INTRODUCTION

Natural products are important sources for biologically active drugs. There has been an increasing interest in the medicinal plants as natural products in different parts of the world. Medicinal plants containing high antioxidant properties play an important role in the prevention of various degenerative diseases in the society. The medicinal value of these plants depends on bioactive phytochemical constituent’s action in the human body. Some of the most important bioactive phytochemical constituents include alkaloids, flavonoids, essential oils, tannins and saponins. Phenolics are commonly found in medicinal plants and their biological effects, include antioxidant activity. Due to synthetic antioxidants such as butylated hydroxy anisole (BHA), butylated hydroxy toluene (BHT), and tert-butyl hydroquinone (TBHQ), which are widely used in food industry and cosmetic, have been growing concern over the possible carcinogenic effects. Thus interest in natural antioxidant has increased considerably. Nowadays, it is well known that natural antioxidants extracted from herbs and spices have high antioxidant properties and are used in many food applications. Natural antioxidants from plant sources are potent and safe due to their harmless nature; wild herbs have their antioxidant properties. Various plants are proposed to be antioxidants as their essential oils contain phenylpropanoids in high contents. Essential oils of plant genus Ocimum belonged to family Lamiaceae. It is collectively called as Basil, is a diverse and rich source of aromatic essential oil. The species such as Ocimum basilicum L., O canum Sims., O gratissimum L. and Ocimum sanctum L. are composed of interesting phenyl-propanes e.g. eugenol, methyl eugenol and methyl chavicol. Essential oils of these plants have been broadly used as culinary herbs, as pharmaceutical agents because of their antimicrobial, anti-temitic, antidiabetic, antifertility, antiasthmatic, antistress and anticancer activity.

ABSTRACT

Many herbal remedies individually or in combination have been recommended in various medical expositions for the cure of different diseases. Free radicals are implicated for many diseases including diabetes mellitus, arthritis, cancer, aging, etc. In the treatment of these diseases, antioxidant therapy has gained utmost importance. Currently there has been an increased interest globally to identify antioxidant compound that are pharmacologically potent and have low or no side effects. As plants are source of natural antioxidants, much attention has been gain to plants. The quest for natural antioxidants for dietary, cosmetic and pharmaceutical uses have become a major industrial and scientific research challenges over the last two decades. A variety of free radical scavenging antioxidants exists within the body in which many of them are derived from dietary sources like fruits, vegetables and teas. The Ocimum canum, commonly known as ‘Kala Tulsi’, has been recognized in different system of traditional medicines for the treatment of different diseases and ailments of human beings. In this study, antioxidant activity of the hydro-alcoholic extract of Ocimum canum was determined by various antioxidant assays. In all the testing, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals. These findings suggest that the hydro-alcoholic extracts are able to scavenge free radicals, by either hydrogen or electron donating mechanisms, and can therefore act as primary antioxidants. The antioxidant property may be related to the phenols and flavonoids present in the extracts. These results clearly indicate that Ocimum canum can be effectively used against free radical mediated diseases.

Key words: Ocimum canum, phytochemical constituents, traditional uses and pharmacological properties, antioxidant activity.
purposes. *O. canum* is used specially for treating various types of diseases and lowering blood glucose and also treats cold, fever, parasitic infestations on the body and inflammation of joints and headaches\(^5\). Essential oil from the leaves of *O. canum* possesses antibacterial and insecticidal properties.\(^6\) It is used in ritual as an incense as well to protect the home and welcome newborns into the world. It is an unusual and very useful addition to the medicinal garden. The hairy leaves and decorative flowers are very aromatic and form a lush mound about 2 feet in height. This annual plant grows well in full sun, well-drained soil and plenty of heat. The plant branches from the base and has an angled stems and oval pubescent leaves. Its leaves are tiny and fuzzy and have violet or white flowers, having a sweet scent resembling that of the clove. The leaves of the *Ocimum canum* are opposite and toothed. It is irregular and occurs in crowded whorls. The *Ocimum canum* has a small corolla. These plants have intense floral-fruity aromas. The oil of the *Ocimum canum* is composed of Linalool. The seeds may provide fiber or reduce constipation.

