Unifying Mechanism Involving Physiological Activity of Spices: Electron Transfer, Reactive Oxygen Species, Oxidative Stress, Antioxidants, Redox Chemistry, and Foods

  • Peter Kovacic San Diego State University

Abstract

This review deals with mode of action of spices. Those studied, involving principal ones and parent substances, together are the following; capsaicin (pepper, tabasco, jalapeño), curcumin (tumeric, ginger, curry), anethole (anise, fennel), myresticin (nutmeg, parseley, dill), sesamin (sesame) and piperine (pepper). These are in the phenolic and phenolic ether class, whereas allicin alone is in the disulfide category. Evidence supports the unfying mechanism of electron transfer, reactive oxygen species and oxidative stress for the seven. The disulfide is closely related via redox reaction without electron transfer.  This review is an extension in relation to the unifying mode of action. Physiological and medical effects are treated

Keywords: Spices, Herbs, antioxidant, redox

Downloads

Download data is not yet available.

Author Biography

Peter Kovacic, San Diego State University
Retired faculty.

References

1. P. Kovacic, R. Somanathan. M-C. Z. Abadjian. Natural monophenols as therapeutics, antioxidants and toxins: electron transfer, radicals and oxidative stress. Nat. Prod. J. 2015. 5, 142-151.
2. P. Kovacic, R. Somanathan. Mechanisms of conjugated imine and iminium species, including marine alkaloids: electron transfer, reactive oxygen species, therapeutics and toxicity. Curr. Bioact. Compds. 2010, 6, 46-59.
3. Abdel-Sala, D. M.E. Edit., Capsaicin Acts as a Therapeutic Molecule Springer, New York, 2014, 1-317.
4. Kovacic P, Somanathan R Electrochemical Involvement in the Senses. Adv Biochem Biotechl.: ABIO-144. 2017. DOI: 10.29011/2574-7258. 000044
5. Reilly CA, Henion F, Bugni TS, Ethirajan M, Stockmann C, Pramanik SK, Srivastava SK, Yost GS, Reactive intermediates produced from the metabolism of the vanilloid ring of capsaicinoids by p450 enzymes. Chem. Res. Toxicol. 2013, 18, 55-66.
6. Naziroĝlu M, Övey IS. Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy. Neurosci. 2015, 293. 55-66.
7. Pramanik KC, Boreddy SR, Serivatava SK. Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cells. PlosOne 2011, 6: e20151. Doi:19.137/journal.pone.0020151.
8. Yang Z-H, Wang X-H, Wang H-P, Hu H-P, Hu L-Q, Zheng X-M. Capsaicin mediates cell death in bladder cancer T24 cells through reactive oxygen species production and mitochondria depolarization. UROLOGY 2010, 75, 735-741. Doi: 10.1016.j.urology.2009.03.042.
9. Lee YS, Kang YS, Lee J-S, Nicolova S, Kim J-A. Involvement of NADPH oxidase-mediated generation of reactive oxygen species in apoptotic cell death by capsaicin in HepG2 human hepatoma cells. Free Rad. Res. 2004, 38, 405-412.
10. Kim S-H, Hwang J-T, Park H-S, Kwon DY, Kim M-S. Capsaicin stimulates uptake in C2C12 muscle cells via the reactive oxygen species (ROS)/AMPK/p38 MAPK pathway. Biochem. Biophys. Res. Commun. 2013, 439,66-70.
11. Luman S, Rizvi SI. Protection of lipid peroxidation and carbonyl formation in proteins by capsaicin in human erythrocytes subjected to oxidative stress. Phytoth. Res. 2006, 20, 303-306.
12. Ruan T, Lin Y-S, lin K-S, Kou Y-R. Sensory transduction of pulmonary reactive oxygen species by capsaicin sensitive vagal lung afferent fibres in rats. J Physiol. 2005, 565, 563-578. Doi: 10.1113/physiol.2005.086181.
