies in rabies 

Antibody response and survival of C3H 
mice immunized with AlMV containing 
chimeric peptide from rabies virus. 

Group of mice 

Codes Dose of antigen  
(g per dose) 

Rabies neutralizing 
antibodies 

Survival after         Challenge    
with rabies virus 

NF1-g24 A 250 4/5 5/5 

 B  5/5 5/5 

AlMV C 250 0/5 2/5 

 D  0/5 0/5 

G5–24-N31D E 25 1/5 1/3 

 F  4/5 2/4 

 

In the treatment of Norwalk virus 

Recent studies using new diagnostic assays developed with 
recombinant NV (rNV) particles or using reverse 
transcription– polymerase chain reaction have shown that the 
epidemiologic significance of NV infections has been greatly 
underestimated 65–68.A new approach for delivering vaccine 
antigens is the use of inexpensive, plentiful, plant based oral 
vaccines 69,70. Usage of inexpensive, plentiful, plant based oral 
vaccines is a novel approach for supplying vaccine antigens. 
Norwalk virus capsid protein (NVCP) structured into virus-
like particles was utilized as a test antigen to find out 
whether immune responses could be produced in volunteers 

who consumed transgenic potatoes. Twenty-four healthy 
adult volunteers were given 2 or 3 doses of transgenic potato 
(n = 20) or 3 doses of wild-type potato (n = 4). Each dose 
comprised of 150 g of raw, peeled, diced potato that 
contained 215–751 mg of NVCP. 19 of 20 volunteers (95%) 
who ingested transgenic potatoes showed considerable 
increases in the numbers of specific IgA antibody–secreting 
cells. 4 of 20 volunteers (20%) developed specific serum IgG, 
and 6 (30%) generated specific stool IgA. Overall, 19 out of 
20 volunteers developed immune responses of some kind, 
although the degree of serum antibody increase was modest. 

Safety: No changes in the incidence rates of nausea, 
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vomiting, fever, mild cramps or diarrhea were observed 
among volunteers who ingested transgenic or wild-type 
potatoes within three days after the ingestion of the first 
dose of potatoes. The most common symptom observed was 
nausea, which occurred in 4 out of 20 (20%) of the 
volunteers who ingested transgenic potatoes and 1 of 4 
(25%) volunteers who ingested wild-type potatoes. Cramps 
occurred in 5 of 20 (25%) volunteers who ingested transgenic 
potatoes and 2 of 4 (50%) volunteers who ingested wild-type 
potatoes 71. 

Immunogenicity: 19 out of 20 (95%) individuals who 
ingested2 to 3 doses of transgenic potatoes showed 
significant raise in the numbers of IgA ASCs (range: 6–
280/106 PBMC). The recipients of wild- type potato showed a 
geometric mean of 2 IgA ASCs/106 PBMC following 3 doses. 
13 out of 19 IgA ASC responses were obtained following the 
first dose of transgenic potato. 6 out of 20 (30%) individuals 
showed significant raise in IgG ASCs (range: (25–115/106 
PBMC)). These circulating cells which produce specific 
antibodies reflect immunologic priming of the immune 
system of gut mucosa 71. 

In treating Influenza 

Influenza virus infections cause a severe respiratory disease, 
because of which 3 to 5 million cases of serious illness are 
recorded worldwide yearly, including 250,000 to 500,000 
fatalities. Since 2004, the virus has spread rapidly and now it 
has caused serious poultry disease outbreaks in many Asian 
countries along with Europe and Africa. Two main influenza 
surface antigens namely HA and NA have been expressed in- 
insect, bacteria yeast, plant and mammalian cells as soluble 
recombinant proteins. These were used successfully to 
induce protective immunity in animal models 72-77. 
Recombinant soluble influenza proteins have already been 
tested in clinical studies for different age groups 9 78-80. More 
than 500 people have been contaminated with H5N1 virus 
with 50–60% mortality rate. Fortunately, human to human 
transmission hasn’t been on higher side and occurred on rare 
occasion as most of the reported human cases have had close 
contact with infected birds. Nevertheless, this doesn’t 
minimize the concern for human health due to their severity 
of human cases and adaptive nature of virus which could 
mutate or re-assort and might develop the ability to spread 
effectively among humans. They are very effective and safe 
inducers potentially have broader 81 protective immune 
responses. In fact, Influenza VLP vaccines that are to be used 
for H1N1, H5N1, and H7N9 manufactured in different 
platforms have entered clinical trials 82-84. Apart from VLPs, 
viral vectors carrying influenza antigens are also interesting 
Especially the recombinant modified vaccinia virus Ankara 
(MVA) vector has a very good safety profile in humans and 
preclinical studies with MVA-based pandemic influenza 
vaccines are of great potential 85,86. An adenovirus vector-
based H5N1 vaccine checked in a clinical observation in 
humans pretend that this type of vaccine may have a 
promising future for use with poorly immunogenic vaccines in 
a prime boost setting in which the adenovirus- based 
vaccination is followed by a parenteral booster injection with 
inactivated vaccine 87,88. 