MATERIALS AND METHODS

2.1. Plant collection

Leaves of *Ocimum canum* were collected in the month of December 2011 from its natural habitat from nearby Mohuda village, Berhampur, Ganjam district of Odisha. The plant was authenticated from Department of Botany, Khalikote College, Berhampur, Odisha. The leaves were cleaned and dried under the shade to avoid degradation of volatile oil. The leaves were dried in hot air oven at 55°C for 3 days and at 40°C for the next 4 days.

2.2. Extraction

The dried leaves were coarsely powdered and extracted with a mixture of methanol: water (7:3, v/v) by a Soxhlet apparatus at 50°C. The solvent was completely removed and obtained dried crude extract which was used for investigation. Further the extracts were subjected for the phytochemical study as well as pharmacological screening.

2.3. Phytochemical screening

Phytochemical screenings were performed using standard procedures.\(^10\,11\,12\)

1) **Test for alkaloids:** To the extract dilute hydrochloric acid will be added and filtered. The filtrate will be treated with various alkaloidal reagents

a) *Mayer’s test:* The filtrate will be treated with Mayer’s reagent: appearance of cream colour indicates the presence of alkaloids.

b) *Dragendorff’s test:* The filtrate will be treated with Dragendorff’s reagent: appearance of reddish brown precipitate indicates the presence of alkaloids.

c) *Hager’s test:* The filtrate when treated with Hager’s reagent, appearance of yellow colour precipitate indicates the presence of alkaloids.

2) **Test for carbohydrates and reducing sugar:**

The small quantities of the filtrate will be dissolved in 4ml of distilled water and filtered. The filtrate will be subjected to

a) *Molisch’s test:* A small portion of the filtrate will be treated with Molisch’s reagent and sulphuric acid. Formation of a violet ring indicates the presence of carbohydrates.

b) *Fehling’s test:* The extract will be treated with Fehling’s reagent A and B. The appearance of reddish brown colour precipitate indicates the presence of reducing sugar.

c) *Benedict’s test:* The extract will be treated with Benedict’s reagent; appearance of reddish orange colour precipitate indicates the presence of reducing sugar.

d) *Barfoed’s test:* The extract will be treated with barfoed’s reagent and heated. Appearance of reddish orange colour precipitate indicates the presence of non-reducing sugars.

3) **Test for steroids:**

Libermannburchard’s test: The extract will be treated with 3ml of acetic anhydride, few drops of glacial acetic acid followed by a drop of concentrated sulphuric acid. Appearance of bluish green colour indicates the presence of steroids.

4) **Test for proteins:**

a) *Biuret test:* The extract will be treated with copper sulphate solution, followed by addition of sodium hydroxide solution; appearance of violet colour indicates the presence of proteins.

b) *Millon’s test:* The extract will be treated with Millon’s reagent; appearance of pink colour indicates the presence of proteins.

5) **Test for tannins:**

The extract will be treated with 10% lead acetate solution; appearance of white precipitate indicates the presence of tannins.

6) **Test for phenolic compounds:**

a) The extract will be treated with neutral ferric chloride solution; appearance of violet colour indicates the presence of phenolic compounds.

b) The extract will be treated with 10% sodium chloride solution; appearance of cream colour indicates the presence of phenolic compounds.

7) **Test for flavonoids:**

a) 5ml of extract will be hydrolyzed with 10% sulphuric acid and cooled. Then, it will be extracting with diethyl ether and divided in to three portions in three separate test tubes. 1ml of diluted sodium carbonate, 1ml of 0.1N sodium hydroxide, and 1ml of strong ammonia solution will be added to the first, second and third test tubes respectively. In each test tube, development of yellow colour demonstrated the presence of flavonoids.

b) Shimoda’s test: The extract will be dissolved in alcohol, to which few magnesium turnings will be added followed by concentrated HCL drop wise and heated, and appearance of magenta colour shows the presence of flavonoids.
The extract was treated with 25 ml of absolute alcohol, and filtered. The filtrate will examine for its swelling properties.

When a pinch the extract was treated with glacial acetic acid and few drops of ferric chloride solution, followed by the addition of conc. Sulphuric acid, formation of ring at the juncture of two liquids indicates the presence of glycosides.

The formation of foam in the upper part of test tube indicates the presence of saponins.

The substance was warmed with tin and thionyl chloride. Pink colour indicates the presence of triterpenoids.