13. Kwiecien S. The role of reactive oxygen species and capsaicin-sensitive sensory nerves in the pathomechanisms of gastric ulcers induced by stress. J. Pysiol. Pharmacol. (Polish) 2003, 54, 423-437.
14. Lee I, Kim HK, Kim JH, Chung K, Chung JM. The role of reactive oxygen species in capsaicin-induced mechanical hyperalgesia and in the activities of dorsal horn neurons. Pain 2007, 133, 9-17.
15. Nakamura T, Onaga T, Kitazawa T. Ghrelin stimulates gastric motility of the guinea pig through activation of capsaicin-sensitive neural pathway: in vivo and in vitro functional studies. Neurogastroentrol. 2010, 22, 446-e107.
16. Barin AK, McDougall JJ. Endomorphin-1 causes synovial hypoamia in rat joints via a capsaicin-sensitive neural pathway. Neurosci. Lett. 2003, 344, 21-24.
17. Lee C-YJ, kim M, Yoon S-W, Lee C-H. Short-term control of capsaicin on blood and oxidative stress of rats in vivo. Phytoth. Res. 2003, 17, 454-458.
18. Drew H. 1066 Capsaicin reduces the production of reactive oxygen species by neutrophils. J. Allergy Clini. Immunol. 2000, 105, S362-S363.
19. Duvoix A, Blasius R, Delhalle S, Scnekenburger M, Morceau F, Henry E, Dicato M, Diedrich M. Chemopreventive and therapeutic effects of curcumin. Cancer Lett. 2005, 223, 181-190.
20. Gan Y, Zheng S, Baak JPA, Zhao S, Zheng Y, Luo N, Liao W, Fu C. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis. Acta Phamaceut. Sinica B 2015, 5, 590-595.
21. Teow S-Y , Liew K, Ali SA, Khoo AS-B, Peh S-C. Anitibacterial action of curcumin against Staphylococcus aureus: a brief review. J. Trop. Med. 2016, doi:10.1155/2016/2853045.
22. Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Can. 2011, 10:12. Doi: 10.1186/1476-4598-10-12.
23. Gowda NKS, Ledoux DR, Rottinghaus GE, Bermudez AJ, Chen YC. Efficasy of turmeric (Curcuma longa), containing a known level of curcumin, and a hydrated sodium calcium aluminosilicate to ameliorate the adverse effects of aflatoxin in broiler chicks. Poultry Sci. 2008, 87: 1125-1130. Doi:10.3382/ps.2007-00313.
24. Aggarwal BB, Surh Y-J, Shishodia S. Edi.,The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Springer, 2007.
25. Barzegar A. The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chem. 2012, 135, 1369-1376.
26. Kukongviriyapan U, Apijit K, Kukogviriyaapan B. Oxidative stress and cardiovascular dysfunction associated with cadmium exposure: beneficial effects of curcumin and tetrahydrocurcumin. Tohoku J. Exp. Med. 2016, 239, 254-38.
27. Liu W, Li H, Yang T, Feng S, Xu B, Deng Y. Protective effects of curcumin against mercury-induced hepatic injuries in rats, involvement of oxidative stress antagonism, and Nrf2-ARE pathway activation. Human Exp. Toxicol. 2016, 1-18. Doi: 10.1177/0960327116677355.
28. Shrikant M, Kalpana P. The effect of curcumin (turmeric) on Alzheimer;s disease: an overview. Acad. Neurol. Mumbai 2008, 11, 13-19.
29. Kovacic P, Somanathan R. Unifying mechanism for nutrients as anticancer agents: electron transfer, reactive oxygen species and oxidative stress. Global J. Heal. Sci. 2017, 9.
30. McGee H, A survey of tropical spices, McGee on Food and Cooking. Hodder and Stoughton, 2004, p.426.
