RESEARCH ARTICLE

PREPARATION AND EVALUATION OF NATURAL COLOR EXTRACT FOR AYURVEDIC SYRUP

Bhadkariya Santosh1, Kulkarni Sunisha1, Bhadkariya Rajni2

1SOS in Pharmaceutical sciences, Jiwaji University, Gwalior, M.P., India
2SOS in Biotechnology, Jiwaji University, Gwalior, M.P., India
*Corresponding Author’s Email id - sunishakulkarni2007@gmail.com

Received 15 Jan 2016; Review Completed 08 Feb 2016; Accepted 08 Feb 2016, Available online 15 march 2016

ABSTRACT

The plant Butea monosperma is very popular among the peoples of Northern Ghana, where the leaves are used in soups; and calyces for soft drinks and also used medicinally. It has been found to possess several health benefits. The flower has a very rich orange colour, which this study aims as investigating its suitability as a coloring agent in pharmaceutical syrup.

Materials and Methods: The plant parts (flowers) are used in experimental work for investigating the suitability of Butea monosperma extract as coloring agent for pediatric syrup. 1kg of dried Butea Monosperma flowers were weighed out and spread out in a thin layer. After authentication, sample of Butea monosperma was washed for ten seconds in water (to avoid losing colour). Excess water was blotted from the sample with a clean towel, and dried in a hot air oven for four hours at 300ºC before the extraction procedure. Then the solvent for extraction (water, drug solvent ratio taken = 1:8) was filled in Soxhlet apparatus. After completion of the extraction procedure, the extract was taken out and evaporated up to semisolid consistency and then amount in percentages was determined in % w/w.

Result: The colour extract from Butea monosperma is found suitable as a pharmaceutical coloring agent. Tartrazine can be replaced with this natural source of colour, promoting the health of our people.

Keywords: Butea Monosperma Extract, Coloring agent, Tartrazine, Pediatric syrup.

1. INTRODUCTION

Tartrazine widely used as colouring agent in pharmaceuticals has been found to be carcinogenic1. If the colour extract from Butea monosperma is found suitable as a pharmaceutical colouring agent, then Tartrazine can be replaced with this natural source of colour, promoting the health of our people. The search for colouring agents with minimal or no toxic side effects has led to the discovery of several plant parts yielding various colors for food, cosmetics, textiles and some pharmaceutical dosage forms. Plant colour has been found to contain flavonoid2.

Colors actually make food appear good and more appetizing. Different food colors and dyes are included to add a zing to the food. All these food colors are food dyes and colorings that occur either naturally or are created artificially. In technical terms, a food dye is a food additive substance that is added to the food to change or improve the food colour. It may or may not enhance the flavour of the food3.

2. MATERIALS AND METHODS

Butea monosperma and Tartrazine were purchased from the local market of Mandsaur, M.P.

2.1 Method of Extraction from Butea Monosperma Flower

The powdered drug was weighted and filled in the thimble of Soxhlet apparatus. After that the thimble was fixed with the round bottom flask and assembly was attached to the condenser. Paraffin wax was put at the joints of the assembly for the easy removal of the assembly at the completion of the extraction procedure4. Then the solvent for extraction (water, drug solvent ratio taken = 1:8) was filled. After completion of the extraction procedure the extract was taken out and evaporated up to semisolid consistency and then amount in percentages was determined in % w/w.

Solvent system – water
Drug solvent ratio-1:8
Time of extraction-6 hrs
Temperature for extraction- 60-70ºC

How to cite this article:
2.2 Microbial Test of the Extract of *Butea Monosperma* Flower

The methanol extract (5% w/v) and aqueous extract (5% w/v) of *Butea monosperma* were prepared for microbial activity. Ten plates of nutrient agar were inoculated individually by *Escherichia coli*, *Proteus vulgaris*, and *Klebsiella pneumoniae* by spread plate method separately. Five plates were tested for aqueous extract tests, and five for methanol extract test. Using a sterile cork, wells were formed in nutrient agar plates for sterile inoculation of both methanolic and aqueous extracts of *Butea monosperma*. The same procedure was repeated, using tartrazine powder. The plates were incubated for 24 hours at 37°C, and different zones of inhibition were observed and documented with different microbial plates respectively. Liquorice, *Glycyrrhiza glabra* L. syrup was prepared for the study by standard method. Stability of natural colour extract and tartrazin in syrup was checked at room temperature. Change in colour was noted down.

3. RESULT

3.1 Microbial Test of the Extract of *Butea Monosperma* Flower

![Figure 1: Antimicrobial activity of *Butea monosperma* extract against *E. coli*.](image1)

3.2 Microbial Test of the Extract of *Butea Monosperma* Flower

![Figure 2: Antimicrobial activity of *Butea monosperma* extract against *Klebsiella pneumoniae*.](image2)

![Figure 3: Antimicrobial activity of *Butea monosperma* extract against *proteus vulgaris*.](image3)

4. DISCUSSION

The yield was very encouraging, implying that the use of *Butea monosperma* extract as a coloring agent is cost effective. Colour, taste, odor and form of the *Butea monosperma* conform to general description of samples described on the internet. Colour value obtained (0.258) conformed to the BP standard, and was retained within BP Standards for up to six months.

Microbiological tests revealed that *Butea monosperma* extract has antibacterial properties but very little antifungal properties; thus substantiating folklore medicine claims as to its use in healing syphilis, gonorrhea and other bacterial infections. Methanolic extracts had better antimicrobial activity. Tartrazine had no antibacterial or antifungal properties; thus *Butea monosperma* has a great advantage over Tartrazine in its use as a colouring agent.

Tartrazine, being synthetic and highly concentrated into a powder form has an advantage of being used as a 1% or 2% solution; whereas a 33% solution of...
aqueous extract of *Butea monosperma* achieved the same colouring effect. Nevertheless, the health benefit of the natural product outweighs this disadvantage; especially since tartrazine has been found to be carcinogenic\(^{11,12}\).

The pure extract and ayurvedic syrups formulated with the extract are best stored at room temperature and also at 37ºC. Generally, all pediatric syrups must be stored in amber bottles to avoid exposure to light which causes loss of colour and potency of the drugs. pH was found to decrease with time, though Pediatric Syrups coloured with amaranth had a slower decrease than those coloured with extract of *Butea monosperma*. Using citrate buffer to attain pH 5 provided good pH stability over the four month test period. The study results suggest that colour extract from *Butea monosperma* flower may be used as coloring agent for ayurvedic syrups.

**REFERENCES**