The scavenging capacity for hydroxyl radical was measured according to the modified method of Halliwell et al., (1987) Stock solutions of EDTA (1 mM), FeCl$_3$ (10 mM), ascorbic acid (1 mM), H$_2$O$_2$ (10 mM) and deoxyribose (10 mM) were prepared in distilled deionized water. The assay was performed by adding 0.1 ml of EDTA 0.01 ml of FeCl$_3$, 0.1 ml of H$_2$O$_2$, 0.36 ml of deoxyribose, 1.0 ml of plant extract (250-2000 μg/ml), 0.33 ml of phosphate buffer (50 mM, pH 7.4) and 0.1 ml of ascorbic acid in sequence. The mixture was then incubated at 37°C for 1 hr. About 1.0 ml portion of the incubated mixture was mixed with 1.0 ml of 10% TCA and 1.0 ml of 0.5% TBA to develop the pink chromogen, measured at 532 nm. The hydroxyl radicals scavenging activity was calculated using the following equation:-

$$\%\text{Inhibition} = \frac{A_0 - A_1}{A_0} \times 100$$

Where, A_0 was the absorbance of the control (blank) and A_1 was the absorbance in the presence different concentrations of the extract.

The Fe$^{3+}$ reducing power of the extract was determined by the method of Oyaizu et al., with a slight modification. Different concentrations (250-2000 μg/mL) of extract (0.5 mL) were mixed with 0.5 mL Phosphate buffer (pH 6.6) and 0.5 mL 0.1% potassium hexacyanoferrate, followed by incubation at 50°C in water bath for 20 min. After incubation, 0.5-mL 10% TCA was added to terminate the reaction. The upper portion of the solution (1 mL) was mixed with 1 mL of distilled water and 0.1 mL 0.01% FeCl$_3$ solution was added. The reaction mixture was left for 10 min at room temperature and the absorbance was measured at 700 nm against appropriate blank solution. All tests were performed three times. A higher absorbance of the reaction mixture indicated greater reducing power. Ascorbic acid was used as a positive control.

This activity was determined according to a method suggested by B. Halliwell and group with minor changes. Aliquot of 50-mM H$_2$O$_2$ and various concentrations (0-2000 μg/mL) of samples were mixed (1:1 v/v) and incubated for 30 minutes at room temperature. After incubation, 90μl of the H$_2$O$_2$-sample solution was mixed with 10 μl HPLC-grade methanol and 0.9-ML FOX reagent was added (previously prepared by mixing 9

Volumes of 4.4-mM Ascorbic acid in HPLC-grade methanol with 1 volume of 1-mM xylenol orange and 2.56-mM ammonium ferrous sulfate in 0.25-M H$_2$SO$_4$. The reaction mixture was then vortexed and incubated at room temperature for 30 min. The absorbance of ferric-xylenol orange complex was measured at 560 nm. All tests were carried out three times and sodium pyruvate was used as the reference compound.

2.5 Statistical analysis

The experimental results were expressed as mean ± SEM of three replicates. Where applicable, the data were subjected to one way analysis of variance (ANOVA) and two way analysis of variance (ANOVA). All these analysis was done by Graph Pad Prism Software program (version 5). P values < 0.05 were regarded as significant.

3. RESULTS AND DISCUSSION

3.1 Phytochemical screening

Phytochemical screening of the extracts revealed the presence of carbohydrates, flavonoids and tannins.

3.2 Antioxidant assays

DPPH radical scavenging assay

The proton radical scavenging action is known to be one of the various mechanisms for measuring antioxidant activity.

![DPPH scavenging activity in Ocimum leaves](image)

Figure 2: Study on DPPH scavenging activity in *Ocimum canum* leaves at 517 nm

ABTS scavenging activity

ABTS radical, a protonated radical, has characteristic absorbance maxima at 734 nm which decreases with the scavenging of the proton radicals (Mathew and Abraham 2006). The scavenging of the ABTS+ radical by the *O. canum* was found to be much higher than that of DPPH radical.

![ABTS scavenging activity in Ocimum leaves](image)

Figure 3: Study on ABTS scavenging activity in *Ocimum canum* leaves at 405 nm

Nitric oxide scavenging

Sodium nitroprusside serves as a chief source of free radicals. The absorbance of the chromophore formed...
during diazonitization of the nitrite with sulphanilamide and subsequent coupling with naphthyl-ethylene-diamine is used as the marker for NO scavenging activity. *O. canum* leaf extract possess significant free radical scavenging action against nitric oxide (NO) induced release of free radicals at the concentrations between 250-2000 µg/ml.