In the treatment of HIV 

The acquired immune deficiency syndrome (AIDS) is one of 
the most prominent diseases worldwide that is caused by the 
human immunodeficiency virus (HIV). Plant-based vaccines 

for HIV provide a topic of great interest to the researchers 
which are observed by great number of reports upon 
expressing HIV antigen in plants 89. HIV is mostly transmitted 
via genitourinary and rectal mucosa where it enters by 
crossing the epithelial cells 90. Developments on the 
manufacture and by putative protective proteins characterization 
at the antigenic level have showed the viability of this approach. 
Since mucosal immune responses could be efficiently induced 
by the administration of vaccines onto mucosal surfaces, 
which offers the possibility of leading to HIV immunity 91, 92. 
Based on the current progress in this field, it is clear that a 
detailed immune logical characterization for a very large 
number of explored antigens is yet to be performed 93,94. 
However, since eliciting specific and broad cellular and 
humoral responses are necessary requirement for prevention 
or reduction of severity of the HIV infection, it is a mandatory 
need to evaluate new protein configurations for identifying 
highly effective immunogens. Besides, some goals like co-
expression of adjuvants will be viable by the trans plastomic 
technologies marking a huge contribution in this field. These 
advances will help us a step ahead towards the next 
preclinical steps, which can lead us to neutralization of HIV. 
Ina nutshell, plant-based vaccines have open doors to an 
alternative, which along with traditional approaches, might 
be helpful in the fight against HIV 95. 

In the treatment of Corona 

Corona viruses (COVs) consist assorted group of positive-
sense embedded RNA viruses having genomes which range 
between 27–32 kb 96. A biopharmaceutical company from 
Canada named Medicago, has successfully made virus-like 
particles (VLPs) of the coronavirus around 20 days following 
the SARS-CoV-2 genetic sequence. Despite of opting for egg-
based methods to produce vaccines, this technology an 
encoded genetic sequence of COVID 19 spike protein is 
inserted into Agrobacterium, a commonly found soil 
bacterium which then consumed by plants 97. The resulting 
plants generate a particle identical to virus which constitute 
of plant lipid membrane and COVID-19 spike protein. 
Medicago is employing Nicotiana benthamiana, a plant that 
shares identical family to that of tobacco plant, to form VLPs of 
SARS-CoV2 virus (COVID-19: Medicago’s Development 
Programs). These VLPs are identical in shape and size to 
coronavirus but are devoid of nucleic acid and are thus 
noninfectious. After successful completion of Phase-1 clinical 
trials, Medicago is currently working on Phase-2 trials 98. 
Medicago his experienced in developing VLPs comprised of 
influenza virus haemagglutinin before, and have reported 
their safety and efficacy in animal models and in human 
clinical trials, too 99. The production of a plant- made vaccine 
based upon VLPs is quite cost effective when compared to its 
conventional counterpart 100. British- American Tobacco 
(BAT) through Kentucky Bio-processing (KBP), its biotech 
subsidiary present in US, is formulating an efficient vaccine for 
COVID-19 and its pre-clinical trials are in progress101. Experts 
at KBP have cloned a piece of genetic sequence of SARS-CoV-2, 
which was utilized for potential antigen that was injected 
into the plants of Nicotiana benthamiana for production. The 
pre-clinical trials of vaccine have shown a positive immune 
response and will be into Phase-1 human clinical trials very 
soon 102. BAT has a production capacity of approximately 1–3 
million doses per week of COVID-19 vaccines (they prepared 
10M flu vaccines in a month and Ebola vaccine utilizing the 
same plant based approach 103,104 
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Figure 1: Schematic diagram of Plant pharming 

CONCLUSION 

The progress for commercialization of plant-based vaccines 
takes much effort and time, but it will definitely work in the 
future. They offer several merits in terms of safety, 
immunogenicity and stability in production over vaccines 
derived from pathogen formulation or subunit antigens and 
hence, has earned huge momentum as a premier vaccine 
platform. VLPs are deficit of viral nucleic acid and are 
noninfectious. Hence, are safer alternatives of vaccine than 
attenuated or inactivated viruses. Moreover, VLPs are more 
stable than subunit vaccines and can be manufactured with 
the help of recombinant technology in expression systems 
with no requirement of the capability to aid viral replication. 
This plant engineering technology works in the treatment of 
viruses like Hepatitis B, Ebola, Papilloma virus, Norwalk, 
Influenza, HIV and Corona. Many key points are essential for 
the development of a broadly effective GMP-compliant 
regulatory framework for clinical application of plant-based 
vaccines in humans. The challenge is to facilitate the 
procedures without compromising quality, which is a 
prerequisite for manufacturing plant-based human vaccines. 

Acknowledgement: The authors are thankful to 
Principal Dr. Rakesh K. Patel and Professor Dr. Riddhi Trivedi 
for all the help. 

Conflict of Interest: The authors declare that there is 
no conflict of interest 

Abbriviations: 

VLS: virus-like particles, BeYDV: bean yellow dwarf virus, 
HBV: Hepatitis B virus, HBsAg: Hepatitis B surface antigen, 
ER: Endoplasmic reticulum, SHBs: small HBV surface 
protein, EBOV: Ebola virus, mAbs: monoclonal antibodies, 
ED50: median effective dose, HPV: Human papillomavirus, 
ELISA: enzyme-linked immunosorbent assay, PCR: 
polymerase chain reaction, AIMV: alfalfa mosaic virus, CP: 
coat protein, rNV: recombinant NV , NVCP: Norwalk virus 
capsid protein, PBMC: peripheral blood mononuclear cell, 
AIDS: acquired immune deficiency syndrome, HIV: human 
immunodeficiency virus, COVs: Corona viruses, KBP: 
Kentucky Bio-processing, BAT: British- American Tobacco. 
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