31. Zick SM, Djuric Z, Ruffin MT, Litzinger AJ, Normolle SM, Alrawi S, Feng MR, Brenner DE. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingertol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiology Biomarkers and Prevention 2008, 17, 1930-1936.
32. Park M, Bae, J, Lee DS. Antibacterial activity of 10-gingerol and 12-gingerol isolated from ginger rhizome against periodontal bacteria. PHYTOTHER. Res. 2008, 22, 1446-1449.
33. Semwal RB, Semwal DK, Combrink S, Viljoen AM. Gingerols and shogaols: important nutraceutical principles from ginger. Phytochemistry 2015, 117, 554-568.
34. Jeong CH, Bode AM, Pugliese A, Cho Y-Y, Kim H-G, Shim J-H, Jeon YJ, Li H. 6-Gingerol suppresses colon cancer growth by targeting leukotrieneA4 hydrolase. Cancer Res. 2009, 69, 5584-5591.
35. Lee H, Seo E, Kang N, Kim W. Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J. Nutrit. Biochem. 2008, 19, 313-319.
36. Rhode J, Fogoros S, Zick S, Wahl H, Griffith K, Huang J, Liu JR. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Comple, Alternat, Med. 2007, 7, 44. Doi:10.1186/1472-6882-7-44.
37. Zhang F, Thakur K, Hu F, Zhang JG, Wei ZJ. 10-Gingerol, a phytochemical derivative from”Tongling White Ginger”, inhibits cervical cancer: insight into the molecular mechanism and inhibitory targets. J. Agric. Food Chem. 2017, 65, 2089-2099.
38. Ramachandran C, Lollett IV, Escalon E, Quirin KW, Melnick SJ. Anticancer potential and mechanism of action of mango ginger (Curcumin amada Roxb.) supercritical CO2 extract in human gliblastoma cells. J. Evid. Based Complem. Altern. Med. 2015, 20, 109-119.
39. Ashurst PR. Food Flavorings. Springer, 1999, p. 460.
40. De M, De AK, Sen P, Banerjee AB. Antimicrobial properties of star anise (Illicium verum Hook f). Phytother. Res. 2002, 16, 94-95.
41. Fujita K, Fujita T, Kubo I. Anethole, a potential antimicrobial synergist, converts fungistatic dodeanol to fungicide agent, Phytother. Res. 2007, 21, 47-51.
42. Camurça-Vasconcelos AL, Bevilaqua CM, Morales SM, Maciel MV, Costa CT, Macedo IT, Oliveira LM, Braga BR, Silva RA, Vieira LS. Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet. Parasitol, 2007, 148, 288-294.
43. Oka Y, Nacar S, Putievsky E, Ravid U, Yaniv Z, Spiegal Y. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathol 2000. 90, 710-715.
44. Knio KM, Usta J, Dagher S, Zournajian H, Kreydiyyeh S. Lavicidal activity of essential oils extracted from commonly used herbs in Lebanon against the seaside mosquito, Ochlerotatus caspius, Bioresour. Technol. 2008, 99, 763-768.
45. Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST. Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamon osmorphloeum provenance. J Agric. Food Sci. 2004, 52, 4395-4400.
46. Morais SM, Cavalcanti ES, Bertini LM, Olivera CL, Rodirigues JR, Cardoso JH. Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L. J. Am. Mosq, Control Assoc. 2006, 22, 161-164.
47. Park IK, Choi KS, Kim DH, Kim LS, Bak WC, Choi JW, Shin SC. Fumigant activity of plant essential oils and components from horseradish (Armoracia rustican), anise (Pimpinella anisum) and garlic (Allium sativam) oils against Lycoriella ingenua (Diptera: Sciaridae). Pest Manag. Sci. 2006, 62, 723-728.
48. Lee HS. Food protective effect of acaricidal components isolated from anise seeds against the stored food mite, Tyrophagus putrescenite (Schrank). J. Food Prot. 2005, 68, 1208-1210.
49. Jordan VC. Estrogen/Antiestrogen Action and Breast Cancer Therapy. Univ. of Wisconsin Press. 1986, p. 21-22.
50. Lachenmeier DW. Thujone-attributable effects of absinthe are only an urban legend-toxicology uncovers alcohol as real cause of absinthism. Med. Monatsschr. Pharm. 2008, 31, 101-106.
51. Waumans D, Bruneel N, Tytgat J. Anise oil as para-methoxyamphetamine (PMA) precursor. Forensic Sci. Int. 2003, 133, 159-170.
52. Waumans D, Hermans B, Bruneel N, Tytgat J. A neolignan-type impurity arising from the peracid oxidation reaction of anethole in the surreptitious synthesis of 4-methoxyamphetamine (PMA). Forensic Sci. Int. 2004, 142, 133-139.
53. Benoni H, Dallakian P, Taraz K. Studies on the essential oil from guarana. Z. Lebensm Unters Forsch. 1996, 203, 95-98.
54. Brenner N, Frank OS, Knight E. Chronic nutmeg psychosis. J. Royal Soc, Med. 1993, 86, 179-180.
55. Panayotopoulos DJ, Chisholm DD. Correspondence: hallucinogenic effect of nutmeg. British Med. J. 1970, 1, 754. Doi: 10.1136/bmj.1.5698.754-b.
56. Williams EY, West F. The use of nutmeg as psychotropic drug. Report of two cases. J. Natn. Med. Assoc. 1968, 60, 289-290.
57. Baselt R. Disposition of Toxic Drugs and Chemicals in Man (8th. Edition). Foster City, CA. Biomedical Publications, 2008, pp. 1067-1068.
58. Lee BK, Kim JH, Jung J, Choi J, Han ES, Lee SH, Ko KH, Ryu JH. Myristicin-induced neurotoxicity in human neuroblastoma SK-N-SH cells. Toxicol. Lett. 2005, 157, 49-56.
59. Asgarpanah J, Kazemivash H. Phytochemistry and pharmacologic properties of Myristic fragrans Hoyutt: a review. African J. Biotechnol. 2012, 11, 12787-12793.
60. Lee JY, Park W. Anti-inflammatory effect of myristicin on RAW 254.7 macrophages stimulated with polyinosinic-polycytidylic acid. Molecules 2011, 16, 7132-7142.
61. Zhang WK, Tao S-S, Li T-T, Li Y-S, Li X-J, Tang H-B, Cong R-H, Ma F-L, Wan C-J. Nutmeg oil alleviates chronic inflammatory pain through inhibition of COX-2 expression and substance P release in vivo. Food Nutri. Res. 2016, 60, 30849. Doi: org/10.3402/fnr.v60,30849.
62. Åšwiech K. Comparison of the insecticidal effectiveness of synthetic and and natural myristicin against housefly (Musca domestica L.) and oriental cockroach (Blatta orientalis). CHEMIK 2013, 11, 1115-1120.
63. Nagja T, Vimal K, Sanjeev A. Myristica fragrance: a comprehensive review. Int. J, Pharmacy Phamaceut. Sci. 2016, 8
64. Jaiswal P, Kumar P, Singh VK, Singh DK. Biological effects of Myristica fragrans. ARBS Annua. Rev. Biomed. Sci. 2009, 11, 21-29.
65. Baluchnejadmojarad T, Mansouri M, GhLmi J, Mokhtari Z, Roghani M. Seasmin imparts neuroprotection against intrastrial 6-hydroxydomaimne toxicity by inhibition of astroglial activation, apoptosis and oxidative stress. Biomed. Pharmacother. 2017, 88, 754-761.
66. Yaffe PB, Doucette CD, Walsh M, Hoskin DW. Piperine impairs cell cycle progression and causes reactive oxygen species-dependent apoptosis in rectal cancer cells. Exp. Mol. Pathol. 2012, 94, 109-114.
67. Ma Y, Tian M, Liu P, Wang Z, Guan Y, Liu Y, Wang Y, Shan Z. Piperine effectively protects primary cultured arterial myocytes from oxidative damage in the infant rabbit model. Mol. Med, Rep. 2014, 10, 2627-2632.
68. Samra YS, Said HS, Elsherbiny NM, Liou GI, El-Shishtawy MM, Eissa LA. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome. Life Sci. 2016, 157, 187-189-199.
69. Mahdy K, Shaker O, Nassar WY, Hassa H, Hussein A. Effect of some medicinal plant extracts on the oxidative stress status in Alzheimer’s disease induced in rats. Eurp. Rev. Med. Pharmacol. Sci. 2012, 16, 31-42.
70. Correia AO, Cruz AAP, de Aquino ATR, Diniz JRG, Santana KBF, Cidade PIM, Peixoto JD, Lucetti DL, Nobre MEP, da Cruz GMP, Neves KRT, de Barros Viana GS. Neuroprorectuve effects of piperine, an alkaloid from the piper genu, on Parkinson’s disease model in rats. J. Neurol. Theap. 2015, 1, 1-8.
71. Yang W, Chen Y-H, Liu H, Qu H-D. Neuroprotective effects of piperine on the 1-methyl-4-pheny-1,2,36-tetrahydropyridine-induced Parkinson’s disease mouse model. Int. J. Mol. Med. 2015, 36, 1369-1376.
72. Sankar P. Anitioxidant capacity of piperine on cypermethrin-induced brain toxicity. Int. J. Sci. Environ. 2017, 6, 1290-1293.
73. Lai L-H, Fu Q-H, Liu Y, Jiang K, Guo Q-M, Chen Q-Y, Yan B, Wang Q-Q, Shen J-G. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol. Sinica 2012, 33, 523-530.
74. Bang JS, Oh DH, Choi HM, Sur B-J, Lim S-J, Lim JY, Yang H-I, Yoo MC, Hahm D-H, Kim KS. Anti-inflammatory and antiarthritic effects of piperine in human inteleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res. Therap. 2009, 11. Doi:10.1186/ar2662.
75. Sabina EP, Souriyan ADH, Jackline D, Rasool, MK. Piperine, an active ingredient of black pepper, attenuates acetoaminophen-induced hepatotoxicity in mice. Asian Pacific J. Trop. Med. 2010, 971-976.
76. Wadhwa S, Singhal S, Rawat S. Bioavailability enhancement by piperine: a review. Asia J, Biomed. Pharmaceut. Sci. 2014, 4, 1-8.
77. Copra B, Dhingra A, Kapoor RP, Prasad DN. Piperine and its various physiochemical and biological aspects: a review. Open Chem. J. 2016, 3, 75-96.
78. Borlinghau J, Albrecht F, Gruhlke MCH, Nwachukwu ID, Slusarenko AJ. Allicin: chemistry and biological properties. Molecules 2014, 19, 12591-12618.
79. Lee J, Gupta S, Huang J-S, Jayathillaka, Lee B-S. HPLC-MIT assay: anticancer activity of aqueous garlic extract from allicin. Analyt. Biochem. 2013, 436, 187-189.
80. Ankari S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infec. 1999, 2, 125-129.
81. Davis SR. An overview of the antifungal properties of allicin and its breakdown products-the possibility of safe and effective antifungal prophylactic. Mycoses, 2005, 48, 95-100.
82. Schäfer G, Kaschula CH. The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anti-Cancer Agents Med. Chem. 2014, 14, 233-240.
83. Antonello S, Benassi R, Gavioli G, Taddei F, Maran F. Theoretical and electrochemical analysis of dissociative electron transfers proceeding through formation of loose radical anion species: reduction of symmetrical and unsymmetrical disulfides. J. Am. Chem. Soc. 2002, 124, 7529-7536.
84. Tama M, Simone G, Quintilini M. Interaction of thiol free radicals with oxygen: a pulse radiolysis study. Int. J. Radiat. Biol. 1986, 50, 595-600.
Statistics
288 Views | 212 Downloads
How to Cite
1.
Kovacic P. Unifying Mechanism Involving Physiological Activity of Spices: Electron Transfer, Reactive Oxygen Species, Oxidative Stress, Antioxidants, Redox Chemistry, and Foods. JDDT [Internet]. 15Mar.2018 [cited 31Oct.2020];8(2):146-52. Available from: http://www.jddtonline.info/index.php/jddt/article/view/1732