Nitric oxide scavenging activity

Nitric oxide scavenging activity exhibited by the hydro-alcoholic extract of *Ocimum canum* at different concentrations showed that the nitric oxide scavenging activity of *Ocimum canum* was less as compared to the standard. The probable mechanism may be due to the non-inhibitory effect of hydro-alcoholic extract of the leaf towards generation of superoxides in the reaction mixture.

Superoxide radical scavenging activity

Superoxide radical scavenging activity of *Ocimum canum* interfered with the formation of a ferrous-phenanthroline complex, thereby suggesting that the extract has metal chelating activity. This study suggests that *Ocimum canum* possess antioxidant activity.

Iron chelating activity assay

The hydroxyl radical scavenging activity is measured as the percentage inhibition of hydroxyl radicals generated from Fe²⁺/ascorbate/EDTA/H₂O₂ systems. The hydroxyl radicals attack deoxyribose and the extract for hydrogen radicals generated from Fe²⁺/ascorbate/EDTA/H₂O₂ systems. The hydroxyl radicals attack deoxyribose which eventually results in TBARS formation. From the present results, it is observed that the leaf extract of *O. canum* have better hydroxyl radical scavenging activity as reflected in terms of percentage inhibition.
Hydroxyl Radical Scavenging Activity in *Ocimum canum* leaves

![Graph showing hydroxyl radical scavenging activity](image)

Figure 7: Study on Hydroxyl Radical Scavenging Activity in *Ocimum canum* leaves

Total reduction capability

Reducing power assay measures the electron-donating capacity of an antioxidant. The reduction of the ferric ion (Fe$^{3+}$) to ferrous ion (Fe$^{2+}$) is measured by the intensity of the resultant blue-green solution which absorbs at 700 nm, and an increased absorbance is indicative of higher reducing power. The reducing power of the extract increased progressively over the concentration range studied. Extract solutions at 1000µg/ml had comparable reducing power to Ascorbic acid at 250 µg/ml. These findings suggest that the *Ocimum canum* hydro-alcoholic extract is capable of donating electrons, and could therefore react with free radicals or terminate chain reactions.

Scavenging Activity of Hydrogen Peroxide

The scavenging of hydrogen peroxide by the standard (ascorbic acid) and extract after incubation for 10 minutes increased with increased concentration. *Ocimum canum* hydro-alcoholic extract exhibited higher hydrogen peroxide scavenging activity than ascorbic acids at similar concentrations. While hydrogen peroxide itself is not very reactive, it can generate the highly reactive hydroxyl radical (OH) through the Fenton reaction (Equation 1). Thus, the scavenging of hydrogen peroxide is an important antioxidant defense mechanism.

\[
\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH} + \text{OH}^- \quad (\text{Equation 1})
\]

The decomposition of hydrogen peroxide to water involves the transfer of electrons as in Equation 2.

\[
\text{H}_2\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightarrow 2\text{H}_2\text{O} \quad (\text{Equation 2})
\]

The scavenging of hydrogen peroxide by phenolic compounds has been attributed to their electron-donating ability. The hydro-alcoholic OC extracts have high electron-donating abilities, and 68.21 ± 0.35 scavenging was achieved with concentrations of hydro-alcoholic extracts at 2000 µg/ml. In comparison, the hydrogen peroxide scavenging activity of ascorbic acid at 2000 µg/ml were found to be 98.79 ± 0.28.

Scavenging Activity of Hydrogen Peroxide in *Ocimum canum* leaves

![Graph showing scavenging activity of hydrogen peroxide](image)

Figure 9: Study on Scavenging Activity of Hydrogen Peroxide in *Ocimum canum* leaves at 560 nm
CONCLUSIONS

The present study clearly indicates that *Ocimum canum* is a rich source of phyto-constituents having immense antioxidant potential. *Ocimum canum* rich in flavonoids, thus the results indicate that hydro-alcoholic leaf extract of *Ocimum canum* have potent antioxidant activity, achieved by scavenging abilities observed against DPPH, ABTS, Nitric-oxide, Superoxide, Iron chelating, Hydroxyl radical, Reducing power assay and Hydrogen Peroxide.

REFERENCES

ACKNOWLEDGEMENTS

Authors acknowledge the immense help received from the scholars whose articles are cited and included in references of this manuscript. The authors are also grateful to authors / editors / publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed.