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The method or process of delivering a pharmaceutical ingredient to create a therapeutic
effect in people or animals is referred to as drug delivery. Nasal and pulmonary routes of
medication administration are becoming increasingly important in the treatment of human
illnesses. These methods, especially for peptide and protein therapies, provide potential
alternatives to parenteral drug administration. Several medication delivery methods have
been developed for this purpose and are being tested for nasal and pulmonary delivery.
Chitosan, Alginate, vanilline oxalate, zinc oxalate, cellulose, polymeric micelles, Gliadin, and

phospholipid are examples of these. Multidrug resistance, a key issue in chemotherapy, can
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be reversed with these nanoparticles. Surgery, chemotherapy, immunotherapy, and
radiation are all well-established treatments used in cancer treatment. A nanoparticle has

104 emerged as a potential method for the targeted delivery of medicines used to treat certain

illnesses.
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Introduction

The main aims of nanoparticle design as a delivery system
are to regulate particle size, surface characteristics, and
release of pharmacologically active substances in order to
produce site-specific drug activity at the therapeutically
appropriate rate and dosage regimen.! Despite the fact that
liposomes have been used as potential carriers with unique
advantages such as protecting drugs from degradation,
targeting to site of action, and reducing toxicity or side
effects, their applications are limited due to inherent
problems such as low encapsulation efficiency, rapid leakage
of water-soluble drugs in the presence of blood components,
and poor storage stability, their applications are limited.2
Polymeric nanoparticles, on the other hand, have certain
distinct benefits over liposomes. They can assist enhance the
stability of drugs/proteins, for example, and have valuable
controlled release qualities. Understanding  the
pharmaceutically relevant characteristics of nanoparticles is
critical for improved development of nanoparticulate
systems.3 In recent years, there has been a lot of interest in
using nanoparticles as a drug/gene delivery method.
Nanoparticles are colloidal particles with diameters ranging
from 10 to 1000 nm that are made from biodegradable
polymers and can contain, adsorb, or chemically link a
medicinal substance.*

Vanillin oxalate nanoparticle [Anti-oxidant]

Because the buildup of hydrogen peroxide (H202) causes
oxidative stress, H202 might be used as a biomarker for a

ISSN: 2250-1177 [101]

variety of oxidative stress-related inflammatory illnesses.
Vanillin, one of the most important components of natural
vanilla, is an antioxidant and anti-inflammatory agent.5 In
this study, we created poly(vanillin oxalate), a new
inflammation-responsive antioxidant polymeric prodrug of
vanillin (PVO). PVO's backbone has acid-responsive acetal
linkages that integrate H202-reacting peroxalate ester bonds
and bioactive vanillin.6 PVO rapidly breaks into three
harmless components in cells damaged by oxidative stress,
one of which is antioxidant and anti-inflammatory vanillin.
PVO nanoparticles have powerful antioxidant properties,
scavenging H202 and suppressing the production of reactive
oxygen species (ROS), as well as lowering the expression of
pro-inflammatory cytokines in activated macrophages in
vitro and in vivo.” As a result, we believe PVO nanoparticles
have a lot of potential as new antioxidants and medication
delivery methods for ROS-related inflammatory disorders.8

Nanoparticles of chitosan

The advancements gained in ocular delivery of bioactive
compounds using chitosan-based nanosystems, as well as
their clinical relevance The research shows that chitosan-
based nanostructures are adaptable systems that may be
customized to meet specific compositions, surface
properties, and particle sizes.® The formulation
circumstances of the nanotechnologies responsible for their
production, the incorporation of other materials in the
preparation processes, and/or the use of synthetically
modified chitosan are all known to impact their in vivo
performance.l® Furthermore, this study demonstrates how
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advancements in our understanding of nanosystems'
interactions with ocular structures could logically lead to
difficult developments in ocular nanomedicines in the next
years, with a major influence on clinical practice.!!

Cellulose nanoparticles

Among the United States, prostate cancer (PC) is the most
often diagnosed illness in males. Curcumin (CUR), a naturally
occurring diphenol, has been found to have significant anti-
cancer properties in a variety of malignancies. However, its
effectiveness in cancer treatments is limited by its low
bioavailability and inadequate pharmacokinetics.l2 There
have recently been some successful CUR nanoformulations
described that enhance on these characteristics;
nevertheless, there is no customized safe nanoformulation
for prostate cancer. Two key scientific elements of prostate
cancer treatments are addressed in this work.13 In prostate
cancer cells, the initial goal was to compare the cellular
uptake and cytotoxicity of -cyclodextrin (CD), hydroxypropyl
methylcellulose (cellulose), poly(lactic-co-glycolic acid)
(PLGA), magnetic nanoparticles (MNP), and dendrimer-
based CUR nanoformulations.!# In prostate cancer cells,
curcumin-loaded cellulose nanoparticles (cellulose-CUR) had
the highest cellular absorption and induced the most
ultrastructural alterations linked to apoptosis (presence of
vacuoles). Second, cell proliferation, colony formation, and
apoptosis (7-AAD staining) tests were used to assess the
anti-cancer potential of the cellulose-CUR formulation in cell
culture models.l> When compared to free curcumin, the
cellulose-CUR formulation demonstrated enhanced anti-
cancer effectiveness. For the first time, our research
demonstrates the viability of cellulose-CUR formulation and
its prospective application in prostate cancer treatment.16

Alginate nanoparticles

An alginate nanoparticle was created to test the
pharmacokinetics and tissue distribution of free and
alginate-encapsulated antitubercular medicines in mice at
various dosages. Controlled cation-induced gelification of
alginate yielded nanoparticles encapsulating isoniazid (INH),
rifampicin (RIF), pyrazinamide (PZA), and ethambutol
(EMB).17 Mice were given two dosage levels of the
formulation orally (D1 and D2). In mice given free medicines
at comparable dosages, a comparison was performed. High-
performance liquid chromatography was used to examine
the drugs (HPLC).18 Alginate nanoparticles had an average
size of 235.5 0.0 nm and a polydispersity index of 0.44; drug
encapsulation was 70-90% for INH and PZA, 80-90% for
RIF, and 88-95% for EMB. The D1 group (per body surface
area of mice) had greater RIF and INH plasma levels and
lower PZA and EMB plasma levels in the free drug groups
than the D2 group (per body surface area of mice)
(recommended human dose).’® In the D1 encapsulated
group, all drug plasma levels were greater than in the D2
encapsulated group, resulting in larger values of the area
under the plasma drug concentration-time curve (AUCO-).
All medicines encapsulated in alginate nanoparticles have
considerably greater relative bioavailabilities than free
drugs. After administration of encapsulated medicines, drug
levels remained at or above the minimum inhibitory
concentration (MIC90) in organs until Day 15, but free drugs
persisted at or above the MIC90 only up to Day 1 regardless
of dosage.20 Drug levels in numerous organs remained above
the MIC for the same amount of time at both dosages,
showing their equi-efficiency. Alginate nanoparticles have a
lot of promise for decreasing antitubercular medication
dosage frequency.?!
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Polymeric micelles nanoparticle

A variety of formulation strategies for targeting medicines to
particular locations have been documented in the literature.
Both passive and active methods can be used to target
polymeric micelles (PMs) to tumor locations. PMs' intrinsic
features, such as nanoscale size, plasma stability, in vivo
lifetime, and tumor pathological characteristics, allow them
to be targeted to the tumor site through a passive process
known as the increased permeability and retention effect.22
PMs made from an amphiphilic block copolymer can be used
to encapsulate anticancer medicines that are poorly water
soluble and hydrophobic. Other features of PMs, such as
distinct functioning at the outer shell, are beneficial for
actively directing anticancer drugs to tumors. To target
micelles to cancer cells, PMs can be conjugated with a variety
of ligands, including antibody fragments, epidermal growth
factors, 2-glycoprotein, transferrin, and folate.23 Alternative
ways for increasing drug accumulation in tumoral cells
include the use of heat or ultrasound. Micelle-based targeting
can also be used to target tumor angiogenesis, which is a
promising target for anticancer medicines. In preclinical and
clinical trials, PMs have been utilized to deliver a variety of
anticancer medicines. This study covers the most recent
knowledge on utilizing PMs to target anticancer medicines to
the tumor location.24

Gliadin Nanoparticles

By restoring T-cell tolerance to gliadin, Celiac disease might
be treated and possibly cured. In three animal models of
celiac disease, the safety and effectiveness of negatively
charged, 500 nm poly(lactide-co-glycolide) nanoparticles
encapsulating gliadin protein (TIMP-GLIA) were studied. In
other animal models of autoimmune illness, the uptake of
these nanoparticles by antigen-presenting cells was found to
promote immunological tolerance. HLA-DQ8, huCD4
transgenic AbO NOD mice. C57BL/6, RAG1-/- (C57BL/6),
and HLA-DQ8, huCD4 transgenic Ab0 NOD mice.25 Mice
received one or two injections of TIMPGLIA or control
nanoparticles into their tail veins. Intradermal injections of
gliadin in full Freund's adjuvant (immunization), soluble
gliadin, or ovalbumin were administered to certain animals
(ear challenge). RAG-/- animals were given intraperitoneal
injections of CD4+CD62L-CD44hi T cells from gliadin-
immunized C57BL/6 mice, and were administered an AIN-
76A-based diet with or without gluten (oral challenge).26
Proliferation and cytokine secretion assays, as well as flow
cytometry, RNA sequencing, and real-time quantitative PCR,
were used to examine spleen or lymph node cells. Gliadin
antibody ELISA was used to evaluate serum samples, and
histology was used to examine intestinal tissues. TIMP-GLIA,
anti-CD3 antibody, or LPS (controls) were grown in media
containing human PBMC or immature dendritic cells
generated from human PBMC and evaluated in proliferation
and cytokine secretion assays or flow cytometry. TIMP-GLIA
was used to incubate whole blood or plasma from healthy
participants, and hemolysis, platelet activation and
aggregation, and complement activation or coagulation were
all measured.??

Phospholipid nanoparticles

Nanotechnology is gaining popularity as a means of
successfully delivering therapeutic medicines to the
cardiovascular system. A novel, effective, and efficacious
strategy for treating different cardiac diseases such as
atherosclerosis, hypertension, and myocardial infarction is
nanocarrier-based medication delivery to the heart. The
difficulties associated with conventional drug delivery
methods, such as nonspecificity, severe side effects, and
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harm to normal cells, are avoided using nanocarrier-based
drug delivery systems.28 Changes to nanocarriers'
physicochemical qualities, such as size, shape, and surface
modifications, can drastically affect their invivo
pharmacokinetic and pharmacodynamic data, resulting in a
more effective treatment strategy. Several nanocarriers have
been created for delivering medicines to specific locations
within the heart, including lipid and phospholipid
nanoparticles. This study reviews and expands knowledge of
sophisticated nanosized medication delivery systems for the
treatment of cardiovascular diseases using
nanotechnology.2?

Zinc oxide nanoparticles

The etiology of illnesses such as atherosclerosis, rheumatoid
arthritis, asthma, and cancer is heavily influenced by
inflammation. The lack of anti-inflammatory medicines and
vectors necessitates the development of novel compounds to
treat inflammatory diseases. Because of its superior
characteristics to bulk equivalents, nanotechnology has
developed as a fantastic research field in the last decade. 30
The green production of zinc oxide nanoparticles (ZnO NPs)
and different characterization techniques used to understand
the physiochemical characteristics of nanoparticles are
discussed in this study. The interaction of ZnO NPs with cells
as well as their pharmacokinetic behavior inside the cells has
been explored.3! The mechanism-based method was used to
investigate the anti-inflammatory effects of ZnO NPs. A brief
overview of the literature has been given, which outlines the
size, shape, and inflammatory model used to assess ZnO NPs'
anti-inflammatory efficacy. The potential of ZnO NPs for anti-
inflammatory action, such as their stable nature and selective
targeting, has been briefly explored. The current work shows
ZnO NPs' potential as an anti-inflammatory therapeutic
molecule or a drug delivery vector.32
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